1
|
Lutz PB, Coombs WR, Bayse CA. Determination of Structural Factors Contributing to Protection of Zinc Fingers in Estrogen Receptor α through Molecular Dynamic Simulations. J Phys Chem B 2025; 129:2226-2234. [PMID: 39937829 PMCID: PMC11873919 DOI: 10.1021/acs.jpcb.4c05730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
The ERα transcription factor that induces tumor growth is a potential target for breast cancer treatment. Each monomer of the ERα DNA-binding domain (ERαDBD) homodimer has two conserved (Cys)4-type zinc fingers, ZF1 (N-terminal) and ZF2 (C-terminal). Electrophilic agents release Zn2+ by oxidizing the coordinating Cys of the more labile ZF2 to inhibit dimerization and DNA binding. Microsecond-length molecular dynamics (MD) simulations show that greater flexibility of ZF2 in the ERαDBD monomer leaves its Cys more solvent accessible and less shielded from electrophilic attack by sulfur-centered hydrogen bonds than ZF1 which is buried in the protein. In the unreactive DNA-bound dimer, the formation of the dimer interface between the highly flexible D-box motif of ZF2 decreases the solvent accessibility of its Cys toward electrophiles and increases the populations of sulfur-containing hydrogen bonds that reduce their nucleophilicity. Examination of these factors in ERαDBD and other proteins with labile ZF motifs may reveal new targets to treat viral infections and cancer.
Collapse
Affiliation(s)
- Patricia B. Lutz
- Department
of Science & Mathematics, Regent University, Virginia Beach, Virginia 23464, United States
| | - Wesley R. Coombs
- Department
of Science & Mathematics, Regent University, Virginia Beach, Virginia 23464, United States
| | - Craig A. Bayse
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| |
Collapse
|
2
|
Xu Z, Su P, Zhou X, Zheng Z, Zhu Y, Wang Q. Exploring the mechanism of action of Modified Simiao Powder in the treatment of osteoarthritis: an in-silico study. Front Med (Lausanne) 2024; 11:1422306. [PMID: 39493720 PMCID: PMC11527633 DOI: 10.3389/fmed.2024.1422306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Osteoarthritis (OA) is the most common form of arthritis and the leading musculoskeletal disorders in adults. Modified Simiao Powder (MSMP) has been widely used in the treatment of OA with remarkable clinical ecaciousness. Objective This study aimed to elucidate underlying mechanisms of MSMP in OA by employing network pharmacology, molecular docking, and molecular dynamics simulations, due to the unclear mode of action. Methods Bioinformatic analysis was used to evaluate the major chemical constituents of MSMP, determine prospective target genes, and screen genes associated with OA. Network pharmacology methods were then applied to identify the crucial target genes of MSMP in OA treatment. Further analyses included gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. These key targets within the pertinent pathways was further confirmed by molecular docking, binding energy evaluation, and molecular dynamics simulations. Results Network pharmacology analysis identified an MSMP component-target-pathway network comprising 11 central active compounds, 25 gene targets, and 12 biological pathways. Discussion These findings imply that the therapeutic effects of MSMP was potentially mediated by targeting several pivotal genes, such as androgen receptor (AR), NFKB1, AKT1, MAPK1, and CASP3, and regulating some pathways, including lipid metabolism and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, the PI3K-Akt signaling pathway, fluid shear stress, atherosclerosis, and Kaposi's sarcoma-associated herpesvirus infection. Molecular docking assessments demonstrated that these compounds of MSMP, such as berberine, kaempferol, quercetin, and luteolin, exhibit high binding anities to AR and AKT1. Molecular dynamics simulations validated the interactions between these compounds and targets. Conclusion The therapeutic effect of MSMP likely attributed to the modulation of multiple pathways, including lipid metabolism, atherosclerosis, the AGE-RAGE signaling pathway, and the PI3K-Akt signaling pathway, by the active components such as berberine, kaempferol, luteolin, and quercetin. Especially, their actions on target genes like AR and AKT1 contribute to the therapeutic benefits of MSMP observed in the treatment of OA.
