1
|
Zhu S, Liu X, Lu X, Liao Q, Luo H, Tian Y, Cheng X, Jiang Y, Liu G, Chen J. Biomaterials and tissue engineering in traumatic brain injury: novel perspectives on promoting neural regeneration. Neural Regen Res 2024; 19:2157-2174. [PMID: 38488550 PMCID: PMC11034597 DOI: 10.4103/1673-5374.391179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
Collapse
Affiliation(s)
- Shihong Zhu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiyue Lu
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiang Liao
- Department of Pharmacy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Huiyang Luo
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Tian
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yaxin Jiang
- Out-patient Department, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Guangdi Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Hakami A, Narasimhan K, Comini G, Thiele J, Werner C, Dowd E, Newland B. Cryogel microcarriers for sustained local delivery of growth factors to the brain. J Control Release 2024; 369:404-419. [PMID: 38508528 DOI: 10.1016/j.jconrel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Neurotrophic growth factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been considered as potential therapeutic candidates for neurodegenerative disorders due to their important role in modulating the growth and survival of neurons. However, clinical translation remains elusive, as their large size hinders translocation across the blood-brain barrier (BBB), and their short half-life in vivo necessitates repeated administrations. Local delivery to the brain offers a potential route to the target site but requires a suitable drug-delivery system capable of releasing these proteins in a controlled and sustained manner. Herein, we develop a cryogel microcarrier delivery system which takes advantage of the heparin-binding properties of GDNF and BDNF, to reversibly bind/release these growth factors via electrostatic interactions. Droplet microfluidics and subzero temperature polymerization was used to create monodisperse cryogels with varying degrees of negative charge and an average diameter of 20 μm. By tailoring the inclusion of 3-sulfopropyl acrylate (SPA) as a negatively charged moiety, the release duration of these two growth factors could be adjusted to range from weeks to half a year. 80% SPA cryogels and 20% SPA cryogels were selected to load GDNF and BDNF respectively, for the subsequent biological studies. Cell culture studies demonstrated that these cryogel microcarriers were cytocompatible with neuronal and microglial cell lines, as well as primary neural cultures. Furthermore, in vivo studies confirmed their biocompatibility after administration into the brain, as well as their ability to deliver, retain and release GDNF and BDNF in the striatum. Overall, this study highlights the potential of using cryogel microcarriers for long-term delivery of neurotrophic growth factors to the brain for neurodegenerative disorder therapeutics.
Collapse
Affiliation(s)
- Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany; Institute of Chemistry, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland.
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
3
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
4
|
Dalal N, Challa R, Thimukonda JJ, Tayalia P. Gelatin Methacryloyl Based Injectable Cryogels with Tunable Degradability for Cell Delivery. Macromol Biosci 2024; 24:e2200562. [PMID: 36974501 DOI: 10.1002/mabi.202200562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2022] [Revised: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Scaffold-based cell delivery can improve therapeutic effects of transplanted cells in cell therapy. Biomaterial scaffolds serveas niche for cell growth and proliferation which improves cell survival and overall function post cell delivery. In this study, gelatin methacryloyl based injectable scaffolds made using poly(ethylene)glycol as a sacrificial polymer and cryogelation as a technique, are demonstrated to have tunable degradability and porosity that is required for cell and drug delivery applications. The pore size (10-142 µm) of these gels makes them suitable for loading different cell types as per the application. In vitro studies using mammalian cells confirm that these cryogels are cytocompatible. These cell-laden scaffolds are injectable and have a cell retention ability of up to 90% after injection. Rheology is done to evaluate stiffness and shape recovery property, and it is found that these gels can maintain their original shape even after applying 7 cycles of strain from 0.1% to 20%. Furthermore, their degradability can be modulated between 6 and 10 days by changing the overall polymer composition. Thus, injectability and degradability of these cryogels can circumvent invasive surgical procedures, thereby making them useful for a variety of applications including delivery of cells and bioactive factors.
