1
|
Jana S, Cramer N. Tunable Thiazolium Carbenes for Enantioselective Radical Three-Component Dicarbofunctionalizations. J Am Chem Soc 2024; 146:35199-35207. [PMID: 39656150 DOI: 10.1021/jacs.4c11947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Asymmetric N-heterocyclic carbene (NHC) organocatalysis is a cornerstone of synthetic organic chemistry. The emerging concept of single-electron NHC catalysis broadened the scope of C-C bond-forming reactions, facilitating the synthesis of a variety of attractive racemic compounds. However, the development of effective and selective chiral NHC catalysts for asymmetric radical-mediated reactions has been challenging. In this report, we introduce a family of highly tunable chiral thiazolium carbenes with three distinct positions for broad electronic and steric modulation featuring bulky chiral flanking groups. We demonstrate the catalytic efficacy of these chiral carbenes in an enantioselective SET-type three-component acyl-difluoroalkylation of olefins using a broad range of aldehydes and difluoroalkyl bromides. This method provides straightforward access to a diverse set of β-difluoroalkylated α-chiral ketones (65 examples) with an up to 87% yield and excellent enantioselectivities of up to >99:1 er. The utility of this methodology is further outlined by enantio- and diastereoselective late-stage modifications of pharmaceutically relevant compounds and selective twofold orthogonal acyl-difluoroalkylations of linchpin reagents.
Collapse
Affiliation(s)
- Sripati Jana
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Delfau L, Assani N, Nichilo S, Pecaut J, Philouze C, Broggi J, Martin D, Tomás-Mendivil E. On the Redox Properties of the Dimers of Thiazol-2-ylidenes That Are Relevant for Radical Catalysis. ACS ORGANIC & INORGANIC AU 2023; 3:136-142. [PMID: 37303499 PMCID: PMC10251502 DOI: 10.1021/acsorginorgau.3c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/13/2023]
Abstract
We report the isolation and study of dimers stemming from popular thiazol-2-ylidene organocatalysts. The model featuring 2,6-di(isopropyl)phenyl (Dipp) N-substituents was found to be a stronger reducing agent (Eox = -0.8 V vs SCE) than bis(thiazol-2-ylidenes) previously studied in the literature. In addition, a remarkable potential gap between the first and second oxidation of the dimer also allows for the isolation of the corresponding air-persistent radical cation. The latter is an unexpected efficient promoter of the radical transformation of α-bromoamides into oxindoles.
Collapse
Affiliation(s)
| | - Nadhrata Assani
- Aix
Marseille Univ., CNRS, Institut de Chimie Radicalaire - UMR 7273,
Faculté de Pharmacie, 13005 Marseille, France
| | | | - Jacques Pecaut
- Univ.
Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819 38000 Grenoble, France
| | | | - Julie Broggi
- Aix
Marseille Univ., CNRS, Institut de Chimie Radicalaire - UMR 7273,
Faculté de Pharmacie, 13005 Marseille, France
| | - David Martin
- Univ.
Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | |
Collapse
|
3
|
Wang X, Yang R, Zhu B, Liu Y, Song H, Dong J, Wang Q. Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis. Nat Commun 2023; 14:2951. [PMID: 37221185 DOI: 10.1038/s41467-023-38743-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Herein, we report a mild, operationally simple, multicatalytic method for the synthesis of β,γ-unsaturated ketones via allylic acylation of alkenes. Specifically, the method combines N‑heterocyclic carbene catalysis, hydrogen atom transfer catalysis, and photoredox catalysis for cross-coupling reactions between a wide range of feedstock carboxylic acids and readily available olefins to afford structurally diverse β,γ-unsaturated ketones without olefin transposition. The method could be used to install acyl groups on highly functionalized natural-product-derived compounds with no need for substrate pre-activation, and C-H functionalization proceed with excellent site selectivity. To demonstrate the potential applications of the method, we convert a representative coupling product into various useful olefin synthons.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Binbing Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
4
|
Li Q, Zhou CY, Wang C. Divergent Construction of Heterocycles by SOMOphilic Isocyanide Insertion under N-Heterocyclic Carbene Catalysis. Org Lett 2022; 24:7654-7658. [PMID: 36218283 DOI: 10.1021/acs.orglett.2c03148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of phenanthridines are rapidly constructed by an N-heterocyclic carbene (NHC)-catalyzed SOMOphilic isocyanide insertion-initiated homolytic aromatic substitution-type radical cyclization in the absence of any light, transition metals, and external oxidants. The aldehyde-free, scalable, and operationally simple protocol tolerates diverse functionalized biaryl isonitriles and activated α-halides. Moreover, it can be further applied to the divergent construction of other N-heterocycles. Preliminary mechanistic studies disclose that an NHC-derived radical cation intermediate is possibly involved.