Collapse
Affiliation(s)
- Zhouhengte Xu
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pingping Su
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiahui Zhou
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Zhihui Zheng
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yibo Zhu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinglai Wang
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
3
|
Flores-López LA, De la Mora-De la Mora I, Malagón-Reyes CM, García-Torres I, Martínez-Pérez Y, López-Herrera G, Hernández-Alcántara G, León-Avila G, López-Velázquez G, Olaya-Vargas A, Gómez-Manzo S, Enríquez-Flores S. Selective Inhibition of Deamidated Triosephosphate Isomerase by Disulfiram, Curcumin, and Sodium Dichloroacetate: Synergistic Therapeutic Strategies for T-Cell Acute Lymphoblastic Leukemia in Jurkat Cells. Biomolecules 2024; 14:1295. [PMID: 39456228 PMCID: PMC11506356 DOI: 10.3390/biom14101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging childhood cancer to treat, with limited therapeutic options and high relapse rates. This study explores deamidated triosephosphate isomerase (dTPI) as a novel therapeutic target. We hypothesized that selectively inhibiting dTPI could reduce T-ALL cell viability without affecting normal T lymphocytes. Computational modeling and recombinant enzyme assays revealed that disulfiram (DS) and curcumin (CU) selectively bind and inhibit dTPI activity without affecting the non-deamidated enzyme. At the cellular level, treatment with DS and CU significantly reduced Jurkat T-ALL cell viability and endogenous TPI enzymatic activity, with no effect on normal T lymphocytes, whereas the combination of sodium dichloroacetate (DCA) with DS or CU showed synergistic effects. Furthermore, we demonstrated that dTPI was present and accumulated only in Jurkat cells, confirming our hypothesis. Finally, flow cytometry confirmed apoptosis in Jurkat cells after treatment with DS and CU or their combination with DCA. These findings strongly suggest that targeting dTPI represents a promising and selective target for T-ALL therapy.
Collapse
Affiliation(s)
- Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, CONAHCYT-Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Claudia M. Malagón-Reyes
- Posgrado en Ciencias Biológicas, (Maestría), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Yoalli Martínez-Pérez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico;
| | - Gabriela López-Herrera
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Gloria Hernández-Alcántara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Mexico City 04510, Mexico;
| | - Gloria León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Alberto Olaya-Vargas
- Trasplante de Células Madre y Terapia Celular, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| |
Collapse
|
4
|
Singh G, Stanzin J, Khurana S, Devi S, Vikas, Singh G, Singh J, Sabharwal S, Mohan B. Schiff baseAlkyne precursor for1,2,3-Triazole functionalized organosiliconas a PotentialSensor for Zn(II)andAntioxidantActivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124319. [PMID: 38663133 DOI: 10.1016/j.saa.2024.124319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/15/2024]
Abstract
Schiff base linked1,2,3-triazole silane5has been synthesized through the Schiff base terminated alkyne with azido via click chemistry,the compound4 structure elucidated through X-ray crystallography, and the compound5 is well characterized through different techniques such asFT-IR, 1H and 13C NMR and Mass spectrometry. UV-visible sensing studies of synthesized compounds4 and5 have been performed, and both are efficient in detectingZn(II) ion, but compound 5 has imparted a higher mode of attraction to Zn(II) with limit of detection (LOD) value (1.4 x 10-6M) wherethe compound 4 is calculated to be (1.25 x 10-5M). By Job's method, the stoichiometric ratio of compound5 and Zn(II) iscalculated to bea 1:1 ratio. The complex of compound 5 with Zn(II) was prepared. A radical and oxidative species are responsible for the deteriorating of stabilized molecules. The synthesized compound 5hasantioxidant propertiesthat can potentially scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. Further to verify the mode of binding interaction between compound 5andZn(II), computational Density functional theory (DFT) study was evaluated.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Jigmat Stanzin
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sumesh Khurana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Swati Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Vikas
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurleen Singh
- Lovely Professional University Chaheru, Phagwara, Punjab 144411, India
| | - Jandeep Singh
- Lovely Professional University Chaheru, Phagwara, Punjab 144411, India
| | | | - Brij Mohan
- Centro de QuímicaEstrutural, Instituto Superior Técnico, Universidade de Lisboa (ULisboa), 1049-001, Portugal.
