1
|
Shao Y, Song J, Hao C, Lv F, Hou H, Fan X, Song F. A simple co-assembly strategy to control the dimensions of nanoparticles for enhanced synergistic therapy. J Colloid Interface Sci 2025; 685:1008-1017. [PMID: 39879780 DOI: 10.1016/j.jcis.2025.01.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Despite phthalocyanine has excellent photodynamic and photothermal effects as a photosensitizer and photothermal agent, hydrophobicity and aggregation limits its biological application. In this paper, phthalocyanine-cyanine co-assembled nanoparticles were designed to modulate the dimensions and morphology by introducing water-soluble cyanine. The cyanine had the ability to transform the nanomaterials from microrods to nanospheres, thus successfully constructing photoactivated nanomedicines. Their appropriate size effect and improved water solubility conferred the nanoparticles with extended blood circulation time and tumor accumulation capacity. Meanwhile, the fluorescence effect of cyanine enabled the nanoparticles to have the ability of fluorescence imaging. The nanoparticles achieved enhanced PDT/PTT synergistic effect under single laser induction, especially the generation of type I photodynamics.
Collapse
Affiliation(s)
- Yutong Shao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China
| | - Jitao Song
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China.
| | - Caiqin Hao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China
| | - Fangyuan Lv
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China
| | - Haoran Hou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 PR China
| | - Xinping Fan
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), PR China.
| | - Fengling Song
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China.
| |
Collapse
|
2
|
Li M, Cheng Y, Fei R, Xia D, Zhang Z, Qi S, Du J. A sulfonated supramolecular host based on pillar[5]arene for succinylcholine-induced neuromuscular blockade reversal. Chem Commun (Camb) 2025; 61:5982-5985. [PMID: 40135424 DOI: 10.1039/d5cc00728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
A per-sulfonated pillar[5]arene (SP[5]A) is designed as a reversal agent to reverse neuromuscular blockade induced by succinylcholine (Sch) via host-guest recognition. SP[5]A can rapidly and specifically recognize and encapsulate Sch in vivo for elimination with a binding affinity as high as 105 M-1. SP[5]A mitigates Sch-induced adverse reactions including hyperkalemia, arrhythmias, and rhabdomyolysis.
Collapse
Affiliation(s)
- Mengyao Li
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery of Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P. R. China.
- International Joint Research Center for Lymphatic Vascular Disease of Jilin Province, Changchun, Jilin 130031, P. R. China
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
| | - Rui Fei
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery of Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P. R. China.
- International Joint Research Center for Lymphatic Vascular Disease of Jilin Province, Changchun, Jilin 130031, P. R. China
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shaolong Qi
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery of Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P. R. China.
- International Joint Research Center for Lymphatic Vascular Disease of Jilin Province, Changchun, Jilin 130031, P. R. China
| | - Jianshi Du
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery of Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P. R. China.
- International Joint Research Center for Lymphatic Vascular Disease of Jilin Province, Changchun, Jilin 130031, P. R. China
| |
Collapse
|
3
|
Zheng X, Cui Y, Rong J, Chen S, Qu X, Hu X. GSH/pH-sensitive Förster resonance energy transfer nanoparticles for synergistic chemotherapy and chemodynamic therapy. J Mater Chem B 2025; 13:4705-4712. [PMID: 40145409 DOI: 10.1039/d5tb00243e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Stimulus-responsive polymers have attracted significant attention as intelligent and advanced drug delivery systems. In this work, a glutathione-responsive polymer was synthesized by reversible addition-fragmentation chain transfer polymerization of natural biological molecules lipoic acid and tetraphenylene (TPE)-containing vinyl monomers. The poly(disulfide) block ensures rapid degradation of carriers and drug release under specific conditions. In addition, the introduction of pendant carboxyl groups enables Fe3+ incorporating capacity and the hydrophobic TPE block significantly boosts drug loading and aggregation induced emission (AIE) for visualization of assembly. Fe3+ and doxorubicin (DOX) loaded nanoparticles (DOX@Fe NPs) were obtained via coordination and hydrophobic interactions for synergistic chemodynamic therapy and chemotherapy. Especially, the Förster resonance energy transfer (FRET) between TPE and DOX further enables visualization of DOX release via a fluorescence signal. The in vitro release experiment results demonstrated that under the conditions of pH 5.5 and 5 mM GSH, the release efficiency of DOX reached 79.2% in 12 hours. In the cellular experiment, the viability of 4T1 cells co-incubated with DOX@Fe NPs for 48 hours was only 2.5%, verifying that DOX@Fe NPs possess potent tumor-killing capability.
