1
|
Guo Q, Tang Y, Wang S, Xia X. Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment. Redox Biol 2025; 80:103515. [PMID: 39904189 PMCID: PMC11847112 DOI: 10.1016/j.redox.2025.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the pathogenesis of cancer. Non-invasive therapies that promote intracellular ROS generation, including photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), have emerged as novel approaches for cancer treatment. These therapies directly kill tumor cells by generating ROS, and although they show great promise in tumor treatment, many challenges remain to be addressed in practical applications. Firstly, the inherent complexity of the tumor microenvironment (TME), such as hypoxia and elevated glutathione (GSH) levels, hinders ROS generation, thereby significantly diminishing the efficacy of ROS-based therapies. In addition, these therapies are influenced by their intrinsic mechanisms. To overcome these limitations, various nanoparticle (NP) systems have been developed to improve the therapeutic efficacy of non-invasive therapies against tumors. This review first summarizes the mechanisms of ROS generation for each non-invasive therapy and their current limitations, with a particular focus on the enhancement strategies for each therapy based on NP systems. Additionally, various strategies to modulate the TME are highlighted. These strategies aim to amplify ROS generation in non-invasive therapies and enhance their anti-tumor efficiency. Finally, the current challenges and possible solutions for the clinical translation of ROS-based non-invasive therapies are also discussed.
Collapse
Affiliation(s)
- Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yingnan Tang
- School of Pharmacy, Hunan Vocational College of Science And Technology, Changsha, Hunan, 410208, China
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Yang M, Wang X, Peng M, Wang F, Hou S, Xing R, Chen A. Nanomaterials Enhanced Sonodynamic Therapy for Multiple Tumor Treatment. NANO-MICRO LETTERS 2025; 17:157. [PMID: 39992547 PMCID: PMC11850698 DOI: 10.1007/s40820-025-01666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025]
Abstract
Sonodynamic therapy (SDT) as an emerging modality for malignant tumors mainly involves in sonosensitizers and low-intensity ultrasound (US), which can safely penetrate the tissue without significant attenuation. SDT not only has the advantages including high precision, non-invasiveness, and minimal side effects, but also overcomes the limitation of low penetration of light to deep tumors. The cytotoxic reactive oxygen species can be produced by the utilization of sonosensitizers combined with US and kill tumor cells. However, the underlying mechanism of SDT has not been elucidated, and its unsatisfactory efficiency retards its further clinical application. Herein, we shed light on the main mechanisms of SDT and the types of sonosensitizers, including organic sonosensitizers and inorganic sonosensitizers. Due to the development of nanotechnology, many novel nanoplatforms are utilized in this arisen field to solve the barriers of sonosensitizers and enable continuous innovation. This review also highlights the potential advantages of nanosonosensitizers and focus on the enhanced efficiency of SDT based on nanosonosensitizers with monotherapy or synergistic therapy for deep tumors that are difficult to reach by traditional treatment, especially orthotopic cancers.
Collapse
Affiliation(s)
- Mengyao Yang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xin Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Mengke Peng
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Fei Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Senlin Hou
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China.
| | - Ruirui Xing
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
3
|
Tao Y, Zhuang W, Fan W, Zhou L, Fan L, Qin H, Zhu Y. Dual-functional silver nanoparticle-enhanced ZnO nanorods for improved reactive oxygen species generation and cancer treatment. iScience 2025; 28:111858. [PMID: 40017508 PMCID: PMC11867527 DOI: 10.1016/j.isci.2025.111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/22/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025] Open
Abstract
Recent advancements in sonodynamic therapy (SDT) for cancer treatment have highlighted the potential of enhancing reactive oxygen species (ROS) generation and improving therapeutic outcomes. This study introduces zinc oxide (ZnO) nanorods (NRs) in situ loaded with silver nanoparticles (ZnO@Ag NRs), designed to optimize ROS production under ultrasound irradiation and offer significant advantages in tumor specificity and biosafety. The transmission electron microscopy and elemental mapping confirmed the consistent size and monodispersed Ag nanoparticle for ZnO@Ag NR. Sonodynamic properties showed that ZnO@Ag NRs produce higher singlet oxygen and hydroxyl radicals under ultrasound. In vitro studies demonstrated excellent biocompatibility and enhanced cell-killing effects of ZnO@Ag NRs on CT-26 cells, while in vivo results confirmed its superior anti-tumor efficacy and biosafety. Furthermore, the ZnO@Ag NRs' antibacterial properties were also confirmed, suggesting additional benefits in treating cancers associated with bacterial infections. Collectively, these findings establish ZnO@Ag NRs as a potent and safe agent for ultrasound-driven cancer therapy.
Collapse
Affiliation(s)
- Yichao Tao
- School of Medicine, Nantong University, Nantong 226001, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou 215600, China
| | - Wenbin Zhuang
- School of Medicine, Nantong University, Nantong 226001, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wensi Fan
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Longxiang Zhou
- Department of General Surgery, Jinshan Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, No.147, Jiankang Road, Shanghai 201599, China
| | - Lihong Fan
- School of Medicine, Nantong University, Nantong 226001, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Huanlong Qin
- School of Medicine, Nantong University, Nantong 226001, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yefei Zhu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
4
|
Lin SL, Su SP, Yang YZ, Chiang CY, Chi HY, Chang CA, Liu TY, Chiang HK. Enhanced brightness and photostability of dye-sensitized Nd-doped rare earth nanocomposite for in vivo NIR-IIb vascular and orthotopic tumor imaging. J Nanobiotechnology 2025; 23:91. [PMID: 39920730 PMCID: PMC11803961 DOI: 10.1186/s12951-025-03145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
Rare-earth doped nanoparticles (RENPs) have shown promise in biomedical imaging, particularly within the NIR-IIb region, due to their deep tissue penetration and minimal light scattering. However, challenges such as low extinction coefficients, narrow excitation spectra, and prone to quenching in aqueous environments limit their effectiveness. To overcome these obstacles, we developed a novel dye-sensitized, onion-like Nd-doped RENP nanocomposite to enhance NIR-IIb imaging performance. The onion-like Nd-RENP nanocomposite markedly enhances emission intensity at 1525 nm within the NIR-IIb range by reducing quenching and improving spectral overlap. The integration of an IR783-containing micellar layer further stabilizes the NIR dye, mitigating quenching and photobleaching. In vivo imaging studies demonstrated a 75-fold increase in luminance and a 9-fold improvement in photostability compared to free NIR dyes in aqueous solutions. Time-dependent in vivo studies confirmed the nanocomposite's capability for prolonged imaging of vascular and tumor tissues, maintaining high-resolution images for over an hour. Additionally, the nanocomposite supported successful 3D imaging reconstruction of biological tissues. The dye-sensitized onion-like Nd-RENP nanocomposite presents a significant advancement in NIR-IIb imaging, providing enhanced brightness and photostability. Its ability to maintain clear and stable imaging over extended periods suggests potential applications in dynamic vascular and tumor-targeted imaging. This innovation holds promise for future biomedical imaging technologies, particularly in areas requiring high-resolution and long-duration monitoring.
Collapse
Affiliation(s)
- Syue-Liang Lin
- Biomedical Engineering Research and Development Center, Taipei, Taiwan
| | - Shih-Po Su
- Biomedical Engineering Research and Development Center, Taipei, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Zhen Yang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Yu Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Yu Chi
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng Allen Chang
- Biomedical Engineering Research and Development Center, Taipei, Taiwan
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Huihua Kenny Chiang
- Biomedical Engineering Research and Development Center, Taipei, Taiwan.