| |
Collapse
|
5
|
Nasir A, Samad A, Ajmal A, Li P, Islam M, Ullah S, Shah M, Bai Q. Identification of novel and potential inhibitors against the dengue virus NS2B/NS3 protease using virtual screening and biomolecular simulations. Int J Biol Macromol 2024; 272:132855. [PMID: 38834129 DOI: 10.1016/j.ijbiomac.2024.132855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Approximately 3.9 billion individuals are vulnerable to dengue infection, a prevalent cause of tropical diseases worldwide. Currently, no drugs are available for preventing or treating Flavivirus diseases, including Dengue, West Nile, and the more recent Zika virus. The highly conserved Flavivirus NS2B-NS3 protease, crucial for viral replication, is a promising therapeutic target. This study employed in-silico methodologies to identify novel and potentially effective anti-dengue small molecules. A pharmacophore model was constructed using an experimentally validated NS2B-NS3 inhibitor, with the Gunner Henry score confirming the model's validity. The Natural Product Activity and Species Source (NPASS) database was screened using the validated pharmacophore model, yielding a total of 60 hits against the NS2B-NS3 protease. Furthermore, the docking finding reveals that our newly identified compounds from the NPASS database have enhanced binding affinities and established significant interactions with allosteric residues of the target protein. MD simulation and post-MD analysis further validated this finding. The free binding energy was computed in terms of MM-GBSA analysis, with the total binding energy for compound 1 (-57.3 ± 2.8 and - 52.9 ± 1.9 replica 1 and 2) indicating a stronger binding affinity for the target protein. Overall, this computational study identified these compounds as potential hit molecules, and these findings can open up a new avenue to explore and develop inhibitors against Dengue virus infection.
Collapse
Affiliation(s)
- Abdul Nasir
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Muhammad Islam
- Department of Biochemistry, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Masaud Shah
- Department of Physiology, Ajou University, South Korea.
| | - Qian Bai
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Homoud ZA, Taha M, Rahim F, Iqbal N, Nawaz M, Farooq RK, Wadood A, Alomari M, Islam I, Algheribe S, Rehman AU, Khan KM, Uddin N. Synthesis of indole derivatives as Alzheimer inhibitors and their molecular docking study. J Biomol Struct Dyn 2023; 41:9865-9878. [PMID: 36404604 DOI: 10.1080/07391102.2022.2148126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Acetylcholinesterase prevails in the healthy brain, with butyrylcholinesterase reflected to play a minor role in regulating brain acetylcholine (ACh) levels. However, BuChE activity gradually increases in patients with (AD), while AChE activity remains unaffected or decays. Both enzymes therefore represent legitimate therapeutic targets for ameliorating the cholinergic deficit considered to be responsible for the declines in cognitive, behavioural, and global functioning characteristic of AD. Current study described the synthesis of indole-based sulfonamide derivatives (1-23) and their biological activity. Synthesis of these scaffolds were achieved by mixing chloro-substituted indole bearing amine group with various substituted benzene sulfonyl chloride in pyridine, under refluxed condition to obtained desired products. All products were then evaluated for AchE and BuchE inhibitory potential compare with positive Donepezil as standard drug for both AchE and BchE having IC50 = 0.016 ± 0.12 and 0.30 ± 0.010 μM respectively. In this regard analog 9 was found potent having IC50 value 0.15 ± 0.050 μM and 0.20 ± 0.10 for both AchE and BuChE respectively. All other derivatives also found with better potential. All compounds were characterized by various techniques such as 1H, 13C-NMR and HREI-MS. In addition, biological activity was maintained to explore the bioactive nature of scaffolds and their protein-ligand interaction (PLI) was checked through molecular docking study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Abdulkarim Homoud
- Mawhiba Research Enrichment Program-2021, King Abdulaziz and His Companions Foundation for Giftedness and Creativity, Riyadh, Saudi Arabia
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, AJK, Pakistan
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Munther Alomari
- Medical Laboratory Science, Faculty of Health Science, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, UAE
