1
|
Hossen J, Nakatani N. Theoretical study on the carbon nanomaterial-supported Pt complex electrocatalysts for efficient and selective chlorine evolution reaction. J Comput Chem 2024; 45:2602-2611. [PMID: 39016463 DOI: 10.1002/jcc.27466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Chlorine is an important chemical which has long been produced in chlor-alkali process using dimensionally stable anodes (DSA). However, some serious drawbacks of DSA inspire the development of alternative anodes for chlorine evolution reaction (CER). In this study, we focused on the graphene- and carbon nanotube-supported platinum tetra-phenyl porphyrins as electrocatalysts for CER, which have been theoretically investigated based on density functional theory. Our results reveal that the supported substrates possess potential CER electrocatalytic activity with very low thermodynamic overpotentials (0.012-0.028 V) via Cl* pathway instead of ClO*. The electronic structures analyses showed that electron transfer from the support to the adsorbed chlorine via the Pt center leads to strong Pt-Cl interactions. Furthermore, the supported electrocatalysts exhibited excellent selectivity toward CER because of high overpotentials and reaction barriers of oxygen evolution process. Therefore, our results may pave the way for designing CER electrocatalyst utilizing emerging carbon nanomaterials.
Collapse
Affiliation(s)
- Jewel Hossen
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Department of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Shao X, Maibam A, Cao F, Jin H, Huang S, Liang M, Gyu Kim M, My Tran K, Jadhav AR, Seung Jung H, Babarao R, Lee H. Coordination Environment and Distance Optimization of Dual Single Atoms on Fluorine-Doped Carbon Nanotubes for Chlorine Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202406273. [PMID: 39076060 DOI: 10.1002/anie.202406273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The chlorine evolution reaction (CER) is a crucial anode reaction in the chlor-alkali industrial process. Precious metal-based dimensionally stable anodes (DSA) are commonly used as catalysts for CER but are constrained by their high cost and low selectivity. Herein, a Pt dual singe-atom catalyst (DSAC) dispersed on fluorine-doped carbon nanotubes (F-CNTs) is designed for an efficient and robust CER process. The prepared Pt DSAC demonstrates excellent CER activity with a low overpotential of 21 mV to achieve a current density of 10 mA cm-2 and a remarkable mass activity of 3802.6 A gpt -1 at an overpotential around 30 mV, outperforming those of commercial DSA and Pt single-atom catalyst. The excellent CER performance of Pt DSAC is attributed to the high atomic utilization and improved intrinsic activity. Notably, introducing fluorine atoms on CNTs increases the oxidation and chlorination resistance of Pt DSAC, and reduces the demetalization ratio of Pt atoms, resulting in excellent long-term CER stability. Theoretical calculations reveal that several Pt DSAC configurations with optimized first-shell ligands and interatomic distance display lower energy barriers for Cl intermediates generation and weaker ionic Pt-Cl bond interaction, which are favorable for the CER process.
Collapse
Affiliation(s)
- Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Ashakiran Maibam
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, 3001, Melbourne, Victoria, Australia
| | - Fengliang Cao
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, People's Republic of China
| | - Haiyan Jin
- International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Mengfang Liang
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, 37673, Pohang, Republic of Korea
| | - Kim My Tran
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Amol R Jadhav
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Hyun Seung Jung
- School of Chemical Engineering, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, 3001, Melbourne, Victoria, Australia
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
- Creative Research Institute and Institute of Quantum Biophysics, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| |
Collapse
|
3
|
Kim J, Usama M, Exner KS, Joo SH. Renaissance of Chlorine Evolution Reaction: Emerging Theory and Catalytic Materials. Angew Chem Int Ed Engl 2024:e202417293. [PMID: 39373350 DOI: 10.1002/anie.202417293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Chlorine (Cl2) is one of the most important commodity chemicals that has found widespread utility in chemical industry. Most Cl2 is currently produced via the chlorine evolution reaction (CER) at the anode of chlor-alkali electrolyzers, for which platinum group-metal (PGM)-based mixed metal oxides (MMOs) have been used for more than half a century. However, MMOs suffer from the use of expensive and scarce PGMs and face selectivity problems due to the parasitic oxygen evolution reaction. Over the last decade, the field of CER catalysis has seen dramatic advances in both the theory and discovery of new catalysts. Theoretical approaches have enabled a fundamental understanding of CER mechanisms and provided catalyst design principles. The exploration of new materials has led to the discovery of CER catalysts other than MMOs, including non-PGM oxides, atomically dispersed single-site catalysts, and organic molecules, with some of which following novel reaction pathways. This minireview provides an overview of the recent advances in CER electrocatalyst research and suggests future directions for this revitalized field.