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Aalhate M, Mahajan S, Dhuri A, Singh PK. Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective. Adv Colloid Interface Sci 2025; 335:103331. [PMID: 39522420 DOI: 10.1016/j.cis.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy. Nanocarriers can be maneuvered with biological components to acquire biological identity for further regulating their biodistribution and cell-to-cell cross-talk. Thus, the integration of synthetic and biological components to deliver therapeutic cargo is called a biohybrid delivery system. These delivery systems possess the advantage of synthetic nanocarriers, such as high drug loading, engineerable surface, reproducibility, adequate communication and immune evasion ability of biological constituents. The biohybrid delivery vectors offer an excellent opportunity to harness the synergistic properties of the best entities of the two worlds for improved therapeutic outputs. The major spotlights of this review are different biological components, synthetic counterparts of biohybrid nanocarriers, recent advances in hybridization techniques, and the design of biohybrid delivery systems for cancer therapy. Moreover, this review provides an overview of biohybrid systems with therapeutic and diagnostic applications. In a nutshell, this article summarizes the advantages and limitations of various biohybrid nano-platforms, their clinical potential and future directions for successful translation in cancer management.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
6
|
Li K, Wang S, Chen C, Xie Y, Dai X, Chen Y. Sonocatalytic biomaterials. Coord Chem Rev 2025; 522:216242. [DOI: 10.1016/j.ccr.2024.216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Shi Y, Li C, Li L, He Q, Zhu Q, Xu Z, Liu Y, Zhang N, Zhang M, Jiao J, Zheng R. Electronic band structure modulation for sonodynamic therapy. J Mater Chem B 2024; 12:12470-12488. [PMID: 39533888 DOI: 10.1039/d4tb01679c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Sonodynamic therapy (SDT) is a burgeoning and newfangled therapy modality with great application potential. Sonosensitizers are essential factors used to ensure the effectiveness of SDT. For the past few years, a lot of scientists have discovered many valid ways to refine and improve the performance of SDT. Among these methods, modulating the electronic band structure of sonosensitizers is one of the eminent measures to improve SDT, but relevant research studies on this are still unsatisfactory for actual transformation. Herein, this review provides a brief and comprehensive introduction of common ways to modulate electronic band structure, such as forming defects, doping, piezoelectric effect and heterostructure. Then, some nanomaterials with excellent properties that can be used as a sonosensitizer to enhance the SDT effect by modulating electronic band structure are overviewed, such as Ti-based, Zn-based, Bi-based, noble metal-based and MOF-based nanomaterials. At the same time, this paper also discusses the problems and challenges that may be encountered in the future application progress of SDT. In conclusion, the strategy of enhancing SDT through modulating electronic band structure will promote the rapid development of nanomedicine and provide a great research direction for SDT.
Collapse
Affiliation(s)
- Yafang Shi
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- College of Life and Health Science, Northeastern University, Shenyang 110000, China
| | - Chengzhilin Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Linquan Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Qingbin He
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Qingyi Zhu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ziang Xu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yanzi Liu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Nianlei Zhang
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Meng Zhang
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Jianwei Jiao
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
8
|
Yue Z, Zhao Q, Wang S, Yao S, Wan X, Hu Q, Wen K, Zhao Y, Li L. Manganese Dioxide Coated Piezoelectric Nanosonosensitizer for Cancer Therapy with Tumor Microenvironment Remodeling and Multienzyme-Like Catalysis. SMALL METHODS 2024; 8:e2400018. [PMID: 38558511 DOI: 10.1002/smtd.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Sonodynamic therapy (SDT) as an emerging method for cancer therapy has encountered difficulty in insufficient production of reactive oxygen species (ROS), especially in tumor microenvironment (TME) with elevated antioxidants and hypoxic conditions. In this work, the authors have fabricated heterostructured manganese dioxide (MnO2)-coated BaTiO3 nanoparticles (BTO@M NPs) as a piezoelectric sonosensitizer, which exhibits the capacity of remodeling TME and multienzyme-like catalysis for boosting SDT. Benefitting from the piezotronic effect, the formation of a p-n junction between MnO2 and piezoelectric BTO with a built-in electric field and band bending efficiently promotes the separation of charge carriers, facilitating the generation of superoxide anion (•O2 -) and hydroxyl radical (•OH) under ultrasound (US) stimulation. Moreover, BTO@M NPs can catalyze the overexpressed hydrogen peroxide (H2O2) in TME to produce oxygen for replenishing the gas source in SDT, and also deplete antioxidant glutathione (GSH), realizing TME remodeling. During this process, the reduced Mn(II) can convert H2O2 into •OH, further amplifying cellular oxidative damage. With these combination effects, the versatile BTO@M NPs exhibit prominent cytotoxicity and tumor growth inhibition against 4T1 breast cancer. This work provides a feasible strategy for constructing high-efficiency sonosensitizers for cancer SDT.
Collapse
Affiliation(s)
- Zhaoyang Yue
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Qinyu Zhao
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Shaobo Wang
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Quanhong Hu
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Kaikai Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Yunchao Zhao
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Dong G, Jia L, Gao S, Lin M, Wang R, Yang F, Ruan J, Lv Y. In vitro and in vivo investigation of the inhibitory effects of Sinoporphyrin sodium-mediated Sonodynamic therapy on human oral squamous cell carcinoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113061. [PMID: 39532015 DOI: 10.1016/j.jphotobiol.2024.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Sonodynamic therapy (SDT) is an innovative, non-invasive approach to cancer treatment, by using low-intensity ultrasound to trigger the activation of sonosensitizers localized within cancerous cells. This current study aimed to explore the therapeutic efficacy of a new sonosensitizer, Sinoporphyrin Sodium (DVDMS), under ultrasound irradiation, against oral squamous cell carcinoma (OSCC)-derived SCC-154 cells, both in vitro and in vivo. METHODS Fluorescence spectra, cytotoxicity assessments, uptake mechanisms, and subcellular distributions of DVDMS within the SCC-154 cell line were detected. Additionally, the study comprehensively assessed the antitumor effect, oxidative stress responses, apoptosis, apoptosis-related proteins, autophagic processes, and ultrastructural changes in SCC-154 cells, both in vitro and in vivo, subsequent to treatment with low-intensity ultrasound (at 1.0 MHz, 1 W/cm2 in vitro and 3 W/cm2 in vivo) in conjunction with DVDMS also being examined. RESULTS The findings indicate that SCC-154 cells exhibit heightened sensitivity to DVDMS compared to SAS and HSC-3 cell lines. Within SCC-154 cells, DVDMS primarily localizes within the mitochondria and lysosomes. DVDMS-based SDT significantly increased the intracellular levels of reactive oxygen species (ROS), induced morphological changes such as mitochondrial swelling and formation of autolysosomes, and exhibited a notable dose-dependent reduction in cell viability in vitro. Also, DVDMS-SDT demonstrated significant inhibition of xenograft growth without discernible adverse effects. Mechanistically, DVDMS-SDT upregulated Bax expression while downregulating Bcl-2 expression, which led to the Bax/Bcl-2 ratio and induced autophagy. CONCLUSION DVDMS-SDT triggers mitochondrial-dependent apoptosis in SCC-154 cells, unlike 5-ALA and protoporphyrin IX (PpIX). Also, the combination of DVDMS with ultrasound stimulation induces autophagy, with the onset of autophagic processes preceding apoptosis.
Collapse
Affiliation(s)
- Guogang Dong
- Department of Anatomy, Harbin Medical University, Harbin 150086, China; Department of Radiology, The General Hospital of Eastern Theater Command of the Chinese People's Liberation Army (PLA), Nanjing 210002, China
| | - Limin Jia
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Shuhua Gao
- Department of Second Assigned Outpatient, The General Hospital of Eastern Theater Command of the Chinese People's Liberation Army (PLA), Nanjing 210002, China
| | - Monan Lin
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Ruilin Wang
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Fuyu Yang
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Juanjuan Ruan
- War Trauma Treatment Center, The General Hospital of Eastern Theater Command of the Chinese People's Liberation Army (PLA), Nanjing 210002, China.
| | - Yanhong Lv
- Department of Anatomy, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
10
|
Li S, He N, Wu X, Chen F, Xue Q, Li S, Zhao C. Characteristics of Ultrasound-Driven Barium Titanate Nanoparticles and the Mechanism of Action on Solid Tumors. Int J Nanomedicine 2024; 19:12769-12791. [PMID: 39624116 PMCID: PMC11610387 DOI: 10.2147/ijn.s491816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 01/03/2025] Open
Abstract
Sonodynamic therapy (SDT) utilizes specific sound waves to activate sonosensitizers, generating localized biological effects to eliminate tumor cells. With advancements in nanomedicine, the application of nano-acoustic sensitizers has significantly advanced the development of SDT. BaTiO3 (BTO), an inorganic nano-acoustic sensitizer, possesses light refraction characteristics and a high dielectric constant, and can generate an electric field under ultrasound (US) stimulation. With continuous progress in multidisciplinary fields of US research, scientists have developed various types of barium titanate nanoparticles (BTNPs) to further advance SDT research and applications in tumor therapy. In this review, we present recently proposed and representative BTNPs, including their pathways of action, such as the induction of tumor cell senescence, ferroptosis, and glutathione depletion to reshape the tumor microenvironment, as well as their surface modifications. Research indicates that the mechanisms of action of ultrasound-driven BTNPs in tumor therapy are multifaceted. These mechanisms, whether utilized individually or synergistically, offer a potent and targeted strategy for cancer treatment. Furthermore, we discuss the application of BTNPs in various tumor types. Finally, we summarize the current challenges and future prospects for the clinical translation of BTNPs.