Collapse
Affiliation(s)
- Xiaodong Zheng
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Yingjian Cui
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Jianxin Rong
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Shengli Chen
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiongwei Qu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
4
|
Zhu WB, Zhang XW, Li ZJ, Liu LY, Zhang YQ, Zhang L, Wen H. A supramolecular polypseudorotaxane material based on novel pillar[5]arene for ultrasensitive Fe 3+ reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2586-2590. [PMID: 40065688 DOI: 10.1039/d4ay00832d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In this study, a novel linear supramolecular polypseudorotaxane was synthesized using a pillar[5]arene derivative (CP5) as the host and bis-bromohexyl pillar[5]arene (DP5) as the guest, facilitated by host-guest interactions. Subsequently, these components self-assembled to create an AIE-active material (CPDP-G) through C-H⋯π interactions involving the pillar[5]arene groups. Notably, the CPDP-G fluorescence material exhibits an exceptionally sensitive response to Fe3+, with a detection limit of 0.543 nM. The fabricated CPDP-G film serves as a rudimentary kit for Fe3+ detection. Moreover, CPDP-G demonstrates robust stability under diverse conditions, including variations in temperature, exposure to KClO4, AcOH, and tetrabutylammonium hydroxide, and ultrasonic treatment. Consequently, the innovative supramolecular polypseudorotaxane material CPDP-G holds promising potential for the ultrasensitive detection of Fe3+ ions.
Collapse
Affiliation(s)
- Wen-Bo Zhu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China.
| | - Xiao-Wei Zhang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China.
| | - Zhi-Jun Li
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China.
| | - Li-Yuan Liu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China.
| | - Yu-Quan Zhang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China.
| | - Liang Zhang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China.
| | - Hui Wen
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China.
| |
Collapse
|
5
|
Li Y, Zhao J, Tang K, Yin J, Song Y, Pan W, Li N, Tang B. Doxorubicin prodrug for γ-glutamyl transpeptidase imaging and on-demand cancer therapy. Biosens Bioelectron 2025; 272:117127. [PMID: 39778243 DOI: 10.1016/j.bios.2025.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
The γ-glutamyl transpeptidase (γ-GGT) is an important tumor marker, which has been reported to be firmly associated with the developmental stage of liver cancer. Therefore, it makes sense to image and monitor γ-GGT level and design γ-GGT-responsive prodrug for integrated diagnosis and treatment of liver cancer. Herein, we prepare a doxorubicin (Dox) prodrug for imaging γ-GGT and on-demand treating liver cancer. When γ-GGT exists, the γ-glutamyl group will be cut off to liberate free Dox for monitoring cancer progression and killing tumor cells. Fortunately, little Dox is released due to the low level of γ-GGT in normal cells, which improves the safety and efficiency of chemotherapy. To further improve the tumor targeted ability, Dox prodrug is loaded in hyaluronic acid modified liposome nanoparticles to form the nano-prodrug. Then nano-prodrug is enriched in the tumor by binding to the high expressed CD44 on cancer cells. With the assistance of anti-PD-L1, nano-prodrug effectively inhibits the growth of proximal and distal tumors.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jiexiang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jiaqi Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yingying Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
6
|
Jin L, Liao X, Yuan F, Wang Y, Liao YX, Liu B, Kou J, Li J, Huang X, Zhong X, Lim JY, Zhang J, Ren WX. COX-2-targeted fluorescent probe for ClO - monitoring in precise cancer detection. Bioorg Chem 2025; 156:108164. [PMID: 39855114 DOI: 10.1016/j.bioorg.2025.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/22/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Hypochlorite anion (ClO-) is closely associated with cancer development and progression, necessitating precise monitoring of ClO- in tumor sites, and Cyclooxygenase-2 (COX-2 is highly expressed in tumor cells. So we rationally designed two ClO--specific responsive fluorescent probes COX2-ClO1 and COX2-ClO2, using indomethacin (IMC) as the COX-2 targeting moiety and methylene blue as fluorophore unit. Both probes exhibited high selectivity and sensitivity towards ClO- in the in vitro solution assays and possess excellent biocompatibility in cellular experiments. Compared to COX2-ClO1, COX2-ClO2 exhibited superior targeting specificity for COX-2, enabling precise differentiation between tumor cells and normal cells and allowing imaging of both exogenous and endogenous ClO- in the in vivo experiments. Moreover, COX2-ClO2 could accurately target the tumor site in xenograft mice and is likely metabolized by the kidneys.