| | - Imadul Islam
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Shatha Algheribe
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Hussain R, Rahim F, Ullah H, Khan S, Sarfraz M, Iqbal R, Suleman F, Al-Sadoon MK. Design, Synthesis, In Vitro Biological Evaluation and In Silico Molecular Docking Study of Benzimidazole-Based Oxazole Analogues: A Promising Acetylcholinesterase and Butyrylcholinesterase Inhibitors. Molecules 2023; 28:7015. [PMID: 37894494 PMCID: PMC10609608 DOI: 10.3390/molecules28207015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that severely affects the elderly and is clinically recognised by a decrease in cognition and memory. The treatment of this disease has drawn considerable attention and sparked increased interest among the researchers in this field as a result of a number of factors, including an increase in the population of patients over time, a significant decline in patient quality of life, and the high cost of treatment and care. The current work was carried out for the synthesis of benzimidazole-oxazole hybrid derivatives as efficient Alzheimer's inhibitors and as a springboard for investigating novel anti-chemical Alzheimer's prototypes. The inhibition profiles of each synthesised analogue against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were assessed. All the synthesized benzimidazole-based oxazole analogues displayed a diverse spectrum of inhibitory potentials against targeted AChE and BuChE enzymes when compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 M and 4.50 ± 0.11 µM, respectively). The most active AChE and BuChE analogues were discovered to be analogues 9 and 14, with IC50 values of 0.10 ± 0.050 and 0.20 ± 0.050 µM (against AChE) and 0.20 ± 0.050 and 0.30 ± 0.050 µM (against BuChE), respectively. The nature, number, position, and electron-donating and -withdrawing effects on the phenyl ring were taken into consideration when analysing the structure-activity relationship (SAR). Molecular docking studies were also carried out on the active analogues to find out how amino acids bind to the active sites of the AChE and BuChE enzymes that were being studied.
Collapse
Affiliation(s)
- Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara 56130, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
| | - Maliha Sarfraz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Sub Campus Toba Tek Singh, Faisalabad 36050, Pakistan
| | - Rashid Iqbal
- Department of Agroecology-Climate and Water, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Faiza Suleman
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Disulfiram: Mechanisms, Applications, and Challenges. Antibiotics (Basel) 2023; 12:antibiotics12030524. [PMID: 36978391 PMCID: PMC10044060 DOI: 10.3390/antibiotics12030524] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Since disulfiram’s discovery in the 1940s and its FDA approval for alcohol use disorder, other indications have been investigated. This review describes potential clinical applications, associated risks, and challenges. Methods: For this narrative review, a PubMed search was conducted for articles addressing in vivo studies of disulfiram with an emphasis on drug repurposing for the treatment of human diseases. The key search terms were “disulfiram” and “Antabuse”. Animal studies and in vitro studies highlighting important mechanisms and safety issues were also included. Results: In total, 196 sources addressing our research focus spanning 1948–2022 were selected for inclusion. In addition to alcohol use disorder, emerging data support a potential role for disulfiram in the treatment of other addictions (e.g., cocaine), infections (e.g., bacteria such as Staphylococcus aureus and Borrelia burgdorferi, viruses, parasites), inflammatory conditions, neurological diseases, and cancers. The side effects range from minor to life-threatening, with lower doses conveying less risk. Caution in human use is needed due to the considerable inter-subject variability in disulfiram pharmacokinetics. Conclusions: While disulfiram has promise as a “repurposed” agent in human disease, its risk profile is of concern. Animal studies and well-controlled clinical trials are needed to assess its safety and efficacy for non-alcohol-related indications.
Collapse
|
9
|
Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer's Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020559. [PMID: 36677616 PMCID: PMC9860845 DOI: 10.3390/molecules28020559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.