Collapse
Affiliation(s)
- Shuao Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoyu Wu
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fang Chen
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qingwen Xue
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shangyong Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Cheng Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
11
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
12
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
13
|
Tian M, Li Y, Li Y, Yang T, Chen H, Guo J, Liu Y, Liu P. Sonodynamic Therapy-Driven Immunotherapy: Constructing AIE Organic Sonosensitizers Using an Advanced Receptor-Regulated Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400654. [PMID: 38752582 DOI: 10.1002/smll.202400654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Indexed: 10/01/2024]
Abstract
Benefit from the deeper penetration of mechanical wave, ultrasound (US)-based sonodynamic therapy (SDT) executes gratifying efficacy in treating deep-seated tumors. Nevertheless, the complicated mechanism of SDT undeniably hinders the exploration of ingenious sonosensitizers. Herein, a receptor engineering strategy of aggregation-induced emission (AIE) sonosensitizers (TPA-Tpy) with acceptor (A)-donor (D)-A' structure is proposed, which inspects the effect of increased cationizations on US sensitivity. Under US stimulation, enhanced cationization in TPA-Tpy improves intramolecular charge transfer (ICT) and accelerates charge separation, which possesses a non-negligible promotion in type I reactive oxygen species (ROS) production. Moreover, abundant ROS-mediated mitochondrial oxidative stress triggers satisfactory immunogenic cell death (ICD), which further promotes the combination of SDT and ICD. Subsequently, subacid pH-activated nanoparticles (TPA-Tpy NPs) are constructed with charge-converting layer (2,3-dimethylmaleic anhydride-poly (allylamine hydrochloride)-polyethylene glycol (DMMA-PAH-PEG)) and TPA-Tpy, achieving the controllable release of sonosensitizers. In vivo, TPA-Tpy-mediated SDT effectively initiates the surface-exposed of calreticulin (ecto-CRT), dendritic cells (DCs) maturation, and CD8+ T cell infiltration rate through enhanced ROS production, achieving suppression and ablation of primary and metastatic tumors. This study provides new opinions in regulating acceptors with eminent US sensitization, and brings a novel ICD sono-inducer based on SDT to realize superior antitumor effect.
Collapse
Affiliation(s)
- Mengyan Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yucong Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Yaning Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Tianyue Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hongli Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Life Sciences, Tiangong University, Tianjin, 300387, P. R. China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Pai Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
14
|
Yu H, Huang Y, Nong Z, Lin X, Tang K, Cai Z, Huang K, Yu T, Lan H, Zhang Q, Wang Q, Yang L, Zhu J, Wu L, Luo H. In-Situ Grown Nanocrystal TiO 2 on 2D Ti 3C 2 Nanosheets with Anti-Tumor Activity from Photo-Sonodynamic Treatment and Immunology. Int J Nanomedicine 2024; 19:7963-7981. [PMID: 39130689 PMCID: PMC11316479 DOI: 10.2147/ijn.s457112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Traditional cancer treatment strategies often have severe toxic side effects and poor therapeutic efficacy. To address the long-standing problems related to overcoming the complexity of tumors, we develop a novel nanozyme based on the in situ oxidation of 2D Ti3C2 structure to perform simultaneous phototherapy and sonodynamic therapy on tumors. Ti3C2 nanozymes exhibit multi-enzyme activity, including intrinsic peroxidase (POD) activities, which can react with H2O2 in the tumor microenvironment. This new material can construct Ti3C2/TiO2 heterostructures in vivo. Methods Photothermal (PTT), sonodynamic (SDT) effects, and photoacoustic (PA) image-guided synergy therapy can be achieved. Finally, anticancer immune responses occur with this nanozyme. In vivo experiments revealed that the Ti3C2/TiO2 heterostructure inhibited tumor growth. Results Complementarily, our results showed that the Ti3C2/TiO2 heterostructure enhanced the immunogenic activity of tumors by recruiting cytotoxic T cells, thereby enhancing the tumor ablation effect. Mechanistic studies consistently indicated that Reactive Oxygen Species (ROS) regulates apoptosis of HCC cells by modulating NRF2/OSGIN1 signaling both in vitro and in vivo. As a result, Ti3C2 nanozyme effectively inhibited tumor through its synergistic ability to modulate ROS and enhance immune infiltration of cytotoxic T cells in the tumor microenvironment. Discussion These findings open up new avenues for enhancing 2D Ti3C2 nanosheets and suggest a new way to develop more effective sonosensitizers for the treatment of cancer.
Collapse
Affiliation(s)
- Hailing Yu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Yongquan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Zhisheng Nong
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang, Liaoning, People’s Republic of China
| | - Xi Lin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Kexin Tang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Zeyu Cai
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Kaichen Huang
- Department of Clinical laboratory, The Third People’s Hospital of Zhuhai, Zhuhai, Guangdong, People’s Republic of China
| | - Ting Yu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Huimin Lan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Qianqian Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Qiang Wang
- The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing, People’s Republic of China
| | - Lei Yang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China
| | - Jingchuan Zhu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China
| | - Lili Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, People’s Republic of China
| | - Hui Luo
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| |
Collapse
|
15
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
16
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
17
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
18
|
Fateh ST, Aghaii AH, Aminzade Z, Shahriari E, Roohpour N, Koosha F, Dezfuli AS. Inorganic nanoparticle-cored dendrimers for biomedical applications: A review. Heliyon 2024; 10:e29726. [PMID: 38694058 PMCID: PMC11061704 DOI: 10.1016/j.heliyon.2024.e29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Hybrid nanostructures exhibit a synergistic combination of features derived from their individual components, showcasing novel characteristics resulting from their distinctive structure and chemical/physical properties. Surface modifiers play a pivotal role in shaping INPs' primary attributes, influencing their physicochemical properties, stability, and functional applications. Among these modifiers, dendrimers have gained attention as highly effective multifunctional agents for INPs, owing to their unique structural qualities, dendritic effects, and physicochemical properties. Dendrimers can be seamlessly integrated with diverse inorganic nanostructures, including metal NPs, carbon nanostructures, silica NPs, and QDs. Two viable approaches to achieving this integration involve either growing or grafting dendrimers, resulting in inorganic nanostructure-cored dendrimers. The initial step involves functionalizing the nanostructures' surface, followed by the generation of dendrimers through stepwise growth or attachment of pre-synthesized dendrimer branches. This hybridization imparts superior qualities to the resulting structure, including biocompatibility, solubility, high cargo loading capacity, and substantial functionalization potential. Combining the unique properties of dendrimers with those of the inorganic nanostructure cores creates a multifunctional system suitable for diverse applications such as theranostics, bio-sensing, component isolation, chemotherapy, and cargo-carrying applications. This review summarizes the recent developments, with a specific focus on the last five years, within the realm of dendrimers. It delves into their role as modifiers of INPs and explores the potential applications of INP-cored dendrimers in the biomedical applications.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Zahra Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Liu B, Du F, Feng Z, Xiang X, Guo R, Ma L, Zhu B, Qiu L. Ultrasound-augmented cancer immunotherapy. J Mater Chem B 2024; 12:3636-3658. [PMID: 38529593 DOI: 10.1039/d3tb02705h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cancer is a growing worldwide health problem with the most broadly studied treatments, in which immunotherapy has made notable advancements in recent years. However, innumerable patients have presented a poor response to immunotherapy and simultaneously experienced immune-related adverse events, with failed therapeutic results and increased mortality rates. Consequently, it is crucial to develop alternate tactics to boost therapeutic effects without producing negative side effects. Ultrasound is considered to possess significant therapeutic potential in the antitumor field because of its inherent characteristics, including cavitation, pyrolysis, and sonoporation. Herein, this timely review presents the comprehensive and systematic research progress of ultrasound-enhanced cancer immunotherapy, focusing on the various ultrasound-related mechanisms and strategies. Moreover, this review summarizes the design and application of current sonosensitizers based on sonodynamic therapy, with an attempt to provide guidance on new directions for future cancer therapy.