Collapse
Affiliation(s)
- Jinjong Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Muhammad Usama
- Faculty of Chemistry Theoretical Catalysis and Electrochemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Kai S Exner
- Faculty of Chemistry Theoretical Catalysis and Electrochemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), 47057, Duisburg, Germany
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Exner KS. Four Generations of Volcano Plots for the Oxygen Evolution Reaction: Beyond Proton-Coupled Electron Transfer Steps? Acc Chem Res 2024; 57:1336-1345. [PMID: 38621676 PMCID: PMC11080045 DOI: 10.1021/acs.accounts.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
ConspectusDue to its importance for electrolyzers or metal-air batteries for energy conversion or storage, there is huge interest in the development of high-performance materials for the oxygen evolution reaction (OER). Theoretical investigations have aided the search for active material motifs through the construction of volcano plots for the kinetically sluggish OER, which involves the transfer of four proton-electron pairs to form a single oxygen molecule. The theory-driven volcano approach has gained unprecedented popularity in the catalysis and energy communities, largely due to its simplicity, as adsorption free energies can be used to approximate the electrocatalytic activity by heuristic descriptors.In the last two decades, the binding-energy-based volcano method has witnessed a renaissance with special concepts being developed to incorporate missing factors into the analysis. To this end, this Account summarizes and discusses the different generations of volcano plots for the example of the OER. While first-generation methods relied on the assessment of the thermodynamic information for the OER reaction intermediates by means of scaling relations, the second and third generations developed strategies to include overpotential and kinetic effects into the analysis of activity trends. Finally, the fourth generation of volcano approaches allowed the incorporation of various mechanistic pathways into the volcano methodology, thus paving the path toward data- and mechanistic-driven volcano plots in electrocatalysis.Although the concept of volcano plots has been significantly expanded in recent years, further research activities are discussed by challenging one of the main paradigms of the volcano concept. To date, the evaluation of activity trends relies on the assumption of proton-coupled electron transfer steps (CPET), even though there is experimental evidence of sequential proton-electron transfer (SPET) steps. While the computational assessment of SPET for solid-state electrodes is ambitious, it is strongly suggested to comprehend their importance in energy conversion and storage processes, including the OER. This can be achieved by knowledge transfer from homogeneous to heterogeneous electrocatalysis and by focusing on the material class of single-atom catalysts in which the active center is well defined. The derived concept of how to analyze the importance of SPET for mechanistic pathways in the OER over solid-state electrodes could further shape our understanding of the proton-electron transfer steps at electrified solid/liquid interfaces, which is crucial for further progress toward sustainable energy and climate neutrality.