Collapse
Affiliation(s)
- Lingyu Jin
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China
| | - Xufang Liao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China
| | - Fengying Yuan
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China
| | - Yumin Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China
| | - Ye-Xin Liao
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008 China
| | - Bo Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China.
| | - Junfeng Kou
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China.
| | - Jiali Li
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China
| | - Xuefei Huang
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China
| | - Xiaolin Zhong
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China
| | - Ja-Yun Lim
- Department of Medical Engineering, Wonju-Campus Korea Polytechnic College, Wonju 26406 Republic of Korea
| | - Junfeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China.
| | - Wen Xiu Ren
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China.
| |
Collapse
|
7
|
Wu D, Zhou J, Zhang Z, Cao Y, Ping K, Qi S, Du J, Yu G. Supramolecular Modulation of Tumor Microenvironment Through Host-Guest Recognition and Metal Coordination to Potentiate Cancer Chemoimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408518. [PMID: 39887941 PMCID: PMC11923969 DOI: 10.1002/advs.202408518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/30/2024] [Indexed: 02/01/2025]
Abstract
The massive amount of indoleamine 2,3-dioxygenase 1 (IDO-1) in tumor cells and tumor-associated immune cells forms a feedback loop that maintains immunosuppressive tumor microenvironment (ITM) and causes immune escape, resulting in the poor prognosis of platinum chemotherapeutics. However, the effective systemic administration of platinum drugs and IDO-1 inhibitors is strictly limited by their distinct chemical construction, different pharmacokinetic profiles, and heterogeneous distributions. Herein, a novel supramolecular method with the capability to modulate tumor microenvironment is proposed aiming at potentiating the antitumor efficacy of chemoimmunotherapy. Profiting from the dynamic and reversible merits of noncovalent interactions, IDO-1 inhibitor (IDOi) and 1,2-diaminocyclohexane-platinum(II) (DACHPt) are tailor-encapsulated into supramolecular nanoparticles (SNPs) with the aid of host-guest recognition and metal coordination, respectively, effectively increasing the drug loading and improving their pharmacokinetics. In addition to the authorized chemotherapeutical effect, DACHPt performs a systemic antitumor immune response, which is further magnified by the IDOi-reversed ITM to encourage T lymphocyte infiltration, guaranteeing long-term antitumor immune responses to improve cancer prognosis.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jie Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shaolong Qi
- Vascular Surgery Center, The Third Hospital of Jilin University, Changchun, 130031, P. R. China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianshi Du
- Vascular Surgery Center, The Third Hospital of Jilin University, Changchun, 130031, P. R. China
| | - Guocan Yu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Guo F, Xiang J, Zhuo Y, Pei K. Molecular Dynamics Study of Protein-Mediated Electroporation of Kv Channels Induced by nsPEFs: Advantages of Bipolar Pulses. Biomacromolecules 2025; 26:1002-1011. [PMID: 39808923 DOI: 10.1021/acs.biomac.4c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nanosecond pulsed electric fields (nsPEFs) can induce protein-mediated electroporation (PMEP) in voltage-gated ion channels. However, their effects on the tetrameric structure of voltage-gated potassium (Kv) channels remain unexplored. Our study pioneered the molecular dynamics (MD) investigation of the open-state (O) Kv channel to understand the effects of PMEP under unipolar and bipolar pulses (UP and BP). Our findings revealed that BP induces pore formation more effectively than UP. Additionally, the frequency of pore formation shows a more consistent decline with increased pulse interval under BP. We further examined three other distinct functional states─intermediate (C*), inactivated (I), and resting closed (C)─of Kv channels under BP. SF pores formed exclusively in the O state, while complex pores formed only in the O and C states. In conclusion, our study highlights BP's role in enhancing pore formation and specificity, offering insights into Kv channel PMEP and its therapeutic potential.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jun Xiang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yue Zhuo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Kai Pei
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
9
|
Fan M, Guo W, Li X, Fan H, Luo Z, Xu J, Huang H, Wang S. A DNA conformational nanoswitch for amplification of both low-abundance protein imaging in living cells and photodynamic therapy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:708-713. [PMID: 39688467 DOI: 10.1039/d4ay02053g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A method was developed for inducing a DNA conformational nanoswitch triggered by proteins, intended for fluorescence signal amplification imaging and photodynamic therapy targeting tumor cells.