Collapse
Affiliation(s)
- Bingjie Liu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Fangxue Du
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ziyan Feng
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xi Xiang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ruiqian Guo
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bihui Zhu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Li Qiu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Ndlovu NL, Mdlalose WB, Ntsendwana B, Moyo T. Evaluation of Advanced Nanomaterials for Cancer Diagnosis and Treatment. Pharmaceutics 2024; 16:473. [PMID: 38675134 PMCID: PMC11054857 DOI: 10.3390/pharmaceutics16040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a persistent global disease and a threat to the human species, with numerous cases reported every year. Over recent decades, a steady but slowly increasing mortality rate has been observed. While many attempts have been made using conventional methods alone as a theragnostic strategy, they have yielded very little success. Most of the shortcomings of such conventional methods can be attributed to the high demands of industrial growth and ever-increasing environmental pollution. This requires some high-tech biomedical interventions and other solutions. Thus, researchers have been compelled to explore alternative methods. This has brought much attention to nanotechnology applications, specifically magnetic nanomaterials, as the sole or conjugated theragnostic methods. The exponential growth of nanomaterials with overlapping applications in various fields is due to their potential properties, which depend on the type of synthesis route used. Either top-down or bottom-up strategies synthesize various types of NPs. The top-down only branches out to one method, i.e., physical, and the bottom-up has two methods, chemical and biological syntheses. This review highlights some synthesis techniques, the types of nanoparticle properties each technique produces, and their potential use in the biomedical field, more specifically for cancer. Despite the evident drawbacks, the success achieved in furthering nanoparticle applications to more complex cancer stages and locations is unmatched.
Collapse
Affiliation(s)
- Nkanyiso L. Ndlovu
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Wendy B. Mdlalose
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Bulelwa Ntsendwana
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Thomas Moyo
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
22
|
He M, Wang X, Yu H, Zhao Y, Zhang L, Xu Z, Kang Y, Xue P. Nitrogen vacancy-rich carbon nitride anchored with iron atoms for efficient redox dyshomeostasis under ultrasound actuation. Biomaterials 2024; 305:122446. [PMID: 38150772 DOI: 10.1016/j.biomaterials.2023.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Traditional Fe-based Fenton reaction for inducing oxidative stress is restricted by random charge transfer without oriental delivery, and the resultant generation of reactive oxygen species (ROS) is always too simplistic to realize a satisfactory therapeutic outcome. Herein, FeNv/CN nanosheets rich in nitrogen vacancies are developed for high-performance redox dyshomeostasis therapy after surface conjugation with polyethylene glycol (PEG) and cyclic Arg-Gly-Asp (cRGD). Surface defects in FeNv/CN serve as electron traps to drive the directional transfer of the excited electrons to Fe atom sites under ultrasound (US) actuation, and the highly elevated electron density promote the catalytic conversion of H2O2 into ·OH. Meanwhile, energy band edges of FeNv/CN favor the production of 1O2 upon interfacial redox chemistry, which is enhanced by the optimal separation/recombination dynamics of electron/hole pairs. Moreover, intrinsic peroxidase-like activity of FeNv/CN contributes to the depletion of reductant glutathione (GSH). Under the anchoring effect of cRGD, PEGylated FeNv/CN can be efficiently enriched in the tumorous region, which is ultrasonically activated for concurrent ROS accumulation and GSH consumption in cytosolic region. The deleterious redox dyshomeostasis not only eradicates primary tumor but also suppresses distant metastasis via antitumor immunity elicitation. Collectively, this study could inspire more facile designs of chalybeates for medical applications.
Collapse
Affiliation(s)
- Mengting He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Honglian Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yinmin Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Yibin Academy of Southwest University, Yibin, 644000, China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Yibin Academy of Southwest University, Yibin, 644000, China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Yibin Academy of Southwest University, Yibin, 644000, China.
| |
Collapse
|
23
|
Chang M, Zhang L, Wang Z, Chen L, Dong Y, Yang J, Chen Y. Nanomedicine/materdicine-enabled sonocatalytic therapy. Adv Drug Deliv Rev 2024; 205:115160. [PMID: 38110153 DOI: 10.1016/j.addr.2023.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
The advent of numerous treatment modalities with desirable therapeutic efficacy has been made possible by the fast development of nanomedicine and materdicine, among which the ultrasound (US)-triggered sonocatalytic process as minimal or non-invasive method has been frequently employed for diagnostic and therapeutic purposes. In comparison to phototherapeutic approaches with inherent penetration depth limitations, sonocatalytic therapy shatters the depth limit of photoactivation and offers numerous remarkable prospects and advantages, including mitigated side effects and appropriate tissue-penetration depth. Nevertheless, the optimization of sonosensitizers and therapies remains a significant issue in terms of precision, intelligence and efficiency. In light of the fact that nanomedicine and materdicine can effectively enhance the theranostic efficiency, we herein aim to furnish a cutting-edge review on the latest progress and development of nanomedicine/materdicine-enabled sonocatalytic therapy. The design methodologies and biological features of nanomedicine/materdicine-based sonosensitizers are initially introduced to reveal the underlying relationship between composition/structure, sonocatalytic function and biological effect, in accompany with a thorough discussion of nanomedicine/materdicine-enabled synergistic therapy. Ultimately, the facing challenges and future perspectives of this intriguing sonocatalytic therapy are highlighted and outlined to promote technological advancements and clinical translation in efficient disease treatment.
Collapse
Affiliation(s)
- Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei University, Baoding 071000, PR China
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Jishun Yang
- Naval Medical Center of PLA, Medical Security Center, Shanghai 200052, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
24
|
Liu S, Xu M, Zhong L, Tong X, Qian S. Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin's Lymphoma. Mini Rev Med Chem 2024; 24:895-907. [PMID: 37724679 DOI: 10.2174/1389557523666230915103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Shuxian Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minghao Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lei Zhong
- Tongxiang Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xiangmin Tong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Suying Qian
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, China
| |
Collapse
|
25
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
26
|
Zhang D, Liu D, Wang C, Su Y, Zhang X. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Adv Colloid Interface Sci 2023; 322:103037. [PMID: 37931381 DOI: 10.1016/j.cis.2023.103037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Inspired by natural catalytic compartments, various synthetic compartments that seclude catalytic reactions have been developed to understand complex multistep biosynthetic pathways, bestow therapeutic effects, or extend biosynthetic pathways in living cells. These emerging nanoreactors possessed many advantages over conventional biomedicine, such as good catalytic activity, specificity, and sustainability. In the past decade, a great number of efficient catalytic systems based on diverse nanoreactors (polymer vesicles, liposome, polymer micelles, inorganic-organic hybrid materials, MOFs, etc.) have been designed and employed to initiate in situ catalyzed chemical reactions for therapy. This review aims to present the recent progress in the development of catalytic systems based on nanoreactors for therapeutic applications, with a special emphasis on the principles and design strategies. Besides, the key components of nanoreactor-based catalytic systems, including nanocarriers, triggers or energy inputs, and products, are respectively introduced and discussed in detail. Challenges and prospects in the fabrication of therapeutic catalytic nanoreactors are also discussed as a conclusion to this review. We believe that catalytic nanoreactors will play an increasingly important role in modern biomedicine, with improved therapeutic performance and minimal side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yanhong Su
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
27
|
Gao F, Xue C, Zhang T, Zhang L, Zhu GY, Ou C, Zhang YZ, Dong X. MXene-Based Functional Platforms for Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302559. [PMID: 37142810 DOI: 10.1002/adma.202302559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Recently, 2D transition metal carbide, nitride, and carbonitrides (MXenes) materials stand out in the field of tumor therapy, particularly in the construction of functional platforms for optimal antitumor therapy due to their high specific surface area, tunable performance, strong absorption of near-infrared light as well as preferable surface plasmon resonance effect. In this review, the progress of MXene-mediated antitumor therapy is summarized after appropriate modifications or integration procedures. The enhanced antitumor treatments directly performed by MXenes, the significant improving effect of MXenes on different antitumor therapies, as well as the MXene-mediated imaging-guided antitumor strategies are discussed in detail. Moreover, the existing challenges and future development directions of MXenes in tumor therapy are presented.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tian Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lu Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guo-Yin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
28
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
29
|
Dong Q, Wang J, Liu J, Zhang L, Xu Z, Kang Y, Xue P. Manganese-Based Redox Homeostasis Disruptor for Inducing Intense Ferroptosis/Apoptosis Through xCT Inhibition And Oxidative Stress Injury. Adv Healthc Mater 2023; 12:e2301453. [PMID: 37531240 DOI: 10.1002/adhm.202301453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Intracellular redox homeostasis plays an important role in promoting tumor progression, development and even treatment resistance. To this end, redox balance impairment may become a prospective therapeutic target of cancer. Herein, a manganese-based homeostasis modulator (MHS) is developed for inducing severe reactive oxygen species accumulation and glutathione (GSH) deprivation, where such redox dyshomeostasis brings about dramatic ferroptosis/apoptosis. Tumor-specific degradation of manganese oxide nanocarriers contributes to hypoxia alleviation and loaded cargo release, resulting in apoptosis by augmented sonodynamic therapy and chemodynamic therapy. On the other hand, regional oxygenation significantly downregulates the expression of activating transcription factor 4, which can synergize with the released sulfasalazine to inhibit the downstream cystine antiporter xCT. Biosynthesis of GSH is sufficiently interrupted by the xCT suppression, leading to the reduction of glutathione peroxidase 4 (GPx4) level. The resultant excessive lipid peroxides promote intense ferroptosis to motivate cell death. On this basis, splendid treatment outcome by MHS is substantiated both in vitro and in vivo, thanks to the synergy of antitumor immunity elicitation. Taken together, this paradigm provides an insightful strategy to evoke drastic ferroptosis/apoptosis toward therapeutics and may also expand the eligibility of manganese-derived nanoagents for medical applications.