Collapse
Affiliation(s)
- Kai S. Exner
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster
of Excellence RESOLV, 44801 Bochum, Germany
- Center
for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
5
|
Zhu W, Wei Z, Ma Y, Ren M, Fu X, Li M, Zhang C, Wang J, Guo S. Energy-Efficient Electrosynthesis of High Value-Added Active Chlorine Coupled with H 2 Generation from Direct Seawater Electrolysis through Decoupling Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202319798. [PMID: 38353370 DOI: 10.1002/anie.202319798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Direct saline (seawater) electrolysis is a well-recognized system to generate active chlorine species for the chloride-mediated electrosynthesis, environmental remediation and sterilization over the past few decades. However, the large energy consumption originated from the high cell voltage of traditional direct saline electrolysis system, greatly restricts its practical application. Here, we report an acid-saline hybrid electrolysis system for energy-saving co-electrosynthesis of active chlorine and H2. We demonstrate that this system just requires a low cell voltage of 1.59 V to attain 10 mA cm-2 with a large energy consumption decrease of 27.7 % compared to direct saline electrolysis system (2.20 V). We further demonstrate that such acid-saline hybrid electrolysis system could be extended to realize energy-saving and sustainable seawater electrolysis. The acidified seawater in this system can absolutely avoid the formation of Ca/Mg-based sediments that always form in the seawater electrolysis system. We also prove that this system in the half-flow mode can realize real-time preparation of active chlorine used for sterilization and pea sprout production.
Collapse
Affiliation(s)
- Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziyi Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meirong Ren
- Department of Agrotechnology and Food Sciences, Wageningen University & Research, Droevendaalsesteeg 2, 6708, PB Wageningen, The Netherlands
| | - Xue Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaojun Guo
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Fan J, Yang L, Zhu W. Single Pd-doped arsenene coordinated with nitrogen atoms as an electrocatalyst for effective chlorine evolution reaction: DFT and machine learning studies. J Mol Graph Model 2023; 124:108554. [PMID: 37379760 DOI: 10.1016/j.jmgm.2023.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
We designed a series of single transition metal-anchored arsenene coordinated with nitrogen atoms (TMNx@As) as electrocatalysts for chlorine evolution reaction (CER). Density functional theory (DFT) and machine learning were employed to investigate the catalytic activity of TMNx@As. It is found that the performance of TMNx@As is the best when the transition metal is Pd and the nitrogen coordination content is 66.67%. The catalytic activity of TMNx@As for chlorine evolution reaction is mainly determined by the covalent radius (Rc) and atomic non-bonded radius (Ra) of the transition metal and the fraction of N atoms in metal's coordinating atoms (fN).
Collapse
Affiliation(s)
- Jiake Fan
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lei Yang
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
7
|
Liu Y, Li C, Tan C, Pei Z, Yang T, Zhang S, Huang Q, Wang Y, Zhou Z, Liao X, Dong J, Tan H, Yan W, Yin H, Liu ZQ, Huang J, Zhao S. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat Commun 2023; 14:2475. [PMID: 37120624 PMCID: PMC10148798 DOI: 10.1038/s41467-023-38129-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
The chlor-alkali process plays an essential and irreplaceable role in the modern chemical industry due to the wide-ranging applications of chlorine gas. However, the large overpotential and low selectivity of current chlorine evolution reaction (CER) electrocatalysts result in significant energy consumption during chlorine production. Herein, we report a highly active oxygen-coordinated ruthenium single-atom catalyst for the electrosynthesis of chlorine in seawater-like solutions. As a result, the as-prepared single-atom catalyst with Ru-O4 moiety (Ru-O4 SAM) exhibits an overpotential of only ~30 mV to achieve a current density of 10 mA cm-2 in an acidic medium (pH = 1) containing 1 M NaCl. Impressively, the flow cell equipped with Ru-O4 SAM electrode displays excellent stability and Cl2 selectivity over 1000 h continuous electrocatalysis at a high current density of 1000 mA cm-2. Operando characterizations and computational analysis reveal that compared with the benchmark RuO2 electrode, chloride ions preferentially adsorb directly onto the surface of Ru atoms on Ru-O4 SAM, thereby leading to a reduction in Gibbs free-energy barrier and an improvement in Cl2 selectivity during CER. This finding not only offers fundamental insights into the mechanisms of electrocatalysis but also provides a promising avenue for the electrochemical synthesis of chlorine from seawater electrocatalysis.