Collapse
|
10
|
Saleem F, Khan KM, Ullah N, Özil M, Baltaş N, Hameed S, Salar U, Wadood A, Rehman AU, Kumar M, Taha M, Haider SM. Bioevaluation of synthetic pyridones as dual inhibitors of α-amylase and α-glucosidase enzymes and potential antioxidants. Arch Pharm (Weinheim) 2023; 356:e2200400. [PMID: 36284484 DOI: 10.1002/ardp.202200400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Herein, a library of novel pyridone derivatives 1-34 was designed, synthesized, and evaluated for α-amylase and α-glucosidase inhibitory as well as antioxidant activities. Pyridone derivatives 1-34 were synthesized via a one-pot multi-component reaction of variously substituted aromatic aldehydes, acetophenone, ethyl cyanoacetate, and ammonium acetate in absolute ethanol. Synthetic compounds 1-34 were structurally characterized by different spectroscopic techniques. Most of the tested compounds showed more promising inhibition potential than the standard acarbose (IC50 = 14.87 ± 0.16 µM) but compounds 13 and 12 were found to be the most potent compounds with IC50 values of 9.20 ± 0.14 µM and 3.05 ± 0.18 µM against α-amylase and α-glucosidase enzymes, respectively. Compounds 1-34 also displayed moderate antioxidant potential in the range of IC50 = 96.50 ± 0.45 to 189.98 ± 1.00 µM in comparison to the control butylated hydroxytoluene (BHT) (IC50 = 66.50 ± 0.36 µM), in DPPH radical scavenging activities. Additionally, all synthetic derivatives were subjected to a molecular docking study to investigate the interaction details of compounds 1-34 (ligands) with the active site of enzymes (receptors). These results indicate that the newly synthesized pyridone class may serve as promising lead candidates for controlling diabetes mellitus and as antioxidants.
Collapse
Affiliation(s)
- Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Mukesh Kumar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Syed Moazzam Haider
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
11
|
Rahim F, Ullah H, Taha M, Hussain R, Sarfraz M, Iqbal R, Iqbal N, Khan S, Ali Shah SA, Albalawi MA, Abdelaziz MA, Alatawi FS, Alasmari A, Sakran MI, Zidan N, Jafri I, Khan KM. Synthesis of New Triazole-Based Thiosemicarbazone Derivatives as Anti-Alzheimer's Disease Candidates: Evidence-Based In Vitro Study. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010021. [PMID: 36615218 PMCID: PMC9821906 DOI: 10.3390/molecules28010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Triazole-based thiosemicarbazone derivatives (6a-u) were synthesized then characterized by spectroscopic techniques, such as 1HNMR and 13CNMR and HRMS (ESI). Newly synthesized derivatives were screened in vitro for inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. All derivatives (except 6c and 6d, which were found to be completely inactive) demonstrated moderate to good inhibitory effects ranging from 0.10 ± 0.050 to 12.20 ± 0.30 µM (for AChE) and 0.20 ± 0.10 to 14.10 ± 0.40 µM (for BuChE). The analogue 6i (IC50 = 0.10 ± 0.050 for AChE and IC50 = 0.20 ± 0.050 µM for BuChE), which had di-substitutions (2-nitro, 3-hydroxy groups) at ring B and tri-substitutions (2-nitro, 4,5-dichloro groups) at ring C, and analogue 6b (IC50 = 0.20 ± 0.10 µM for AChE and IC50 = 0.30 ± 0.10 µM for BuChE), which had di-Cl at 4,5, -NO2 groups at 2-position of phenyl ring B and hydroxy group at ortho-position of phenyl ring C, emerged as the most potent inhibitors of both targeted enzymes (AChE and BuChE) among the current series. A structure-activity relationship (SAR) was developed based on nature, position, number, electron donating/withdrawing effects of substitution/s on phenyl rings. Molecular docking studies were used to describe binding interactions of the most active inhibitors with active sites of AChE and BuChE.
Collapse
Affiliation(s)
- Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
- Correspondence: (F.R.); (H.U.)
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara 56130, Pakistan
- Correspondence: (F.R.); (H.U.)