Collapse
Affiliation(s)
- Mingzhu Fan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Wei Guo
- Guangxi Medical University, Nanning, China.
| | - Xinran Li
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Huile Fan
- Guangxi Nanning Intellectual Property Protection Center, Nanning, China
| | - Zhihui Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Jiayao Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | | | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| |
Collapse
|
10
|
Song ZH, Ma YF, Han H, Li DY, Fu R, Zhao QY, Wang R, Guo DS, Cai K. Enantiopure Macrocycles Based on Tröger's Base and Diphenyl Maleimide Exhibiting Strong Chiral Emission and Host-Guest Properties. Chemistry 2025; 31:e202403271. [PMID: 39624941 DOI: 10.1002/chem.202403271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Indexed: 12/13/2024]
Abstract
While a plenty of macrocyclic hosts have been developed in supramolecular chemistry, those that combine chiral luminescent properties and host-guest recognition abilities are still uncommon. Herein, two pairs of enantiomeric macrocycles were synthesized via Suzuki-Miyaura [2+2] cyclization reactions using Tröger's base and diphenyl maleimide as the building blocks. The diphenyl maleimide units impart these macrocycles with highly strong fluorescence, achieving quantum yields up to 100 % in apolar solvents. Furthermore, the chiral, V-shaped Tröger's base units provide the macrocycles with circularly polarized luminescence (|glum|=1.68×10-3) and well-define cavity for hosting electron-deficient or positively charged guests with Ka up to 1.7×106 M-1.
Collapse
Affiliation(s)
- Zi-Hang Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yi-Fan Ma
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dai-Yuan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Qing-Yu Zhao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ruiguo Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Kang Cai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Kedar P, Saraf A, Maheshwari R, Sharma M. Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics. Mol Pharm 2025; 22:28-57. [PMID: 39707984 DOI: 10.1021/acs.molpharmaceut.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity. Through surface modifications and the incorporation of various components, dendrimers demonstrate remarkable adaptability as nanocarriers for biomedical imaging and theranostic applications. Surface functionalization strategies, including PEGylation and ligand attachment (e.g., folic acid, RGD peptide, lactobionic acid), further enhance biocompatibility and facilitate targeted tumor cell imaging. Leveraging their improved biocompatibility and target specificity, dendritic nanosystems offer heightened sensitivity and precision in cancer diagnostics. Notably, the encapsulation of metal nanoparticles within dendrimers, such as gold nanoparticles, has shown promise in enhancing tumor imaging capabilities. Ongoing advancements in nanotechnology are poised to increase the sophistication and complexity of dendrimer-based systems, highlighting their potential as nanocarriers in drug delivery platforms, with a growing number of clinical trials on the horizon. This review provides a comprehensive overview of the potential and future prospects of dendrimers and dendrimer-based nanocarriers in targeted cancer therapy and diagnosis, exploring their ability to enhance biocompatibility, reduce toxicity, and improve therapeutic outcomes across various malignancies.
Collapse
Affiliation(s)
- Pawan Kedar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Apeksha Saraf
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
12
|
Zhao M, Zhou Q, Ge Z. Supramolecular Assemblies via Host-Guest Interactions for Tumor Immunotherapy. Chemistry 2025; 31:e202403508. [PMID: 39448542 DOI: 10.1002/chem.202403508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cancer immunotherapy has emerged as one of the most promising modalities for cancer treatment providing hopes of cancer patients with the significant advantages over traditional antitumor therapy methods. Supramolecular assemblies based on host-guest interactions have been widely explored in the field of cancer immunotherapy as the delivery systems. A variety of supramolecular materials show unique features for efficient drug encapsulation, targeting delivery and release, which are favorable to activate antitumor immune responses especially through combination of different treatment strategies. In this review article, we summarize the research progresses of supramolecular assemblies via host-guest interactions for tumor immunotherapy. The construction of various drug delivery systems including hydrogels, liposomes, and polymeric nanoparticles, the drug encapsulation and delivery, as well as advantages and disadvantages are discussed. The perspectives related to future developments in this field are also described.