Collapse
Affiliation(s)
- Qianrong Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 511443, China
| | - Cong-Ying Zhou
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 511443, China
| | - Chengming Wang
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 511443, China
| |
Collapse
|
5
|
Han YF, Huang Y, Liu H, Gao ZH, Zhang CL, Ye S. Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes. Nat Commun 2022; 13:5754. [PMID: 36180483 PMCID: PMC9525644 DOI: 10.1038/s41467-022-33444-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/19/2022] [Indexed: 11/15/2022] Open
Abstract
Three-component carboacylation of simple alkenes with readily available reagents is challenging. Transition metal-catalysed intermolecular carboacylation works for alkenes with strained ring or directing groups. Herein, we develop a photoredox cooperative N-heterocyclic carbene/Pd-catalysed alkylacylation of simple alkenes with aldehydes and unactivated alkyl halides to provide ketones in good yields. This multicomponent coupling reaction features a wide scope of alkenes, broad functional group compatibility and free of exogenous photosensitizer or external reductant. In addition, a series of chlorinated cyclopropanes with one or two vicinal quaternary carbons is obtained when chloroform or carbon tetrachloride is used as the alkyl halide. The reaction involves the alkyl radicals from halides and the ketyl radicals from aldehydes under photoredox cooperative N-heterocyclic carbene/Pd catalysis. Three-component carboacylation of simple alkenes often requires directing groups and strained substrates. Here, the authors report a photoredox N-heteroyclic carbene/Pd-catalysed alkylacylation of alkenes with aldehydes and unactivated alkyl halides; exogenous photosensitizer or external reductant are not required.
Collapse
Affiliation(s)
- You-Feng Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Max Schwenzer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
7
|
Bao ZP, Zhang Y, Wu XF. Palladium-catalyzed difluoroalkylative carbonylation of styrenes toward difluoropentanedioates. Chem Sci 2022; 13:9387-9391. [PMID: 36093028 PMCID: PMC9384137 DOI: 10.1039/d2sc02665a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of fluorine atoms into organic molecules is an attractive but challenging topic. In this work, an interesting palladium-catalyzed difluoroalkylative carbonylation of aryl olefins has been developed. A wide range of aryl olefins were transformed into the corresponding difluoropentanedioate compounds with good functional-group tolerance and excellent regioselectivity. Inexpensive ethyl bromodifluoroacetate acts both as a difluoroalkyl precursor and a nucleophile here. Additionally, a scale-up reaction was also performed successfully, and further transformations of the obtained product were shown as well.
Collapse
Affiliation(s)
- Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| |
Collapse
|
8
|
Döben N, Reimler J, Studer A. Cooperative NHC/Photoredox Catalysis: Three Component Radical Coupling of Aroyl Fluorides, Styrenes and Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
She K, Liang F, Tian S, Wang H, Tsui GC, Wang Q. Organocatalytic Three-Component Acyldifluoromethylation of Vinylarenes via N-Heterocyclic Carbene-Catalyzed Radical Relay. Org Lett 2022; 24:4840-4844. [PMID: 35758320 DOI: 10.1021/acs.orglett.2c02093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein describe an N-hetercyclic carbene-catalyzed three-component acyldifluoromethylation of vinylarenes, aldehydes, and NaSO2CF2H. This organocatalytic approach provides a practical route for the synthesis of pharmaceutically relevant α-aryl-β-difluormethyl ketones without the need for transition metals or photocatalysts. The late-stage acyldifluoromethylation of drug analogues was also demonstrated. The reaction design employs NaSO2CF2H as the source of the CF2H radical in the presence of an oxidant for the radical relay.