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Maliha Sarfraz
- Department of Zoology, Wildlife and Fisheries, Sub-Campus Toba Tek Singh, University of Agriculture Faisalabad, Punjab 36050, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot 12350, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
| | | | - Mahmoud A. Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Fatema Suliman Alatawi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed I. Sakran
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nahla Zidan
- Department of Nutrition and Food Science, Faculty of Home Economics, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Home Economics, Faculty of Specific Education, Kafr ElSheikh University, Kafr ElSheikh 33516, Egypt
| | - Ibrahim Jafri
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
12
|
Sultana R, Abid OUR, Sultana N, Fakhar-e-Alam M, Siddique MH, Atif M, Nawaz M, Wadood A, Rehman AU, Farooq W, Shafeeq S, Afzal M. Potential Enzyme Inhibitor Triazoles from Aliphatic esters: Synthesis, enzyme inhibition and docking studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Shahidul Islam M, Mohammed Al‐Majid A, Nageh Sholkamy E, Yousuf S, Ayaz M, Nawaz A, Wadood A, Rehman AU, Prakash Verma V, Motiur Rahman AFM, Barakat A. Synthesis of Spiro‐oxindole Analogs Engrafted Pyrazole Scaffold as Potential Alzheimer's Disease Therapeutics: Anti‐oxidant, Enzyme Inhibitory and Molecular Docking Approaches. ChemistrySelect 2022. [DOI: 10.1002/slct.202203047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammad Shahidul Islam
- King Saud University Department of Chemistry, College of Science P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Banasthali Vidyapith Department of Chemistry, Banasthali-304022 Rajasthan India
| | - Abdullah Mohammed Al‐Majid
- King Saud University Department of Chemistry, College of Science P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Essam Nageh Sholkamy
- King Saud University Department of Botany and Microbiology, College of Science P.O. Box 2455 Riyadh, 11451 Saudi Arabia
| | - Sammer Yousuf
- University of Karachi H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences Karachi 75270 Pakistan
| | - Muhammad Ayaz
- University of Malakand Department of Pharmacy, Faculty of Biological sciences, University of Malakand Chakdara 18000, KP Pakistan
| | - Asif Nawaz
- University of Malakand Department of Pharmacy, Faculty of Biological sciences, University of Malakand Chakdara 18000, KP Pakistan
| | - Abdul Wadood
- Abdul Wali Khan University Mardan Mardan Department of Biochemistry 23200 Pakistan
| | - Ashfaq Ur Rehman
- University of California Department of Molecular Biology and Biochemistry Irvine 92697–3900 CA
| | - Ved Prakash Verma
- Banasthali Vidyapith Department of Chemistry, Banasthali-304022 Rajasthan India
| | - A. F. M. Motiur Rahman
- King Saud University Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box: 2457 Riyadh 11451 Saudi Arabia
| | - Assem Barakat
- King Saud University Department of Chemistry, College of Science P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Alexandria University Department of Chemistry, Faculty of Science, P.O. Box 426, Ibrahimia Alexandria 21321 Egypt
| |
Collapse
|
14
|
The Mechanisms of Zinc Action as a Potent Anti-Viral Agent: The Clinical Therapeutic Implication in COVID-19. Antioxidants (Basel) 2022; 11:antiox11101862. [PMID: 36290585 PMCID: PMC9598180 DOI: 10.3390/antiox11101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The pandemic of COVID-19 was caused by a novel coronavirus termed as SARS-CoV2 and is still ongoing with high morbidity and mortality rates in the whole world. The pathogenesis of COVID-19 is highly linked with over-active immune and inflammatory responses, leading to activated cytokine storm, which contribute to ARDS with worsen outcome. Currently, there is no effective therapeutic drug for the treatment of COVID-19. Zinc is known to act as an immune modulator, which plays an important role in immune defense system. Recently, zinc has been widely considered as an anti-inflammatory and anti-oxidant agent. Accumulating numbers of studies have revealed that zinc plays an important role in antiviral immunity in several viral infections. Several early clinical trials clearly indicate that zinc treatment remarkably decreased the severity of the upper respiratory infection of rhinovirus in humans. Currently, zinc has been used for the therapeutic intervention of COVID-19 in many different clinical trials. Several clinical studies reveal that zinc treatment using a combination of HCQ and zinc pronouncedly reduced symptom score and the rates of hospital admission and mortality in COVID-19 patients. These data support that zinc might act as an anti-viral agent in the addition to its anti-inflammatory and anti-oxidant properties for the adjuvant therapeutic intervention of COVID-19.