Collapse
Affiliation(s)
- Meng Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
13
|
Gong X, Han Y, Wang T, Song G, Chen H, Tang H, Huang X, Deng K, Wang S, Wang Y. Cell-Penetrating Peptide Induced Superstructures Triggering Highly Efficient Antibacterial Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414357. [PMID: 39600036 DOI: 10.1002/adma.202414357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
To endow non-antibacterial molecules with highly efficient bactericide activity is an important but challenging issue. Herein, a kind of cell-penetrating peptide octa-arginine (R8) is found to be effective in activating antibacterial ability when assembling with anionic surfactant sodium dodecyl sulfate (SDS), while individual R8 or SDS shows poor or no antibacterial ability. By combined electrostatic, hydrogen bond, and hydrophobic interactions, R8 and SDS associate into wormlike micelle and lamellar structure by forming supramolecular self-assembling units, depending on their charge ratio (CR). The lamellar aggregates show particularly high antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Interestingly, E. coli and S. aureus are killed by membrane-disrupting and membrane-penetrating mechanisms, respectively. Furthermore, in vivo experiments evidence that the R8/SDS lamellar aggregates accelerate the recovery of bacteria-infected wounds, wherein the reduced inflammation and promoted angiogenesis are clearly presented. This study proves that highly efficient bactericidal activity is triggered by the synergistic action of penetrating peptide and anionic amphiphiles, thus providing a new strategy to realize highly efficient and targetable antibacterial application.
Collapse
Affiliation(s)
- Xuefeng Gong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuchun Han
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tengda Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Suzhou Institute for Advanced Research, School of Nanoscience and Nanotechnology, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongling Chen
- Procter & Gamble Technology (Beijing) Co., Ltd., No. 35 Yu'an Road, Beijing, 101312, P. R. China
| | - Haiqiu Tang
- Procter & Gamble Technology (Beijing) Co., Ltd., No. 35 Yu'an Road, Beijing, 101312, P. R. China
| | - Xu Huang
- Procter & Gamble Technology (Beijing) Co., Ltd., No. 35 Yu'an Road, Beijing, 101312, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yilin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Suzhou Institute for Advanced Research, School of Nanoscience and Nanotechnology, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
14
|
Jacinto C, Silva WF, Garcia J, Zaragosa GP, Ilem CND, Sales TO, Santos HDA, Conde BIC, Barbosa HP, Malik S, Sharma SK. Nanoparticles based image-guided thermal therapy and temperature feedback. J Mater Chem B 2024; 13:54-102. [PMID: 39535040 DOI: 10.1039/d4tb01416b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanoparticles have emerged as versatile tools in the realm of thermal therapy, offering precise control and feedback mechanisms for targeted treatments. This review explores the intersection of nanotechnology and thermal therapy, focusing on the utilization of nanoparticles for image-guided interventions and temperature monitoring. Starting with an exploration of local temperature dynamics compared to whole-body responses, we delve into the landscape of nanomaterials and their pivotal role in nanomedicine. Various physical stimuli employed in therapy and imaging are scrutinized, laying the foundation for nanothermal therapies and the accompanying challenges. A comprehensive analysis of nanomaterial architecture ensues, delineating the functionalities of magnetic, plasmonic, and luminescent nanomaterials within the context of thermal therapies. Nano-design intricacies, including core-shell structures and monodisperse properties, are dissected for their impact on therapeutic efficacy. Furthermore, considerations in designing in vivo nanomaterials, such as hydrodynamic radii and core sizes at sub-tissue levels, are elucidated. The review then delves into specific modalities of thermally induced therapy, including magnetically induced hyperthermia and luminescent-based thermal treatments. Magnetic hyperthermia treatment is explored alongside its imaging and relaxometric properties, emphasizing the implications of imaging formulations on biotransformation and biodistribution. This review also provides an overview of the magnetic hyperthermia treatment using magnetic nanoparticles to induce localized heat in tissues. Similarly, optical and thermal imaging techniques utilizing luminescent nanomaterials are discussed, highlighting their potential for light-induced thermal therapy and cellular-level temperature monitoring. Finally, the application landscape of diagnosis and photothermal therapy (PTT) is surveyed, encompassing diverse areas such as cancer treatment, drug delivery, antibacterial therapy, and immunotherapy. The utility of nanothermometers in elucidating thermal relaxation dynamics as a diagnostic tool is underscored, alongside discussions on PTT hyperthermia protocols. Moreover, the advancements in nanoparticle magnetic imaging and implications of imaging formulations especially in creating positive MRI contrast agents are also presented. This comprehensive review offers insights into the evolving landscape of nanoparticle-based image-guided thermal therapies, promising advancements in precision medicine and targeted interventions, underscoring the importance of continued research in optimization for the full potential of magnetic hyperthermia to improve its efficacy and clinical translation.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Wagner F Silva
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Joel Garcia
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | - Gelo P Zaragosa
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | | | - Tasso O Sales
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Harrisson D A Santos
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | | | | | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans, 45067, France.