Collapse
Affiliation(s)
- Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jie Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
30
|
Li S, Mok GSP, Dai Y. Lipid bilayer-based biological nanoplatforms for sonodynamic cancer therapy. Adv Drug Deliv Rev 2023; 202:115110. [PMID: 37820981 DOI: 10.1016/j.addr.2023.115110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Sonodynamic therapy (SDT) has been developed as a promising alternative therapeutic modality for cancer treatment, involving the synergetic application of sonosensitizers and low-intensity ultrasound. However, the antitumor efficacy of SDT is significantly limited due to the poor performance of conventional sonosensitizers in vivo and the constrained tumor microenvironment (TME). Recent breakthroughs in lipid bilayer-based nanovesicles (LBBNs), including multifunctional liposomes, exosomes, and isolated cellular membranes, have brought new insights into the advancement of SDT. Despite their distinct sources and preparation methods, the lipid bilayer structure in common allows them to be functionalized in many comparable ways to serve as ideal nanocarriers against challenges arising from the tumor-specific sonosensitizer delivery and the complicated TME. In this review, we provide a comprehensive summary of the recent advances in LBBN-based SDT, with particular attention on how LBBNs can be engineered to improve the delivery efficiency of sonosensitizers and overcome physical, biological, and immune barriers within the TME for enhanced sonodynamic cancer therapy. We anticipate that this review will offer valuable guidance in the construction of LBBN-based nanosonosensitizers and contribute to the development of advanced strategies for next-generation sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Songhao Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
31
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
32
|
Liao M, Chen F, Chen L, Wu Z, Huang J, Pang H, Cheng C, Wu Z, Ma L, Lu Q. Synergistic Enzyme-Mimetic Catalysis-Based Non-Thermal Sonocavitation and Sonodynamic Therapy for Efficient Hypoxia Relief and Cancer Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302744. [PMID: 37322373 DOI: 10.1002/smll.202302744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Non-invasive cancer treatment strategies that enable local non-thermal ablation, hypoxia relief, and reactive oxygen species (ROS) production to achieve transiently destroying tumor tissue and long-term killing tumor cells would greatly facilitate their clinical applications. However, continuously generating oxygen cavitation nuclei, reducing the transient cavitation sound intensity threshold, relieving hypoxia, and improving its controllability in the ablation area still remains a significant challenge. Here, in this work, an Mn-coordinated polyphthalocyanine sonocavitation agent (Mn-SCA) with large d-π-conjugated network and atomic Mn-N sites is identified for the non-thermal sonocavitation and sonodynamic therapy in the liver cancer ablation. In the tumor microenvironment, the catalytical generation of oxygen assists cavitation formation and generates microjets to ablate liver cancer tissue and relieve hypoxia, this work reports for the first time to utilize the enzymatic properties of Mn-SCA to lower the cavitation threshold in situ. Moreover, under pHIFU irradiation, high reactive oxygen species (ROS) production can be achieved. The two merits in liver cancer ablation are demonstrated by cell destruction and high tumor inhibition efficiency. This work will help deepen the understanding of cavitation ablation and the sonodynamic mechanisms related to the nanostructures and guide the design of sonocavitation agents with high ROS production for solid tumor ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zihe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianbo Huang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Houqing Pang
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Lu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
33
|
Cao X, Li M, Liu Q, Zhao J, Lu X, Wang J. Inorganic Sonosensitizers for Sonodynamic Therapy in Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303195. [PMID: 37323087 DOI: 10.1002/smll.202303195] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The rapid development of nanomedicine and nanobiotechnology has allowed the emergence of various therapeutic modalities with excellent therapeutic efficiency and biosafety, among which, the sonodynamic therapy (SDT), a combination of low-intensity ultrasound and sonosensitizers, is emerging as a promising noninvasive treatment modality for cancer treatment due to its deeper penetration, good patient compliance, and minimal damage to normal tissue. The sonosensitizers are indispensable components in the SDT process because their structure and physicochemical properties are decisive for therapeutic efficacy. Compared to the conventional and mostly studied organic sonosensitizers, inorganic sonosensitizers (noble metal-based, transition metal-based, carbon-based, and silicon-based sonosensitizers) display excellent stability, controllable morphology, and multifunctionality, which greatly expand their application in SDT. In this review, the possible mechanisms of SDT including the cavitation effect and reactive oxygen species generation are briefly discussed. Then, the recent advances in inorganic sonosensitizers are systematically summarized and their formulations and antitumor effects, particularly highlighting the strategies for optimizing the therapeutic efficiency, are outlined. The challenges and future perspectives for developing state-of-the-art sonosensitizers are also discussed. It is expected that this review will shed some light on future screening of decent inorganic sonosensitizers for SDT.
Collapse
Affiliation(s)
- Xianshuo Cao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Minxing Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiyu Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jingjing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xihong Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianwei Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
34
|
Chen P, Zhang P, Shah NH, Cui Y, Wang Y. A Comprehensive Review of Inorganic Sonosensitizers for Sonodynamic Therapy. Int J Mol Sci 2023; 24:12001. [PMID: 37569377 PMCID: PMC10418994 DOI: 10.3390/ijms241512001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging non-invasive cancer treatment method in the field of nanomedicine, which has the advantages of deep penetration, good therapeutic efficacy, and minimal damage to normal tissues. Sonosensitizers play a crucial role in the process of SDT, as their structure and properties directly determine the treatment outcome. Inorganic sonosensitizers, with their high stability and longer circulation time in the human body, have great potential in SDT. In this review, the possible mechanisms of SDT including the ultrasonic cavitation, reactive oxygen species generation, and activation of immunity are briefly discussed. Then, the latest research progress on inorganic sonosensitizers is systematically summarized. Subsequently, strategies for optimizing treatment efficacy are introduced, including combination therapy and image-guided therapy. The challenges and future prospects of sonodynamic therapy are discussed. It is hoped that this review will provide some guidance for the screening of inorganic sonosensitizers.