Collapse
|
15
|
Hussain R, Ullah H, Rahim F, Sarfraz M, Taha M, Iqbal R, Rehman W, Khan S, Shah SAA, Hyder S, Alhomrani M, Alamri AS, Abdulaziz O, Abdelaziz MA. Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives. Molecules 2022; 27:6087. [PMID: 36144820 PMCID: PMC9504419 DOI: 10.3390/molecules27186087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Twenty-four analogues of benzimidazole-based thiazoles (1-24) were synthesized and assessed for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory potential. All analogues were found to exhibit good inhibitory potential against cholinesterase enzymes, having IC50 values in the ranges of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM to 14.20 ± 0.10 µM (for BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively). Among the series, analogues 16 and 21 were found to be the most potent inhibitors of AChE and BuChE enzymes. The number (s), types, electron-donating or -withdrawing effects and position of the substituent(s) on the both phenyl rings B & C were the primary determinants of the structure-activity relationship (SAR). In order to understand how the most active derivatives interact with the amino acids in the active site of the enzyme, molecular docking studies were conducted. The results obtained supported the experimental data. Additionally, the structures of all newly synthesized compounds were elucidated by using several spectroscopic methods like 13C-NMR, 1H-NMR and HR EIMS.
Collapse
Affiliation(s)
- Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Maliha Sarfraz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Punjab 36050, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur 63100, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Sajjad Hyder
- Department of Botany, Government College Women University, Sialkot 51310, Pakistan
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mahmoud A. Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| |
Collapse
|
16
|
Synthesis, molecular docking and enzyme inhibitory approaches of some new chalcones engrafted pyrazole as potential antialzheimer, antidiabetic and antioxidant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Wahid S, Jahangir S, Ali Versiani M, Mohammed Khan K, Yik Sung Y, Iqbal J, Wadood A, Kanwal, Ur Rehman A, Arshia, Uzair M, Ali Khan I, Taha M, Perveen S. Biology-oriented drug synthesis of nitrofurazone derivatives: Their α-glucosidase inhibitory activity and molecular docking studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
18
|
Liu L, Geng X, Zhang J, Li S, Gao J. Structure-based discovery of Licoflavone B and Ginkgetin targeting c-Myc G-quadruplex to suppress c-Myc transcription and myeloma growth. Chem Biol Drug Des 2022; 100:525-533. [PMID: 35557489 DOI: 10.1111/cbdd.14064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/27/2022]
Abstract
G-quadruplex (G4), present in the c-Myc promoter, has emerged as an attractive cancer-specific molecular target for drug development. So, the discovery of small molecules to stabilize c-Myc-G4 to inhibit transcription of c-Myc protein is of great significance. Herein, a combined molecular docking-based virtual screening strategy, molecular dynamics (MD) simulation, and molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculation was conducted on the existing L6000 Natural Compound Library. Four natural compounds, including Licoflavone B, Demethyleneberberine, Ginkgetin, and Mulberroside C, were predicted to have preferable binding affinities to c-Myc G4 and then selected for commercial purchase and experimental evaluation. Compounds Licoflavone B and Ginkgetin can significantly inhibit myeloma cell proliferation, with IC50 values <8 μM against the RPMI-8226 cell line. Moreover, our data demonstrated that the two compounds could simultaneously downregulate c-Myc transcription and expression. Collectively, compounds Licoflavone B and Ginkgetin might be regarded as new candidates for the development of the more potent c-Myc-G4 stabilizers in the future.