Collapse
Affiliation(s)
- Kun She
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Feng Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shichao Tian
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hengshan Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong, P. R. China
| | - Quande Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
10
|
Liu YQ, Li QZ, Kou XX, Zeng R, Qi T, Zhang X, Peng C, Han B, Li JL. Radical Acylalkylation of 1,3-Enynes To Access Allenic Ketones via N-Heterocyclic Carbene Organocatalysis. J Org Chem 2022; 87:5229-5241. [DOI: 10.1021/acs.joc.2c00037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xin-Xin Kou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
11
|
Wang L, Ma R, Sun J, Zheng G, Zhang Q. NHC and visible light-mediated photoredox co-catalyzed 1,4-sulfonylacylation of 1,3-enynes for tetrasubstituted allenyl ketones. Chem Sci 2022; 13:3169-3175. [PMID: 35414881 PMCID: PMC8926198 DOI: 10.1039/d1sc06100c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
The modulation of selectivity of highly reactive carbon radical cross-coupling for the construction of C-C bonds represents a challenging task in organic chemistry. N-Heterocyclic carbene (NHC) catalyzed radical transformations have opened a new avenue for acyl radical cross-coupling chemistry. With this method, highly selective cross-coupling of an acyl radical with an alkyl radical for efficient construction of C-C bonds was successfully realized. However, the cross-coupling reaction of acyl radicals with vinyl radicals has been much less investigated. We herein describe NHC and visible light-mediated photoredox co-catalyzed radical 1,4-sulfonylacylation of 1,3-enynes, providing structurally diversified valuable tetrasubstituted allenyl ketones. Mechanistic studies indicated that ketyl radicals are formed from aroyl fluorides via the oxidative quenching of the photocatalyst excited state, allenyl radicals are generated from chemo-specific sulfonyl radical addition to the 1,3-enynes, and finally, the key allenyl and ketyl radical cross-coupling provides tetrasubstituted allenyl ketones.
Collapse
Affiliation(s)
- Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Ruiyang Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
12
|
Huang H, Dai QS, Leng HJ, Li QZ, Yang SL, Tao YM, Zhang X, Qi T, Li JL. Suzuki-type cross-coupling of alkyl trifluoroborates with acid fluoride enabled by NHC/photoredox dual catalysis. Chem Sci 2022; 13:2584-2590. [PMID: 35356672 PMCID: PMC8890133 DOI: 10.1039/d1sc06102j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
The Suzuki-Miyaura cross-coupling of C(sp3)-hybridised boronic compounds still remains a challenging task, thereby hindering the broad application of alkyl boron substrates in carbon-carbon bond-forming reactions. Herein, we developed an NHC/photoredox dual catalytic cross-coupling of alkyl trifluoroborates with acid fluorides, providing an alternative solution to the classical acylative Suzuki coupling chemistry. With this protocol, various ketones could be rapidly synthesised from readily available materials under mild conditions. Preliminary mechanistic studies shed light on the unique radical reaction mechanism.