Collapse
Affiliation(s)
- Peng Chen
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ping Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Navid Hussain Shah
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
| | - Yanyan Cui
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
35
|
Loke YL, Beishenaliev A, Wang PW, Lin CY, Chang CY, Foo YY, Faruqu FN, Leo BF, Misran M, Chung LY, Shieh DB, Kiew LV, Chang CC, Teo YY. ROS-generating alginate-coated gold nanorods as biocompatible nanosonosensitisers for effective sonodynamic therapy of cancer. ULTRASONICS SONOCHEMISTRY 2023; 96:106437. [PMID: 37187119 DOI: 10.1016/j.ultsonch.2023.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Sonodynamic therapy (SDT) emerges as a promising non-invasive alternative for eradicating malignant tumours. However, its therapeutic efficacy remains limited due to the lack of sonosensitisers with high potency and biosafety. Previously, gold nanorods (AuNRs) have been extensively studied for their applications in photodynamic or photothermal cancer therapy, but their sonosensitising properties are largely unexplored. Here, we reported the applicability of alginate-coated AuNRs (AuNRsALG) with improved biocompatibility profiles as promising nanosonosensitisers for SDT for the first time. AuNRsALG were found stable under ultrasound irradiation (1.0 W/cm2, 5 min) and maintained structural integrity for 3 cycles of irradiation. The exposure of the AuNRsALG to ultrasound irradiation (1.0 W/cm2, 5 min) was shown to enhance the cavitation effect significantly and generate a 3 to 8-fold higher amount of singlet oxygen (1O2) than other reported commercial titanium dioxide nanosonosensitisers. AuNRsALG exerted dose-dependent sonotoxicity on human MDA-MB-231 breast cancer cells in vitro, with ∼ 81% cancer cell killing efficacy at a sub-nanomolar level (IC50 was 0.68 nM) predominantly through apoptosis. The protein expression analysis showed significant DNA damage and downregulation of anti-apoptotic Bcl-2, suggesting AuNRsALG induced cell death through the mitochondrial pathway. The addition of mannitol, a reactive oxygen species (ROS) scavenger, inhibited cancer-killing effect of AuNRsALG-mediated SDT, further verifying that the sonotoxicity of AuNRsALG is driven by the production of ROS. Overall, these results highlight the potential application of AuNRsALG as an effective nanosonosensitising agent in clinical settings.
Collapse
Affiliation(s)
- Yean Leng Loke
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adilet Beishenaliev
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pei-Wen Wang
- Institute of Oral Medicine and School of Dentistry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70101 Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chung-Yin Lin
- Institute for Radiological Research, Chang Gung University, 33303 Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 33303 Taoyuan, Taiwan
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan
| | - Yiing Yee Foo
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dar-Bin Shieh
- Institute of Oral Medicine and School of Dentistry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70101 Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, 70101 Tainan, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, 70403 Tainan, Taiwan
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan.
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Department of Electrophysics, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan; Institute of Physics, Academia Sinica, Nankang, 11529 Taipei, Taiwan; Brain Research Center, National Tsing Hua University, 300044 Hsinchu, Taiwan, ROC.
| | - Yin Yin Teo
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
He M, Yu H, Zhao Y, Liu J, Dong Q, Xu Z, Kang Y, Xue P. Ultrasound-Activatable g-C 3 N 4 -Anchored Titania Heterojunction as an Intracellular Redox Homeostasis Perturbator for Augmented Oncotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300244. [PMID: 36843276 DOI: 10.1002/smll.202300244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Indexed: 05/25/2023]
Abstract
Energy band structure of inorganic nano-sonosensitizers is usually optimized by surface decoration with noble metals or metal oxide semiconductors, aiming to enhance interfacial charge transfer, augment spin-flip and promote radical generation. To avoid potential biohazards of metallic elements, herein, metal-free graphitic carbon nitride quantum dots (g-C3 N4 QDs) are anchored onto hollow mesoporous TiO2 nanostructure to formulate TiO2 @g-C3 N4 heterojunction. The direct Z-scheme charge transfer significantly improves the separation/recombination dynamics of electron/hole (e- /h+ ) pairs upon ultrasound (US) stimulation, which promotes the yield of singlet oxygen (1 O2 ) and hydroxyl radicals (·OH). The conjugated g-C3 N4 QDs with peroxidase-mimic activity further react with the elevated endogenous H2 O2 and aggravate oxidative stress. After loading prodrug romidepsin (RMD) in TiO2 @g-C3 N4 , stimulus-responsive drug delivery can be realized by US irradiation. The disulfide bridge of the released RMD tends to be reduced by glutathione (GSH) into a monocyclic dithiol, which arrests cell cycle in G2/M phase and evokes apoptosis through enhanced histone acetylation. Importantly, reactive oxygen species accumulation accompanied by GSH depletion is devoted to deleterious redox dyshomeostasis, leading to augmented systemic oncotherapy by eliciting antitumor immunity. Collectively, this paradigm provides useful insights in optimizing the performance of TiO2 -based nano-sonosensitizers for tackling critical diseases.
Collapse
Affiliation(s)
- Mengting He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Honglian Yu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
37
|
Manganese oxide-modified bismuth oxychloride piezoelectric nanoplatform with multiple enzyme-like activities for cancer sonodynamic therapy. J Colloid Interface Sci 2023; 640:839-850. [PMID: 36905893 DOI: 10.1016/j.jcis.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Sonodynamic therapy (SDT) is considered as a new-rising strategy for cancer therapeutics, but the inefficient production of reactive oxygen species (ROS) by current sonosensitizers seriously hinders its further applications. Herein, a piezoelectric nanoplatform is fabricated for enhancing SDT against cancer, in which manganese oxide (MnOx) with multiple enzyme-like activities is loaded on the surface of piezoelectric bismuth oxychloride nanosheets (BiOCl NSs) to form a heterojunction. When exposed to ultrasound (US) irradiation, piezotronic effect can remarkably promote the separation and transport of US-induced free charges, and further enhance ROS generation in SDT. Meanwhile, the nanoplatform shows multiple enzyme-like activities from MnOx, which can not only downregulate the intracellular glutathione (GSH) level, but also disintegrate endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and hydroxyl radicals (•OH). As a result, the anticancer nanoplatform substantially boosts ROS generation and reverses tumor hypoxia. Ultimately, it reveals remarkable biocompatibility and tumor suppression in a murine model of 4 T1 breast cancer under US irradiation. This work provides a feasible pathway for improving SDT using piezoelectric platforms.
Collapse
|
38
|
A robust Au@Cu 2-xS nanoreactor assembled by silk fibroin for enhanced intratumoral glucose depletion and redox dyshomeostasis. Biomaterials 2023; 293:121970. [PMID: 36549040 DOI: 10.1016/j.biomaterials.2022.121970] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Intracellular redox dyshomeostasis promoted by tumor microenvironment (TME) modulation has become an appealing therapeutic target for cancer management. Herein, a dual plasmonic Au/SF@Cu2-xS nanoreactor (abbreviation as ASC) is elaborately developed by covalent immobilization of sulfur defective Cu2-xS nanodots onto the surface of silk fibroin (SF)-capped Au nanoparticles. Tumor hypoxia can be effectively alleviated by ASC-mediated local oxygenation, owing to the newfound catalase-mimic activity of Cu2-xS. The semiconductor of Cu2-xS with narrow bandgap energy of 2.54 eV enables a more rapid dissociation of electron-hole (e-/h+) pair for a promoted US-triggered singlet oxygen (1O2) generation, in the presence of Au as electron scavenger. Moreover, Cu2-xS is devote to Fenton-like reaction to catalyze H2O2 into ·OH under mild acidity and simultaneously deplete glutathione to aggravate intracellular oxidative stress. In another aspect, Au nanoparticles with glucose oxidase-mimic activity consumes intrinsic glucose, which contributes to a higher degree of oxidative damage and energy exhaustion of cancer cells. Importantly, such tumor starvation and 1O2 yield can be enhanced by Cu2-xS-catalyzed O2 self-replenishment in H2O2-rich TME. ASC-initiated M1 macrophage activation and therapy-triggered immunogenetic cell death (ICD) favors the systematic tumor elimination by eliciting antitumor immunity. This study undoubtedly enriches the rational design of SF-based nanocatalysts for medical utilizations.