Collapse
Affiliation(s)
- Neha Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ramadevi Challa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Jeyapriya J Thimukonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
5
|
Li X, Li X, Yang J, Lin J, Zhu Y, Xu X, Cui W. Living and Injectable Porous Hydrogel Microsphere with Paracrine Activity for Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207211. [PMID: 36651038 DOI: 10.1002/smll.202207211] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Paracrine is an important mechanism in mesenchymal stem cells (MSCs) that promotes tissue regeneration. However, anoikis is attributed to unsuitable adhesion microenvironment hindered this paracrine effect. In this study, a living and injectable porous hydrogel microsphere with long-term paracrine activity is constructed via the freeze-drying microfluidic technology and the incorporation of platelet-derived growth factor-BB (PDGF-BB) and exogenous MSCs. Benefiting from the porous structure and superior mechanical property of methacrylate gelatin (GelMA) hydrogel microspheres (GMs), exogenous stem cells are able to adhere and proliferate on GMs, thereby facilitating cell-to-extracellular matrix (ECM) and cell-to-cell interactions and enhancing paracrine effect. Furthermore, the sustained release of PDGF-BB can recruit endogenous MSCs to prolong the paracrine activity of the living GMs. In vitro and in vivo experiments validated that the living GMs exhibit superior secretion properties and anti-inflammatory efficacy and can attenuate osteoarthritis (OA) progression by favoring the adherent microenvironment and utilizing the synergistic effect of exogenous and endogenous MSCs. Overall, a living injectable porous hydrogel microsphere that can enhance the paracrine activity of stem cells is fabricated and anticipated to hold the potential of future clinical translation in OA and other diseases.
Collapse
Affiliation(s)
- Xingchen Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaoxiao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jielai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jiawei Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuan Zhu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiangyang Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
6
|
|
7
|
Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol Ther 2021; 234:108043. [PMID: 34813862 DOI: 10.1016/j.pharmthera.2021.108043] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a complex medical and psychological challenge for which there is no curative therapy currently available. Despite major progress in pharmacological and surgical approaches, clinical trials for SCI patients have been uniformly disappointing thus far as there are many practical and biological issues yet to be resolved. Neuroinflammation is a critical event of the secondary injury phase after SCI, and recent research strategies have focused on modulating the immune response after injury to provide a more favorable recovery environment. Biomaterials can serve this purpose by providing physical and trophic support to the injured spinal cord after SCI. Of all potential biomaterials, functional hydrogels are emerging as a key component in novel treatment strategies for SCI, including controlled and localized delivery of immunomodulatory therapies to drive polarization of immune cells towards a pro-regenerative phenotype. Here, we extensively review recent developments in the use of functional hydrogels as immunomodulatory therapies for SCI. We briefly describe physicochemical properties of hydrogels and demonstrate how advanced fabrication methods lead to the required heterogeneity and hierarchical arrangements that increasingly mimic complex spinal cord tissue. We then summarize potential SCI therapeutic modalities including: (i) hydrogels alone; (ii) hydrogels as cellular or (iii) bioactive molecule delivery vehicles, and; (iv) combinatorial approaches. By linking the structural properties of hydrogels to their functions in treatment with particular focus on immunopharmacological stimuli, this may accelerate further development of functional hydrogels for SCI, and indeed next-generation central nervous system regenerative therapies.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Wartenberg A, Weisser J, Schnabelrauch M. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules 2021; 26:5597. [PMID: 34577067 PMCID: PMC8466427 DOI: 10.3390/molecules26185597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cryogels are a class of macroporous, interconnective hydrogels polymerized at sub-zero temperatures forming mechanically robust, elastic networks. In this review, latest advances of cryogels containing mainly glycosaminoglycans (GAGs) or composites of GAGs and other natural or synthetic polymers are presented. Cryogels produced in this way correspond to the native extracellular matrix (ECM) in terms of both composition and molecular structure. Due to their specific structural feature and in addition to an excellent biocompatibility, GAG-based cryogels have several advantages over traditional GAG-hydrogels. This includes macroporous, interconnective pore structure, robust, elastic, and shape-memory-like mechanical behavior, as well as injectability for many GAG-based cryogels. After addressing the cryogelation process, the fabrication of GAG-based cryogels and known principles of GAG monomer crosslinking are discussed. Finally, an overview of specific GAG-based cryogels in biomedicine, mainly as polymeric scaffold material in tissue regeneration and tissue engineering-related controlled release of bioactive molecules and cells, is provided.