Collapse
Affiliation(s)
- Yangyang Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Can Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Chunhui Tan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tao Yang
- Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-93, Portugal
| | - Shuzhen Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qianwei Huang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yihan Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zheng Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaozhou Liao
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Huajie Yin
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
8
|
Quan F, Zhan G, Zhou B, Ling C, Wang X, Shen W, Li J, Jia F, Zhang L. Electrochemical removal of ammonium nitrogen in high efficiency and N 2 selectivity using non-noble single-atomic iron catalyst. J Environ Sci (China) 2023; 125:544-552. [PMID: 36375937 DOI: 10.1016/j.jes.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Ammonia nitrogen (NH4+-N) is a ubiquitous environmental pollutant, especially in offshore aquaculture systems. Electrochemical oxidation is very promising to remove NH4+-N, but suffers from the use of precious metals anodes. In this work, a robust and cheap electrocatalyst, iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C), was developed for electrochemical removal of NH4+-N from in wastewater containing chloride. The Fe-SAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon (Fe-NPs/N-C), unmodified carbon and conventional Ti/IrO2-TiO2-RuO2 electrodes. And high removal efficiency (> 99%) could be achieved as well as high N2 selectivity (99.5%) at low current density. Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH4+-N. This study provides promising inexpensive catalysts for NH4+-N removal in aquaculture wastewater.
Collapse
Affiliation(s)
- Fengjiao Quan
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guangming Zhan
- Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bing Zhou
- Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Cancan Ling
- Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaobing Wang
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China
| | - Wenjuan Shen
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianfen Li
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Falong Jia
- Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
9
|
Razzaq S, Exner KS. Materials Screening by the Descriptor G max(η): The Free-Energy Span Model in Electrocatalysis. ACS Catal 2023; 13:1740-1758. [PMID: 36776387 PMCID: PMC9903997 DOI: 10.1021/acscatal.2c03997] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/05/2022] [Indexed: 01/18/2023]
Abstract
To move from fossil-based energy resources to a society based on renewables, electrode materials free of precious noble metals are required to efficiently catalyze electrochemical processes in fuel cells, batteries, or electrolyzers. Materials screening operating at minimal computational cost is a powerful method to assess the performance of potential electrode compositions based on heuristic concepts. While the thermodynamic overpotential in combination with the volcano concept refers to the most popular descriptor-based analysis in the literature, this notion cannot reproduce experimental trends reasonably well. About two years ago, the concept of G max(η), based on the idea of the free-energy span model, has been proposed as a universal approach for the screening of electrocatalysts. In contrast to other available descriptor-based methods, G max(η) factors overpotential and kinetic effects by a dedicated evacuation scheme of adsorption free energies into an analysis of trends. In the present perspective, we discuss the application of G max(η) to different electrocatalytic processes, including the oxygen evolution and reduction reactions, the nitrogen reduction reaction, and the selectivity problem of the competing oxygen evolution and peroxide formation reactions, and we outline the advantages of this screening approach over previous investigations.