Collapse
|
39
|
Zhang L, Tian Y, Li M, Wang M, Wu S, Jiang Z, Wang Q, Wang W. Peptide nano 'bead-grafting' for SDT-facilitated immune checkpoints blocking. Chem Sci 2022; 13:14052-14062. [PMID: 36540822 PMCID: PMC9728588 DOI: 10.1039/d2sc02728c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/13/2022] [Indexed: 09/21/2023] Open
Abstract
Combination therapies based on immune checkpoint blockade (ICB) are currently the mainstay of cancer treatment, in which the synergetic delivery of multiple drugs is the essential step. Although nanoparticle drugs (NPDs) show satisfactory anticancer effects, the promotion of active co-delivery of NPDs is premature, since the processes are usually difficult to predict and control. Targeting peptide self-assemblies have been widely used as carriers for small-molecular drugs, but remain elusive for NPDs. We describe here peptide-based nano 'bead-grafting' for the active delivery of quantum-dot NPDs through a co-assembly method. Based on a 'de novo' design, we used a 'one-bead-one-compound (OBOC)' combinatorial chemical screening method to select a peptide RT with high affinity for the immune checkpoint CD47, which could also form biocompatible nanofibers and efficiently trap Ag2S quantum dots along the self-assembly path. This system can combine ICB therapy and sonodynamic therapy (SDT) to effectively inhibit tumor growth. Moreover, the tumor antigen produced by SDT can activate the adaptive immune system, which enhances the anti-tumor immune response of the ICB and shows efficient inhibition of both primary and distant tumors. This study provides a new strategy for the active control and delivery of NPDs and a new option for ICB therapy with immune checkpoints that are highly susceptible to systemic side effects.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Yuwei Tian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Shang Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| |
Collapse
|
40
|
An ex vivo evaluation of physico-mechanical and anti-biofilm properties of resin-modified glass ionomer containing ultrasound waves-activated nanoparticles against Streptococcus mutans biofilm around orthodontic bands. Photodiagnosis Photodyn Ther 2022; 40:103051. [PMID: 35932962 DOI: 10.1016/j.pdpdt.2022.103051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The present study evaluated the physico-mechanical and antimicrobial properties of ultrasound waves-activated modified-resin glass ionomer containing nanosonosensitizers such as nano-curcumin (n-Cur), nano-emodin (n-Emo), and nano-quercetin (n-Qct) against Streptococcus mutans biofilm on the surface of modified-resin glass ionomer bonded orthodontic bands. MATERIALS AND METHODS A total of 50 human molar teeth were used in this study. The shear bond strength (SBS), adhesive remnant index (ARI), setting time, and fluoride release of modified orthodontics cement containing different concentrations of n-Cur, n-Emo, and n-Qct (0, 2, 5, and 10%) were measured. The antimicrobial effectiveness was assessed against S. mutans by the biofilm inhibition test, and the Log10 colony-forming unit (CFU)/mL was evaluated. RESULTS SBS and setting time of modified glass ionomer decreased compared with the control group. 5% n-Emo, 2% n-Qct, and 5% n-Cur were the highest concentrations that had an insignificant difference in comparison with Transbond XT (P = 0.647, 0.819, and 0.292, respectively). The groups were not significantly different in terms of ARI score (P > 0.05). The highest and lowest setting time belonged to the control and 5% n-Emo groups, respectively; this difference in setting time was significant (P < 0.05). Ultrasound waves and 0.2% CHX significantly reduced S. mutans biofilms compared with the control group (P < 0.001), and minimum S. mutans colony count was shown in 0.2% CHX and 5% n-Emo groups. The addition of nanosonosensitizers to the glass ionomer did not compromise the fluoride release of the glass ionomer. CONCLUSION It could be concluded that resin-modified glass ionomer containing ultrasound waves-activated 5% n-Emo reduces S. mutans biofilm around orthodontic bands with no adverse effect on SBS, ARI, and its application in the clinic.
Collapse
|
41
|
Zhang Y, Chen Q, Zhu Y, Pei M, Wang K, Qu X, Zhang Y, Gao J, Qin H. Targeting inorganic nanoparticles to tumors using biological membrane-coated technology. MedComm (Beijing) 2022; 3:e192. [PMID: 36514780 PMCID: PMC9732394 DOI: 10.1002/mco2.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Inorganic nanoparticles have extensively revolutionized the effectiveness of cancer therapeutics due to their distinct physicochemical properties. However, the therapeutic efficiency of inorganic nanoparticles is greatly hampered by the complex tumor microenvironment, patient heterogeneity, and systemic nonspecific toxicity. The biomimetic technology based on biological membranes (cell- or bacteria-derived membranes) is a promising strategy to confer unique characteristics to inorganic nanoparticles, such as superior biocompatibility, prolonged circulation time, immunogenicity, homologous tumor targeting, and flexible engineering approaches on the surface, resulting in the enhanced therapeutic efficacy of inorganic nanoparticles against cancer. Therefore, a greater push toward developing biomimetic-based nanotechnology could increase the specificity and potency of inorganic nanoparticles for effective cancer treatment. In this review, we summarize the recent advances in biological membrane-coated inorganic nanoparticles in cancer precise therapy and highlight the different types of engineered approaches, applications, mechanisms, and future perspectives. The surface engineering of biological membrane can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor therapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of biological membrane-coated inorganic nanoparticles.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qian Chen
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yefei Zhu
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Manman Pei
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kairuo Wang
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiao Qu
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yang Zhang
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Precision Medicine CenterTaizhou Central HospitalTaizhouZhejiangChina
| | - Jie Gao
- Changhai Clinical Research UnitShanghai Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Huanlong Qin
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
42
|
Li M, Zhang Y, Zhang X, Liu Z, Tang J, Feng M, Chen B, Wu D, Liu J. Degradable Multifunctional Porphyrin-Based Porous Organic Polymer Nanosonosensitizer for Tumor-Specific Sonodynamic, Chemo- and Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48489-48501. [PMID: 36281484 DOI: 10.1021/acsami.2c14776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sonodynamic therapy (SDT) benefiting from its intrinsic merits, such as noninvasiveness and deep tissue penetrability, is receiving increasing considerable attention in reactive oxygen species (ROS)-based tumor treatment. However, current sonosensitizers usually suffer from low tumor lesion accumulation, insufficient ROS generation efficiency under ultrasound, and non-biodegradability, which seriously impede the therapeutic outcomes. Additionally, it is difficult that SDT alone can completely eradicate tumors because of the complex and immunosuppressive tumor microenvironment (TME). Herein, we simultaneously employ sonosensitive porphyrin building blocks and glutathione (GSH)-responsive disulfide bonds to construct a novel degradable multifunctional porphyrin-based hollow porous organic polymer (POP) nanosonosensitizer (H-Pys-HA@M/R), which combine SDT, "on-demand" chemotherapy, and immunotherapy. Taking the unique advantages of POPs with designable structures and high specific surface area, this H-Pys-HA@M/R nanosonosensitizer can achieve tumor target accumulation, GSH-triggered drug release, and low-frequency ultrasound-activating ROS generation with encouraging results. Furthermore, this multifunctional nanosonosensitizer can effectively evoke immunogenic cell death (ICD) response through the combination of SDT and chemotherapy for both primary and distal tumor growth suppression. Meanwhile, H-Pys-HA@M/R exhibits favorable biodegradation and biosafety. Therefore, this study provides a new strategy for reasonably designing and constructing POP-related sonosensitizers combining SDT/chemotherapy/immunotherapy triple treatment modalities to eradicate malignant tumors.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Yaqian Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Xiaoge Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Miao Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| |
Collapse
|
43
|
Wang Y, Li X, Zhao S, Wang B, Song X, Xiao J, Lan M. Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Synthesis and Biological Evaluation of PEGylated MWO 4 Nanoparticles as Sonodynamic AID Inhibitors in Treating Diffuse Large B-Cell Lymphoma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217143. [PMID: 36363970 PMCID: PMC9654119 DOI: 10.3390/molecules27217143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023]
Abstract
Sonodynamic therapy (SDT) triggered by ultrasound (US) has attracted increasing attention owing to its ability to overcome critical limitations, including low tissue-penetration depth and phototoxicity in photodynamic therapy (PDT). Biogenic metal oxide nanoparticles (NPs) have been used as anti-cancer drugs due to their biocompatibility properties with most biological systems. Here, sonosensitizer MWO4-PEG NPs (M = Fe Mn Co Ni) were synthesized as inhibitors to activation-induced cytidine deaminase (AID), thus neutralizing the extensive carcinogenesis of AID in diffuse large B-cell lymphoma (DLBCL). The physiological properties of these nanomaterials were examined using transmission electron microscopy (TEM). The inhibition of NPs to AID was primarily identified by the affinity interaction prediction between reactive oxygen species (ROS) and AID through molecular dynamics and molecular docking technology. The cell apoptosis and ROS generation in US-triggered NPs treated DLBCL cells (with high levels of AID) were also detected to indicate the sonosensitivity and toxicity of MWO4-PEG NPs to DLBCL cells. The anti-lymphoma studies using DLBCL and AID-deficient DLBCL cell lines indicated a concentration-dependent profile. The synthesized MWO4-PEG NPs in this study manifested good sonodynamic inhibitory effects to AID and well treatment for AID-positive hematopoietic cancers.