Collapse
Affiliation(s)
- Hua Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Si-Lin Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Ying-Mao Tao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| |
Collapse
|
13
|
Wang X, Zhu B, Liu Y, Wang Q. Combined Photoredox and Carbene Catalysis for the Synthesis of α-Amino Ketones from Carboxylic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin300071, People’s Republic of China
| | - Binbing Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin300071, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin300071, People’s Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin300071, People’s Republic of China
| |
Collapse
|
14
|
Abstract
Inspired by the role of N-heterocyclic carbenes (NHCs) in natural enzymatic processes, chemists have harnessed the umpolung (polarity reversal) reactivity of these reactive, Lewis basic species over the past few decades to construct key chemical bonds. While NHCs continue to play a role in two-electron transformations, their unique redox properties enable a variety of useful, stabilized radical species to be accessed via single-electron oxidation or reduction. As a result, their utility in synthesis has grown rapidly concurrent with the revival of radical chemistry, highlighted by their extensive use as reactive single-electron species in recent years.
Collapse
|
15
|
Wang D, Ackermann L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem Sci 2022; 13:7256-7263. [PMID: 35799820 PMCID: PMC9214884 DOI: 10.1039/d2sc02277j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis. A wealth of ketones with high levels of structural complexity was rapidly obtained via direct functionalization of C(sp2)/C(sp3)–H bonds in a modular manner. Furthermore, a regioselective late-stage modification of natural products showcased the practical utility of the strategy, generally featuring high resource economy and ample substrate scope. Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis.![]()
Collapse
Affiliation(s)
- Dingyi Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Germany
| |
Collapse
|
16
|
Shen Y, Lei N, Lu C, Xi D, Geng X, Tao P, Su Z, Zheng K. Construction of sterically congested oxindole derivatives via visible-light-induced radical-coupling. Chem Sci 2021; 12:15399-15406. [PMID: 34976361 PMCID: PMC8635216 DOI: 10.1039/d1sc05273j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
The oxindole scaffold represents an important structural feature in many natural products and pharmaceutically relevant molecules. Herein, we report a visible-light-induced modular methodology for the synthesis of complex 3,3'-disubstituted oxindole derivatives. A library of valuable fluoroalkyl-containing highly sterically congested oxindole derivatives can be synthesized by a catalytic three-component radical coupling reaction under mild conditions (metal & photocatalyst free, >80 examples). This strategy shows high functional group tolerance and broad substrate compatibility (including a wide variety of terminal or non-terminal alkenes, conjugated dienes and enynes, and a broad array of polyfluoroalkyl iodide and oxindoles), which enables modular modification of complex drug-like compounds in one chemical step. The success of solar-driven transformation, large-scale synthesis, and the late-stage functionalization of bioactive molecules, as well as promising tumor-suppressing biological activities, highlights the potential for practical applications of this strategy. Mechanistic investigations, including a series of control experiments, UV-vis spectroscopy and DFT calculations, suggest that the reaction underwent a sequential two-step radical-coupling process and the photosensitive perfluoroalkyl benzyl iodides are key intermediates in the transformation.
Collapse
Affiliation(s)
- Yanling Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Ning Lei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Cong Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Dailin Xi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xinxin Geng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Pan Tao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
17
|
Kusakabe M, Nagao K, Ohmiya H. Radical Relay Trichloromethylacylation of Alkenes through N-Heterocyclic Carbene Catalysis. Org Lett 2021; 23:7242-7247. [PMID: 34464143 DOI: 10.1021/acs.orglett.1c02639] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-Heterocyclic carbene catalysis enabling vicinal trichloromethylacylation of alkenes using tetrachloromethane and aldehydes has been developed. The reaction involves single electron transfer from the enolate form of the Breslow intermediate to tetrachloromethane to generate the persistent Breslow intermediate-derived ketyl radical and a transient trichloromethyl radical. After radical addition of the trichloromethyl radical to an alkene, the prolonged alkyl radical is preferentially captured by the ketyl radical over tetrachloromethane leading to the atom transfer radical addition product.