- Department of Biotechnology, Baba Farid College, Bathinda, 151001, India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
- Department of Physics, Federal University of Maranhão, São Luís, 65080-805, Brazil
| |
Collapse
|
15
|
Bayle EA, Ilhami FB, Chen JK, Cheng CC. Potential of a CO 2-Responsive supramolecular drug-carrier system as a safer and more effective treatment for cancer. Mater Today Bio 2024; 29:101319. [PMID: 39554842 PMCID: PMC11567101 DOI: 10.1016/j.mtbio.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
We combined carbon dioxide (CO2)-responsive cytosine-containing rhodamine 6G (Cy-R6G) as a hydrophobic anticancer agent with hydrogen-bonded cytosine-functionalized polyethylene glycol (Cy-PEG) as a hydrophilic supramolecular carrier to construct a CO2-responsive drug delivery system, with the aim of enhancing the responsiveness of the system to the tumor microenvironment and thus the overall effectiveness of anticancer therapy. Due to self-complementary hydrogen bonding interactions between cytosine units, Cy-R6G and Cy-PEG co-assemble in water to form spherical-like nanogels, with Cy-R6G effectively encapsulated within the nanogels. The nanogels exhibit several distinctive physical features, such as widely tunable nanogel size and drug loading capacity for Cy-R6G, intriguing fluorescence properties, high co-assembled structural stability in normal aqueous environments, enhanced anti-hemolytic characteristics, sensitive dual CO2/pH-responsive behavior, and precise and easily controllable CO2-induced release of Cy-R6G. Cytotoxicity assays clearly indicated that, due to the presence of cytosine receptors on the surface of cancer cells, Cy-R6G-loaded nanogels exert selective cytotoxicity against cancer cells in pristine culture medium, but do not affect the viability of normal cells. Surprisingly, in CO2-rich culture medium, Cy-R6G-loaded nanogels exhibit a further significant enhancement in cytotoxicity against cancer cells, and remain non-cytotoxic to normal cells. More importantly, a series of in vitro experiments demonstrated that compared to pristine culture medium, CO2-rich culture medium promotes more rapid selective internalization of Cy-R6G-loaded nanogels into cancer cells through cytosine-mediated macropinocytosis and thus accelerates the induction of apoptosis. Therefore, this newly developed system provides novel avenues for the development of highly effective CO2-responsive drug delivery systems with potent anticancer capabilities.
Collapse
Affiliation(s)
- Enyew Alemayehu Bayle
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya, 60231, Indonesia
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
16
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
17
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024; 13:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
18
|
Xue W, Benchimol E, Walther A, Ouyang N, Holstein JJ, Ronson TK, Openy J, Zhou Y, Wu K, Chowdhury R, Clever GH, Nitschke JR. Interplay of Stereochemistry and Charge Governs Guest Binding in Flexible Zn II4L 4 Cages. J Am Chem Soc 2024; 146:32730-32737. [PMID: 39541177 PMCID: PMC11613429 DOI: 10.1021/jacs.4c12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Here, we report the synthesis of a family of chiral ZnII4L4 tetrahedral cages by subcomponent self-assembly. These cages contain a flexible trialdehyde subcomponent that allows them to adopt stereochemically distinct configurations. The incorporation of enantiopure 1-phenylethylamine produced Δ4 and Λ4 enantiopure cages, in contrast to the racemates that resulted from the incorporation of achiral 4-methoxyaniline. The stereochemistry of these ZnII4L4 tetrahedra was characterized by X-ray crystallography and chiroptical spectroscopy. Upon binding the enantiopure natural product podocarpic acid, the ZnII stereocenters of the enantiopure Δ4-ZnII4L4 cage retained their Δ handedness. In contrast, the metal stereocenters of the enantiomeric Λ4-ZnII4L4 cage underwent inversion to a Δ configuration upon encapsulation of the same guest. Insights gained about the stereochemical communication between host and guest enabled the design of a process for acid/base-responsive guest uptake and release, which could be followed by chiroptical spectroscopy.