Collapse
|
45
|
Wang Z, Wang M, Qian Y, Xie Y, Sun Q, Gao M, Li C. Dual-targeted nanoformulation with Janus structure for synergistic enhancement of sonodynamic therapy and chemotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Li G, Lei H, Yang Y, Zhong X, Gong F, Gong Y, Zhou Y, Zhang Y, Shi H, Xiao Z, Dong Z, Cheng L. Titanium Sulfide Nanosheets Serve as Cascade Bioreactors for H 2 S-Mediated Programmed Gas-Sonodynamic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201069. [PMID: 36026580 PMCID: PMC9596849 DOI: 10.1002/advs.202201069] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Gas-mediated sonodynamic therapy (SDT) has the potential to become an effective strategy to improve the therapeutic outcome and survival rate of cancer patients. Herein, titanium sulfide nanosheets (TiSX NSs) are prepared as cascade bioreactors for sequential gas-sonodynamic cancer therapy. TiSX NSs themselves as hydrogen sulfide (H2 S) donors can burst release H2 S gas. Following H2 S generation, TiSX NSs are gradually degraded to become S-defective and partly oxidized into TiOX on their surface, which endows TiSX NSs with high sonodynamic properties under ultrasound (US) irradiation. In vitro and in vivo experiments show the excellent therapeutic effects of TiSX NSs. In detail, large amounts of H2 S gas and reactive oxygen species (ROS) can simultaneously inhibit mitochondrial respiration and ATP synthesis, leading to cancer cell apoptosis. Of note, H2 S gas also plays important roles in modulating and activating the immune system to effectively inhibit pulmonary metastasis. Finally, the metabolizable TiSX NSs are excreted out of the body without inducing any significant long-term toxicity. Collectively, this work establishes a cascade bioreactor of TiSX NSs with satisfactory H2 S release ability and excellent ROS generation properties under US irradiation for programmed gas-sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Guangqiang Li
- College of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
- Brain Research InstituteResearch Center of Neurological DiseasesTaihe HospitalHubei University of MedicineShiyanHubei442000China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Xiaoyan Zhong
- Department of ToxicologySchool of Public HealthSuzhou Medical College of Soochow UniversitySuzhou215123China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Yuehan Gong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Yangkai Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsu215123China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsu215123China
| | - Zhidong Xiao
- College of ScienceState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070China
| | - Zhiqiang Dong
- College of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Brain Research InstituteResearch Center of Neurological DiseasesTaihe HospitalHubei University of MedicineShiyanHubei442000China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
47
|
Hou L, Gong F, Han Z, Wang Y, Yang Y, Cheng S, Yang N, Liu Z, Cheng L. H
X
V
2
O
5
Nanocatalysts Combined with Ultrasound for Triple Amplification of Oxidative Stress to Enhance Cancer Catalytic Therapy. Angew Chem Int Ed Engl 2022; 61:e202208849. [DOI: 10.1002/anie.202208849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 10/16/2022]
Affiliation(s)
- Linqian Hou
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Fei Gong
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Zhihui Han
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Yuanjie Wang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Yuqi Yang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Shuning Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Nailin Yang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| |
Collapse
|
48
|
Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, Cui D. Recent developments of sonodynamic therapy in antibacterial application. NANOSCALE 2022; 14:12999-13017. [PMID: 36052726 DOI: 10.1039/d2nr01847k] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid emergence of pathogenic bacteria poses a serious threat to global health. Notably, traditional antibiotic therapies suffer from the risk of strengthening bacterial drug resistance. Sonodynamic therapy (SDT) combining sonosensitizers and low-intensity ultrasound (US) has broadened the way towards treating drug-resistant bacteria. The allure of this therapy emerges from the capacity to focus the US energy on bacterial infection sites buried deep in tissues, locally activating the sonosensitizers to produce cytotoxic reactive oxygen species (ROS) with the ability to induce bacterial death. The past decade has witnessed the rapid development of antibacterial SDT owing to their excellent penetration, favorable biocompatibility and specific targeting ability. This review summarizes available sonosensitizers for antibacterial SDT, and digs into innovative biotechnologies to improve SDT efficiency, such as enhancing the targeting ability of sonosensitizers, image-guided assisted SDT, improvement of hypoxia and combination of SDT with other therapies. Finally, we conclude with the present challenges and provide insights into the future research of antibacterial SDT.
Collapse
Affiliation(s)
- Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
- State Key Laboratory of Ocean Engineering, Key Laboratory of Hydrodynamics of Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China
| | - Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| |
Collapse
|
49
|
Yang W, Yue H, Lu G, Wang W, Deng Y, Ma G, Wei W. Advances in Delivering Oxidative Modulators for Disease Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9897464. [PMID: 39070608 PMCID: PMC11278358 DOI: 10.34133/2022/9897464] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 07/30/2024]
Abstract
Oxidation modulators regarding antioxidants and reactive oxygen species (ROS) inducers have been used for the treatment of many diseases. However, a systematic review that refers to delivery system for divergent modulation of oxidative level within the biomedical scope is lacking. To provide a comprehensive summarization and analysis, we review pilot designs for delivering the oxidative modulators and the main applications for inflammatory treatment and tumor therapy. On the one hand, the antioxidants based delivery system can be employed to downregulate ROS levels at inflammatory sites to treat inflammatory diseases (e.g., skin repair, bone-related diseases, organ dysfunction, and neurodegenerative diseases). On the other hand, the ROS inducers based delivery system can be employed to upregulate ROS levels at the tumor site to kill tumor cells (e.g., disrupt the endogenous oxidative balance and induce lethal levels of ROS). Besides the current designs of delivery systems for oxidative modulators and the main application cases, prospects for future research are also provided to identify intelligent strategies and inspire new concepts for delivering oxidative modulators.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuan Deng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Luo J, Cao J, Ma G, Wang X, Sun Y, Zhang C, Shi Z, Zeng Y, Zhang T, Huang P. Collagenase-Loaded H-TiO 2 Nanoparticles Enhance Ultrasound Imaging-Guided Sonodynamic Therapy in a Pancreatic Carcinoma Xenograft Model via Digesting Stromal Barriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40535-40545. [PMID: 36043358 DOI: 10.1021/acsami.2c08951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sonodynamic therapy (SDT), a noninvasive therapy that relies on sonosensitizers and generates reactive oxygen species (ROS), has attracted considerable attention in the treatment of pancreatic cancer. However, being surrounded by dense stromal barriers, pancreatic cancer exhibits high interstitial fluid pressure (IFP) and hypoxia in the tumor microenvironment (TME), resulting in poor SDT efficacy. Collagenase-loaded hollow TiO2 (Col-H-TiO2) nanoparticles (NPs) capable of degrading stromal barriers and producing sufficient ROS production were synthesized in this study. After administration of NPs in the patient-derived xenograft (PDX) model, ultrasonic irradiation-released collagenase degraded tumor matrix fibers, decreased intratumoral IFP, and enhanced the penetration and retention of NPs within tumor tissues. Moreover, the NPs accumulated within the tumor not only generate abundant ROS under the influence of ultrasound irradiation but also improve intratumoral ultrasound signal, providing ultrasonic imaging-guided highly effective SDT for pancreatic cancer. In conclusion, this research improves the SDT technique and enhances the visualization of pancreatic cancer by remodeling the TME and is a promising strategy for further clinical applications.
Collapse
Affiliation(s)
- Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Cong Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, P. R. China
| |
Collapse
|