Collapse
Affiliation(s)
- Samad Razzaq
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
| | - Kai S. Exner
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster
of Excellence RESOLV, 44801 Bochum, Germany
- Center
for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
10
|
Chen Y, Zhang G, Liu H, Wang Y, Chen Z, Ji Q, Lan H, Liu R, Qu J. Tip-Intensified Interfacial Microenvironment Reconstruction Promotes an Electrocatalytic Chlorine Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhixuan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Kim JH, Sa YJ, Lim T, Woo J, Joo SH. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production. Acc Chem Res 2022; 55:2672-2684. [PMID: 36067418 DOI: 10.1021/acs.accounts.2c00409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electrocatalysis is a key driver in promoting the paradigm shift from the current fossil-fuel-based hydrocarbon economy to a renewable-energy-driven hydrogen economy. The success of electrocatalysis hinges primarily on achieving high catalytic selectivity along with maximum activity and sustained longevity. Many electrochemical reactions proceed through multiple pathways, requiring highly selective catalysts.Atomically dispersed metal catalysts have emerged as a new frontier in heterogeneous catalysis. In addition to the widely perceived advantages of maximized active site utilization and substantially reduced metal content, they have shown different catalytic selectivities in some electrocatalytic reactions compared to the traditional nanoparticle (NP)-based catalysts. Although there have been significant advances in their synthesis, the highly energetic nature of a single atomic site has made the preparation of atomically dispersed metal catalysts rely on empiricism rather than rational design. Consequently, the structural comprehension of a single atomic site and the understanding of its unusual electrocatalytic selectivity remain largely elusive.In this Account, we describe our endeavors toward developing general synthetic approaches for atomically dispersed metal catalysts for the discovery of new selective and active electrocatalysts and to understand their catalytic nature. We introduce synthetic approaches to produce a wide range of nonprecious- and precious-metal-based atomically dispersed catalysts and control their coordination environments. Metallomacrocyclic-compound-driven top-down and metal salt/heteroatom layer-based bottom-up strategies, coupled with a SiO2-protective-layer-assisted method, have been developed that can effectively generate single atomic sites while mitigating the formation of metallic NPs. The low-temperature gas-phase ligand exchange method can reversibly tune the coordination structure of the atomically dispersed metal sites. We have used the prepared atomically dispersed metal catalysts as model systems to investigate their electrocatalytic reactivity for renewable energy conversion and commodity chemical production reactions, in which high selectivity is important. The reactions of our interest include the following: (i) the oxygen reduction reaction, where O2 is reduced to either H2O or H2O2 via the four-electron or two electron pathway, respectively; (ii) the CO2 reduction reaction, which should suppress the hydrogen evolution reaction; and (iii) the chlorine evolution reaction, which competes with the oxygen evolution reaction. The type of metal center to which the reactant is directly bound is found to be the most important in determining the selectivity, which originates from the dramatic changes in the binding energy of each metal center with the reactants. The coordination structure surrounding the metal center also has a significant effect on the selectivity; its control can modulate the oxidation state of the metal center, thereby altering the binding strength with the reactants.We envisage that future advances in the synthesis of atomically dispersed metal catalysts, combined with the growing power of computational, spectroscopic, and microscopic methods, will bring their synthesis to the level of rational design. Elaborately designed catalysts can overcome the current limits of catalytic selectivity, which will help establish the field of atomically dispersed metal catalysts as an important branch of catalysis.
Collapse
Affiliation(s)
- Jae Hyung Kim
- Clean Fuel Research Laboratory, Korea Institute of Energy Research, Daejeon34129, Republic of Korea
| | - Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| | - Taejung Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jinwoo Woo
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
12
|
Abstract
Materials innovation plays an essential role to address the increasing demands of gaseous chlorine from anodic chlorine evolution reaction (CER) in chlor-alkali electrolysis. In this study, two-dimensional (2D) semiconducting group-VA monolayers were theoretically screened for the electrochemical CER by means of the density functional theory (DFT) method. Our results reveal the monolayered β-arsenene has the ultralow thermodynamic overpotential of 0.068 V for CER, which is close to that of the commercial Ru/Ir-based dimensionally stable anode (DSA) of 0.08 V @ 10 mA cm−2 and 0.13 V from experiments and theory, respectively. The change of CER pathways via Cl* intermediate on 2D β-arsenene also efficiently suppresses the parasitical oxygen gas production because of a high theoretical oxygen evolution reaction (OER) overpotential of 1.95 V. Our findings may therefore expand the scope of the electrocatalysts design for CER by using emerging 2D materials.