Collapse
Affiliation(s)
- Weichao Xue
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Elie Benchimol
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandre Walther
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Nianfeng Ouyang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Julian J. Holstein
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Joseph Openy
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Yujuan Zhou
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | | | - Guido H. Clever
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
19
|
Yao L, Xie S, Liu Y, Mengqi L, Xia J, Lu B. Singlet oxygen storage and controlled release for improving photodynamic therapy against hypoxic tumor. Chem Commun (Camb) 2024; 60:14012-14021. [PMID: 39535143 DOI: 10.1039/d4cc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy (PDT) is considered to be a promising tumor treatment method due to its non-invasiveness and low risk. However, there are two factors that affect the efficacy of this therapy. One is the light source and the other is the tumor hypoxia. An emerging PDT strategy has been developed to break these limits. This strategy is to adopt compounds, such as 2-pyridone, anthracene, and naphthalene derivatives, that have the ability to store and controlledly release the singlet oxygen (1O2) to achieve PDT in the dark. In this review, we focus on the construction strategies for integrated antitumor drugs containing these 1O2 storage/release units and photosensitizers and summarize their PDT performance in hypoxic tumors or in the dark. The methods to integrate these compounds with photosensitizers or nanocarriers are also discussed in detail to provide insightful design guidelines for the design of highly efficient antitumor systems based on 1O2 storage and controlled release.
Collapse
Affiliation(s)
- Long Yao
- Analysis and Testing Center, Nantong University, Nantong 226019, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuqing Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Liu Mengqi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
20
|
Zheng X, Zhao Y, Zhang Y, Deng R, Li B, Chen S, Zhu J. Multilevel Hollow-Structured Particles through Halogen-Bond Regulated Polymer Assembly under 3D Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405103. [PMID: 39229787 PMCID: PMC11538654 DOI: 10.1002/advs.202405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Engineering of hollow particles with tunable internal structures often requires complicated processes and/or invasive cleavage. Halogen-bond driven 3D confined-assembly of block copolymers has shed light on the engineering of polymer organization along with the fabricating of unique nanostructures. Herein, a family of multilevel hollow-structured particles (e.g., fully porous, multi-chamber, multi-shell, and concentric multi-layer architectures) is reported via halogen-bond regulated 3D confined-assembly of amphiphilic polymer networks. To do so, polystyrene-b-poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) amphiphilic triblock copolymer is selected, where P2VP blocks act as halogen acceptor. Meanwhile, poly(3-(2,3,5,6-tetrafluoro-4-iodophenoxy) propyl acrylate) (PTFIPA) is employed as halogen donor. Halogen-bond driven donor-acceptor linking between PTFIPA and P2VP block presented in PS-b-P2VP-b-PEO, can lead to the formation of supramolecular polymeric networks, along with the increased P2VP domain and tunable hydrophobic volume. Therefore, an adjustable packing parameter (p) is thus anticipated, which can enable the morphology transformation sequence until an equilibrium state is reached. Moreover, computer simulations are further utilized as the tool to interpret such morphologies transition and identify the precise distribution of each component. Benefiting from the tunable hollow structure and a substantial surface for transporting purpose, these structurally novel particles open perspectives toward promising applications including encapsulation, nanoreactor, and catalyst support.