Collapse
Affiliation(s)
- Linlin Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,College of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xiaoju Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jinyuan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shihao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Liu C, Li Z, Liu Z, Yang S, Wang Q, Chai Z. Understanding the P-Loop Conformation in the Determination of Inhibitor Selectivity Toward the Hepatocellular Carcinoma-Associated Dark Kinase STK17B. Front Mol Biosci 2022; 9:901603. [PMID: 35620482 PMCID: PMC9127184 DOI: 10.3389/fmolb.2022.901603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
As a member of the death-associated protein kinase family of serine/threonine kinases, the STK17B has been associated with diverse diseases such as hepatocellular carcinoma. However, the conformational dynamics of the phosphate-binding loop (P-loop) in the determination of inhibitor selectivity profile to the STK17B are less understood. Here, a multi-microsecond length molecular dynamics (MD) simulation of STK17B in the three different states (ligand-free, ADP-bound, and ligand-bound states) was carried out to uncover the conformational plasticity of the P-loop. Together with the analyses of principal component analysis, cross-correlation and generalized correlation motions, secondary structural analysis, and community network analysis, the conformational dynamics of the P-loop in the different states were revealed, in which the P-loop flipped into the ADP-binding site upon the inhibitor binding and interacted with the inhibitor and the C-lobe, strengthened the communication between the N- and C-lobes. These resulting interactions contributed to inhibitor selectivity profile to the STK17B. Our results may advance our understanding of kinase inhibitor selectivity and offer possible implications for the design of highly selective inhibitors for other protein kinases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
| | - Zhizhen Li
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
| | - Zonghan Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
| | - Shiye Yang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
| | - Qing Wang
- Oncology Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
- Department of Hepatic Surgery, Shanghai Geriatric Center, Shanghai, China
| |
Collapse
|
20
|
Recent advancement in small molecules as HCV inhibitors. Bioorg Med Chem 2022; 60:116699. [PMID: 35278819 DOI: 10.1016/j.bmc.2022.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
Hepatitis C virus (HCV) has caused a considerable threat to human health. To date, no treatments are without side effects. The proteins and RNA associated with HCV have specific functions during the viral life cycle. The vulnerabilities to virus are associated with those proteins or RNA. Thus, targeting these proteins and RNA is an efficient strategy to develop anti-HCV therapeutics. The treatment for HCV-infected patients has been greatly improved after the approval of direct-acting antivirals (DAAs). However, the cost of DAAs is unusually high, which adds to the economic burden on patients with chronic liver diseases. So far, many efforts have been devoted to the development of small molecules as novel HCV inhibitors. Investigations on the inhibitory activities of these small molecules have involved the target identification and the mechanism of action. In this mini-review, these small molecules divided into four kinds were elaborated, which focused on their targets and structural features. Furthermore, we raised the current challenges and promising prospects. This mini-review may facilitate the development of small molecules with improved activities targeting HCV based on the chemical scaffolds of HCV inhibitors.
Collapse
|
21
|
Liang S, Wang Q, Qi X, Liu Y, Li G, Lu S, Mou L, Chen X. Deciphering the Mechanism of Gilteritinib Overcoming Lorlatinib Resistance to the Double Mutant I1171N/F1174I in Anaplastic Lymphoma Kinase. Front Cell Dev Biol 2021; 9:808864. [PMID: 35004700 PMCID: PMC8733690 DOI: 10.3389/fcell.2021.808864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) is validated as a therapeutic molecular target in multiple malignancies, such as non-small cell lung cancer (NSCLC). However, the feasibility of targeted therapies exerted by ALK inhibitors is inevitably hindered owing to drug resistance. The emergence of clinically acquired drug mutations has become a major challenge to targeted therapies and personalized medicines. Thus, elucidating the mechanism of resistance to ALK inhibitors is helpful for providing new therapeutic strategies for the design of next-generation drug. Here, we used molecular docking and multiple molecular dynamics simulations combined with correlated and energetical analyses to explore the mechanism of how gilteritinib overcomes lorlatinib resistance to the double mutant ALK I1171N/F1174I. We found that the conformational dynamics of the ALK kinase domain was reduced by the double mutations I1171N/F1174I. Moreover, energetical and structural analyses implied that the double mutations largely disturbed the conserved hydrogen bonding interactions from the hinge residues Glu1197 and Met1199 in the lorlatinib-bound state, whereas they had no discernible adverse impact on the binding affinity and stability of gilteritinib-bound state. These discrepancies created the capacity of the double mutant ALK I1171N/F1174I to confer drug resistance to lorlatinib. Our result anticipates to provide a mechanistic insight into the mechanism of drug resistance induced by ALK I1171N/F1174I that are resistant to lorlatinib treatment in NSCLC.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Qing Wang
- Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xuesen Qi
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Yudi Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Guozhen Li
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Linkai Mou
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xiangyu Chen
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
Planeta Kepp K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chembiochem 2021; 23:e202100554. [PMID: 34889510 DOI: 10.1002/cbic.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Indexed: 01/18/2023]
Abstract
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
Collapse
Affiliation(s)
- Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark
| |
Collapse
|