Collapse
Affiliation(s)
- Annika Wartenberg
- Biomaterials Department, INNOVENT e.V., Pruessingstrasse 27B, 07745 Jena, Germany;
| | | | | |
Collapse
|
9
|
Park J, Choi SW, Cha BG, Kim J, Kang SJ. Alternative Activation of Macrophages through Interleukin-13-Loaded Extra-Large-Pore Mesoporous Silica Nanoparticles Suppresses Experimental Autoimmune Encephalomyelitis. ACS Biomater Sci Eng 2021; 7:4446-4453. [PMID: 34435775 DOI: 10.1021/acsbiomaterials.1c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) treatment via cytokine-mediated immunomodulation has been hampered by the difficulty with which cytokines can be stably and noninvasively delivered to the central nervous system. Here, we show that interleukin (IL)-13 packaged in extra-large-pore mesoporous silica nanoparticles (XL-MSNs) is protected from degradation and directs the alternative activation of macrophages both in vitro and in vivo. Furthermore, the noninvasive intranasal delivery of IL-13-loaded XL-MSNs ameliorated the symptoms of experimental autoimmune encephalomyelitis, a murine model of MS, accompanied by the induction of chemokines orchestrating immune cell infiltration. These results demonstrate the therapeutic potential of IL-13-loaded XL-MSNs for MS patients.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
| | - Bong Geun Cha
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea.,School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Ucar B. Natural biomaterials in brain repair: A focus on collagen. Neurochem Int 2021; 146:105033. [PMID: 33785419 DOI: 10.1016/j.neuint.2021.105033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials derived from natural resources have increasingly been used for versatile applications in the central nervous system (CNS). Thanks to their biocompatibility and biodegradability, natural biomaterials offer vast possibilities for future clinical repair strategies for the CNS. These materials can be used for diverse applications such as hydrogels to fill the tissue cavities, microparticles to deliver drugs across the blood-brain barrier, and scaffolds to transplant stem cells. In this review, various uses of prominent protein and polysaccharide biomaterials, with a special focus on collagen, in repair and regenerative applications for the brain are summarized together with their individual advantages and disadvantages.
Collapse
Affiliation(s)
- Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
11
|
Çimen D, Özbek MA, Bereli N, Mattiasson B, Denizli A. Injectable Cryogels in Biomedicine. Gels 2021; 7:gels7020038. [PMID: 33915687 PMCID: PMC8167568 DOI: 10.3390/gels7020038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cryogels are interconnected macroporous materials that are synthesized from a monomer solution at sub-zero temperatures. Cryogels, which are used in various applications in many research areas, are frequently used in biomedicine applications due to their excellent properties, such as biocompatibility, physical resistance and sensitivity. Cryogels can also be prepared in powder, column, bead, sphere, membrane, monolithic, and injectable forms. In this review, various examples of recent developments in biomedical applications of injectable cryogels, which are currently scarce in the literature, made from synthetic and natural polymers are discussed. In the present review, several biomedical applications of injectable cryogels, such as tissue engineering, drug delivery, therapeutic, therapy, cell transplantation, and immunotherapy, are emphasized. Moreover, it aims to provide a different perspective on the studies to be conducted on injectable cryogels, which are newly emerging trend.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Merve Asena Özbek
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Box 124, 221 00 Lund, Sweden;
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
- Correspondence:
| |
Collapse
|
12
|
Eigel D, Schuster R, Männel MJ, Thiele J, Panasiuk MJ, Andreae LC, Varricchio C, Brancale A, Welzel PB, Huttner WB, Werner C, Newland B, Long KR. Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials 2021; 271:120712. [PMID: 33618220 DOI: 10.1016/j.biomaterials.2021.120712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The human brain has unique features that are difficult to study in animal models, including the mechanisms underlying neurodevelopmental and psychiatric disorders. Despite recent advances in human primary brain tissue culture systems, the use of these models to elucidate cellular disease mechanisms remains limited. A major reason for this is the lack of tools available to precisely manipulate a specific area of the tissue in a reproducible manner. Here we report an easy-to-use tool for site-specific manipulation of human brain tissue in culture. We show that line-shaped cryogel scaffolds synthesized with precise microscale dimensions allow the targeted delivery of a reagent to a specific region of human brain tissue in culture. 