Collapse
|
13
|
Han S, Kim S, Kwak S, Lee C, Hong Jeong D, Kim C, Yoon J. Iridium-cobalt mixed oxide electrode for efficient chlorine evolution in dilute chloride solutions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
TMN4 complex embedded graphene as efficient and selective electrocatalysts for chlorine evolution reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Zhang Y, Fu C, Fan J, Lv H, Hao W. Preparation of Ti@NiB electrode via electroless plating toward high-efficient alkaline simulated seawater splitting. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Kim S, Lee T, Han S, Lee C, Kim C, Yoon J. Ir0.11Fe0.25O0.64 as a highly efficient electrode for electrochlorination in dilute chloride solutions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Lim T, Kim JH, Kim J, Baek DS, Shin TJ, Jeong HY, Lee KS, Exner KS, Joo SH. General Efficacy of Atomically Dispersed Pt Catalysts for the Chlorine Evolution Reaction: Potential-Dependent Switching of the Kinetics and Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Taejung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jae Hyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jinjong Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Du San Baek
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, 80 Jigok-ro, Pohang 37673, Republic of Korea
| | - Kai S. Exner
- Faculty of Chemistry, Theoretical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
18
|
Wang Q, Li T, Yang C, Chen M, Guan A, Yang L, Li S, Lv X, Wang Y, Zheng G. Electrocatalytic Methane Oxidation Greatly Promoted by Chlorine Intermediates. Angew Chem Int Ed Engl 2021; 60:17398-17403. [PMID: 34060206 DOI: 10.1002/anie.202105523] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/05/2022]
Abstract
Renewable energy-powered methane (CH4 ) conversion at ambient conditions is an attractive but highly challenging field. Due to the highly inert character of CH4 , the selective cleavage of its first C-H bond without over-oxidation is essential for transforming CH4 into value-added products. In this work, we developed an efficient and selective CH4 conversion approach at room temperature using intermediate chlorine species (*Cl), which were electrochemically generated and stabilized on mixed cobalt-nickel spinels with different Co/Ni ratios. The lower overpotentials for *Cl formation enabled an effective activation and conversion of CH4 to CH3 Cl without over-oxidation to CO2 , and Ni3+ at the octahedral sites in the mixed cobalt-nickel spinels allowed to stabilize surface-bound *Cl species. The CoNi2 Ox electrocatalyst exhibited an outstanding yield of CH3 Cl (364 mmol g-1 h-1 ) and a high CH3 Cl/CO2 selectivity of over 400 at room temperature, with demonstrated capability of direct CH4 conversion under seawater working conditions.
Collapse
Affiliation(s)
- Qihao Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Tengfei Li
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Menghuan Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Anxiang Guan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Li Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Si Li
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
19
|
Wang Q, Li T, Yang C, Chen M, Guan A, Yang L, Li S, Lv X, Wang Y, Zheng G. Electrocatalytic Methane Oxidation Greatly Promoted by Chlorine Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qihao Wang
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Tengfei Li
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Chao Yang
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Menghuan Chen
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Anxiang Guan
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Li Yang
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Si Li
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Ximeng Lv
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| |
Collapse
|
20
|
Hu J, Xu H, Feng X, Lei L, He Y, Zhang X. Neodymium‐Doped IrO
2
Electrocatalysts Supported on Titanium Plates for Enhanced Chlorine Evolution Reaction Performance. ChemElectroChem 2021. [DOI: 10.1002/celc.202100147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiajun Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| | - Haoran Xu
- Zhejiang Provincial Key Laboratory of Energy Efficiency and Pollution Control Technology for Thermal Power Generation 311121 Hangzhou
- Zhejiang Energy Group R&D Co., Ltd. 310003 Hangzhou
| | - Xiangdong Feng
- Zhejiang Provincial Key Laboratory of Energy Efficiency and Pollution Control Technology for Thermal Power Generation 311121 Hangzhou
- Zhejiang Energy Group R&D Co., Ltd. 310003 Hangzhou
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| |
Collapse
|