Collapse
Affiliation(s)
- Mayu Kusakabe
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
18
|
Bay AV, Fitzpatrick KP, González-Montiel GA, Farah AO, Cheong PHY, Scheidt KA. Light-Driven Carbene Catalysis for the Synthesis of Aliphatic and α-Amino Ketones. Angew Chem Int Ed Engl 2021; 60:17925-17931. [PMID: 34097802 PMCID: PMC8338790 DOI: 10.1002/anie.202105354] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Indexed: 01/02/2023]
Abstract
Single-electron N-heterocyclic carbene (NHC) catalysis has gained attention recently for the synthesis of C-C bonds. Guided by density functional theory and mechanistic analyses, we report the light-driven synthesis of aliphatic and α-amino ketones using single-electron NHC operators. Computational and experimental results reveal that the reactivity of the key radical intermediate is substrate-dependent and can be modulated through steric and electronic parameters of the NHC. Catalyst potential is harnessed in the visible-light driven generation of an acyl azolium radical species that undergoes selective coupling with various radical partners to afford diverse ketone products. This methodology is showcased in the direct late-stage functionalization of amino acids and pharmaceutical compounds, highlighting the utility of single-electron NHC operators.
Collapse
Affiliation(s)
- Anna V. Bay
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Keegan P. Fitzpatrick
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | | | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331 2145
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331 2145
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
19
|
Li Z, Huang M, Zhang X, Chen J, Huang Y. N-Heterocyclic Carbene-Catalyzed Four-Component Reaction: Chemoselective Cradical-Cradical Relay Coupling Involving the Homoenolate Intermediate. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02576] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhen Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Meirong Huang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Xinhao Zhang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Bay AV, Fitzpatrick KP, González‐Montiel GA, Farah AO, Cheong PH, Scheidt KA. Light‐Driven Carbene Catalysis for the Synthesis of Aliphatic and α‐Amino Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna V. Bay
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Keegan P. Fitzpatrick
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | | | - Abdikani Omar Farah
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 2145 USA
| | - Paul Ha‐Yeon Cheong
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 2145 USA
| | - Karl A. Scheidt
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
21
|
|
22
|
Liu K, Studer A. Direct α-Acylation of Alkenes via N-Heterocyclic Carbene, Sulfinate, and Photoredox Cooperative Triple Catalysis. J Am Chem Soc 2021; 143:4903-4909. [PMID: 33760603 PMCID: PMC8033569 DOI: 10.1021/jacs.1c01022] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/25/2022]
Abstract
N-Heterocyclic carbene (NHC) catalysis has emerged as a versatile tool in modern synthetic chemistry. Further increasing the complexity, several processes have been introduced that proceed via dual catalysis, where the NHC organocatalyst operates in concert with a second catalytic moiety, significantly enlarging the reaction scope. In biological transformations, multiple catalysis is generally used to access complex natural products. Guided by that strategy, triple catalysis has been studied recently, where three different catalytic modes are merged in a single process. In this Communication, direct α-C-H acylation of various alkenes with aroyl fluorides using NHC, sulfinate, and photoredox cooperative triple catalysis is reported. The method allows the preparation of α-substituted vinyl ketones in moderate to high yields with excellent functional group tolerance. Mechanistic studies reveal that these cascades proceed through a sequential radical addition/coupling/elimination process. In contrast to known triple catalysis processes that operate via two sets of interwoven catalysis cycles, in the introduced process, all three cycles are interwoven.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
23
|
Ren SC, Lv WX, Yang X, Yan JL, Xu J, Wang FX, Hao L, Chai H, Jin Z, Chi YR. Carbene-Catalyzed Alkylation of Carboxylic Esters via Direct Photoexcitation of Acyl Azolium Intermediates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00165] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shi-Chao Ren
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wen-Xin Lv
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jia-Lei Yan
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Xu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Fang-Xin Wang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Lin Hao
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
24
|
|
25
|
Abstract
An N-heterocyclic carbene (NHC)-catalyzed strategy has been developed to address the issue of using toxic transitional metals in the field of C-C bond activation. The novel reaction mode enables an efficient docking between the cyanoalkyl from the cycloketone oxime derivative and the acyl group from the aldehyde, affording ketonitrile in moderate to good yields, which is one kind of useful building block for synthesizing nitrogen-containing pharmacophores.