3-sulfopropyl acrylate (SPA) was incorporated into the cryogel network to yield a negative surface charge for the reversible binding of molecular cargo. The fluorescent dyes BODIPY and DiI were used as model cargos to show that placement of dye loaded scaffolds onto brain tissue in culture resulted in controlled delivery without a burst release, and labelling of specific regions without tissue damage. We further show that cryogels can deliver tetrodotoxin to tissue, inhibiting neuronal function in a reversible manner. The robust nature and precise dimensions of the cryogel resulted in a user-friendly and reproducible tool to manipulate primary human tissue cultures. These easy-to-use cryogels offer an innovate approach for more complex manipulations of ex-vivo tissue.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Romy Schuster
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany
| | - Max J Männel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Martyna J Panasiuk
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Laura C Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Petra B Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
13
|
Eigel D, Werner C, Newland B. Cryogel biomaterials for neuroscience applications. Neurochem Int 2021; 147:105012. [PMID: 33731275 DOI: 10.1016/j.neuint.2021.105012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials in the form of 3D polymeric scaffolds have been used to create structurally and functionally biomimetic constructs of nervous system tissue. Such constructs can be used to model defects and disease or can be used to supplement neuronal tissue regeneration and repair. One such group of biomaterial scaffolds are hydrogels, which have been widely investigated for cell/tissue culture and as cell or molecule delivery systems in the field of neurosciences. However, a subset of hydrogels called cryogels, have shown to possess several distinct structural advantages over conventional hydrogel networks. Their macroporous structure, created via the time and resource efficient fabrication process (cryogelation) not only allows mass fluid transport throughout the structure, but also creates a high surface area to volume ratio for cell growth or drug loading. In addition, the macroporous structure of cryogels is ideal for applications in the central nervous system as they are very soft and spongey, yet also robust, which makes them a user-friendly and reproducible tool to address neuroscience challenges. In this review, we aim to provide the neuroscience community, who may not be familiar with the fundamental concepts of cryogels, an accessible summary of the basic information that pertain to their use in the brain and nervous tissue. We hope that this review shall initiate creative ways that cryogels could be further adapted and employed to tackle unsolved neuroscience challenges.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, Wales, UK.
| |
Collapse
|
14
|
Jarrin S, Hakami A, Newland B, Dowd E. Growth Factor Therapy for Parkinson's Disease: Alternative Delivery Systems. JOURNAL OF PARKINSON'S DISEASE 2021; 11:S229-S236. [PMID: 33896851 PMCID: PMC8543245 DOI: 10.3233/jpd-212662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
Despite decades of research and billions in global investment, there remains no preventative or curative treatment for any neurodegenerative condition, including Parkinson's disease (PD). Arguably, the most promising approach for neuroprotection and neurorestoration in PD is using growth factors which can promote the growth and survival of degenerating neurons. However, although neurotrophin therapy may seem like the ideal approach for neurodegenerative disease, the use of growth factors as drugs presents major challenges because of their protein structure which creates serious hurdles related to accessing the brain and specific targeting of affected brain regions. To address these challenges, several different delivery systems have been developed, and two major approaches-direct infusion of the growth factor protein into the target brain region and in vivo gene therapy-have progressed to clinical trials in patients with PD. In addition to these clinically evaluated approaches, a range of other delivery methods are in various degrees of development, each with their own unique potential. This review will give a short overview of some of these alternative delivery systems, with a focus on ex vivo gene therapy and biomaterial-aided protein and gene delivery, and will provide some perspectives on their potential for clinical development and translation.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|