Collapse
Affiliation(s)
- Hai-Bin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Dan-Hong Wan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Abstract
A NHC-catalyzed metal-free oxindole synthesis method is developed.
Collapse
Affiliation(s)
- Chengming Wang
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- China
| | - Lixia Liu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- China
| |
Collapse
|
27
|
Zhang Z, Zou X, Li Z, Gao Y, Qu Y, Quan Y, Zhou Y, Li J, Sun J, Guo K. N-Heterocyclic carbene-catalyzed radical ring-opening acylation of oxime esters with aldehydes. Org Chem Front 2021. [DOI: 10.1039/d1qo01015h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a radical cross-coupling of cycloketone oxime esters with aldehydes by N-heterocyclic carbene (NHC) organocatalysis. This protocol features easy operation, with no need for external redox reagent, and a broad functional group compatibility.
Collapse
Affiliation(s)
- Zhihao Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Xin Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Zhenjiang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Yu Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Yuanyuan Qu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Yusheng Quan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Yi Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Jinlan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Jie Sun
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| |
Collapse
|
28
|
John SE, Gulati S, Shankaraiah N. Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org Chem Front 2021. [DOI: 10.1039/d0qo01480j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes the recent developments in MCRs, incorporating different strategies along with their mechanistic aspects.
Collapse
Affiliation(s)
- Stephy Elza John
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| | - Shivani Gulati
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| |
Collapse
|
29
|
Chen L, Jin S, Gao J, Liu T, Shao Y, Feng J, Wang K, Lu T, Du D. N-Heterocyclic Carbene/Magnesium Cocatalyzed Radical Relay Assembly of Aliphatic Keto Nitriles. Org Lett 2020; 23:394-399. [DOI: 10.1021/acs.orglett.0c03883] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lei Chen
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shiyi Jin
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tongtong Liu
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuebo Shao
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Kangyi Wang
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tao Lu
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
30
|
Gao Y, Quan Y, Li Z, Gao L, Zhang Z, Zou X, Yan R, Qu Y, Guo K. Organocatalytic Three-Component 1,2-Cyanoalkylacylation of Alkenes via Radical Relay. Org Lett 2020; 23:183-189. [PMID: 33336577 DOI: 10.1021/acs.orglett.0c03907] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here, we report an unprecedented regioselective, intermolecular 1,2-cyanoalkylacylation of feedstock alkenes with readily available oxime esters and aldehydes by N-heterocyclic carbene (NHC) organocatalysis. The crux of this success is the exquisite control over the radical relay process by an NHC organocatalyst. This protocol offers a general platform for diversity-oriented synthesis of valuable ketonitriles under mild, transition-metal-free, and redox-neutral conditions and highlights its potential in the late-stage functionalization of pharmaceutical architectures and natural products.
Collapse
|
31
|
Li Q, Zeng R, Han B, Li J. Single‐Electron Transfer Reactions Enabled by N‐Heterocyclic Carbene Organocatalysis. Chemistry 2020; 27:3238-3250. [DOI: 10.1002/chem.202004059] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Qing‐Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 P.R. China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P.R. China
| | - Jun‐Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 P.R. China
| |
Collapse
|
32
|
Meng Q, Döben N, Studer A. Cooperative NHC and Photoredox Catalysis for the Synthesis of β-Trifluoromethylated Alkyl Aryl Ketones. Angew Chem Int Ed Engl 2020; 59:19956-19960. [PMID: 32700458 PMCID: PMC7693039 DOI: 10.1002/anie.202008040] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 01/12/2023]
Abstract
Despite the great potential of radical chemistry in organic synthesis, N-heterocyclic carbene (NHC)-catalyzed reactions involving radical intermediates are not well explored. This communication reports the three-component coupling of aroyl fluorides, styrenes and the Langlois reagent (CF3 SO2 Na) to give various β-trifluoromethylated alkyl aryl ketones with good functional group tolerance in moderate to high yields by cooperative photoredox/NHC catalysis. The alkene acyltrifluoromethylation proceeds via radical/radical cross coupling of ketyl radicals with benzylic C-radicals. The ketyl radicals are generated via SET reduction of in situ formed acylazolium ions whereas the benzylic radicals derive from trifluoromethyl radical addition onto styrenes.
Collapse
Affiliation(s)
- Qing‐Yuan Meng
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Nadine Döben
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
33
|
Dai L, Xu YY, Xia ZH, Ye S. γ-Difluoroalkylation: Synthesis of γ-Difluoroalkyl-α,β-Unsaturated Esters via Photoredox NHC-Catalyzed Radical Reaction. Org Lett 2020; 22:8173-8177. [PMID: 33021799 DOI: 10.1021/acs.orglett.0c03208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By the cooperative photoredox and N-heterocyclic carbene catalysis, the γ-difluoroalkylation of γ-preoxidized enals was developed for the synthesis of γ-difluoroalkyl-α,β-unsaturated esters with all-carbon quaternary centers. This method provides efficient catalytic C(sp3)-CF2R bond formation at the γ-position of carbonyl compounds for the first time.
Collapse
Affiliation(s)
- Lei Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Hao Xia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Meng Q, Döben N, Studer A. Kooperative NHC‐ und Photoredox‐Katalyse zur Synthese β‐trifluormethylierter Alkylarylketone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qing‐Yuan Meng
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Deutschland
| | - Nadine Döben
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Deutschland
| |
Collapse
|
35
|
Mavroskoufis A, Jakob M, Hopkinson MN. Light‐Promoted Organocatalysis with N‐Heterocyclic Carbenes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Andreas Mavroskoufis
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Michael Jakob
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Matthew N. Hopkinson
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| |
Collapse
|
36
|
Kakeno Y, Kusakabe M, Nagao K, Ohmiya H. Direct Synthesis of Dialkyl Ketones from Aliphatic Aldehydes through Radical N-Heterocyclic Carbene Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02849] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Kakeno
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mayu Kusakabe
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
37
|
Affiliation(s)
- Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
38
|
Ishii T, Nagao K, Ohmiya H. Recent advances in N-heterocyclic carbene-based radical catalysis. Chem Sci 2020; 11:5630-5636. [PMID: 34094077 PMCID: PMC8159350 DOI: 10.1039/d0sc01538e] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/10/2020] [Indexed: 12/22/2022] Open
Abstract
In nature, a number of enzymes use thiamine diphosphate as a coenzyme to catalyze the pyruvate decarboxylation. The resultant enamine, a so-called "Breslow intermediate," is known to perform single electron transfer to various electron acceptors. Inspired by this enzymatic catalysis, N-heterocyclic carbene (NHC)-catalyzed radical reactions have been developed. This minireview highlights the recent progress and developments in NHC-based radical catalysis. This minireview is categorized according to the reaction types; oxidation type reaction and carbon-carbon bond formation through single electron transfer/radical-radical coupling.
Collapse
Affiliation(s)
- Takuya Ishii
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- JST, PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
39
|
Ota K, Nagao K, Ohmiya H. N-Heterocyclic Carbene-Catalyzed Radical Relay Enabling Synthesis of δ-Ketocarbonyls. Org Lett 2020; 22:3922-3925. [DOI: 10.1021/acs.orglett.0c01199] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenji Ota
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
40
|
Liu Q, Chen XY. Dual N-heterocyclic carbene/photocatalysis: a new strategy for radical processes. Org Chem Front 2020. [DOI: 10.1039/d0qo00494d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dual N-heterocyclic carbene/photocatalysis displays unique features compared with the traditional methods and indicates high potential for new radical processes.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences
- University of the Chinese Academy of Sciences
- Beijing 100049
- China
| | - Xiang-Yu Chen
- School of Chemical Sciences
- University of the Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|