Collapse
Affiliation(s)
- Xihuang Zheng
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Yi Zhao
- Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, School of PhysicsNankai UniversityTianjin300071China
| | - Yuping Zhang
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Renhua Deng
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Baohui Li
- Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, School of PhysicsNankai UniversityTianjin300071China
| | - Senbin Chen
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Jintao Zhu
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| |
Collapse
|
21
|
Wu Q, Zhou Z, Xu L, Zhong H, Xiong B, Ren T, Li Z, Yuan L, Zhang XB. Multivalent supramolecular fluorescent probes for accurate disease imaging. SCIENCE ADVANCES 2024; 10:eadp8719. [PMID: 39423274 PMCID: PMC11488570 DOI: 10.1126/sciadv.adp8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging is a powerful tool for early disease detection and effective treatment planning, but its accuracy is often compromised by the uptake of imaging materials by the mononuclear phagocyte system (MPS). Herein, we leverage multivalent host-guest interactions between cyanine dyes and β-cyclodextrin polymers to develop supramolecular probes with enhanced stability, optical, and transport profiles for accurate in vivo imaging. These multivalent interactions not only ensure the stability of the probes but also enhance fluorescence efficiency by minimizing nonradiative decay. Our self-assembly approach effectively modulates probe size and surface properties, enabling evasion of MPS clearance and promoting prolonged bloodstream circulation, thereby improving the signal-to-background ratio for imaging. The effectiveness of our design is demonstrated by substantial advancements in the early diagnosis of acute kidney injury and by providing high-contrast imaging and precise surgical navigation across various tumor models. Our strategy not only advances optical imaging materials toward clinical translation but also establishes a versatile platform applicable to multiple imaging modalities.
Collapse
Affiliation(s)
| | | | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haichen Zhong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianbing Ren
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
22
|
Wu D, Du X, Xue Q, Zhou J, Ping K, Cao Y, Liu S, Zhu Q. Supramolecular Porphyrin Photosensitizers Based on Host-Guest Recognition for In Situ Bacteria-Responsive Near-Infrared Photothermal Therapy. Adv Healthc Mater 2024:e2401662. [PMID: 39388515 DOI: 10.1002/adhm.202401662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Antibiotic resistance resulting from the overuse of antibiotics sets a high challenge for brutal antimicrobial treatment. Although photothermal therapy (PTT) overcomes the awkward situation of antibiotic resistance, it usually mistakenly kills the beneficial bacteria strains when eliminating pernicious bacteria. Specifically recognizing and damaging the target pathogens is urgently required for PTT-mediated sterilization strategy. Based on the host-guest recognition between cucurbit[10]uril (CB[10]) and porphyrins, two water-soluble supramolecular porphyrins are designed and implement selective bactericidal effect via in situ bacteria-responsive near-infrared (NIR) PTT. With the help of CB[10], the π-π stacking and hydrophobic interactions of porphyrins are efficiently inhibited, thus contributing to a good photostability and a high photothermal conversion efficiency. Attributing to the matching reduction potential between facultative anaerobic Escherichia coli (E. coli) and porphyrins, they are selectively in situ reduced into supramolecular phlorin and supramolecular chlorin by E. coli, successfully achieving a selective sterilization against E. coli. In vivo, the in situ bacteria-responsive NIR PTT systems also promote the quick recovery of E. coli-infected abscesses and trauma on mice without inducing obvious systemic toxicity, providing a new alternative to the current antibiotics and helping relieve the global public health crisis of abusive antibiotics.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, P. R. China
| | - Qiangqiang Xue
- Shanxi Provincial Department of Science and Technology, Taiyuan, 030021, P. R. China
| | - Jie Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shuang Liu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou, Hangzhou, 310014, P. R. China
| |
Collapse
|
23
|
Liu H, Gao C, Xu P, Li Y, Yan X, Guo X, Wen C, Shen XC. Biomimetic Gold Nanorods-Manganese Porphyrins with Surface-Enhanced Raman Scattering Effect for Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401117. [PMID: 39031811 DOI: 10.1002/smll.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Surface-enhanced Raman scattering (SERS) imaging integrating photothermal and photodynamic therapy (PTT/PDT) is a promising approach for achieving accurate diagnosis and effective treatment of cancers. However, most available Raman reporters show multiple signals in the fingerprint region, which overlap with background signals from cellular biomolecules. Herein, a 4T1 cell membrane-enveloped gold nanorods-manganese porphyrins system (GMCMs) is designed and successfully fabricated as a biomimetic theranostic nanoplatform. Manganese porphyrins are adsorbed on the surface of Au nanorods via the terminal alkynyl group. Cell membrane encapsulation protects the manganese porphyrins from falling off the gold nanorods. The biomimetic GMCMs confirm specific homologous targeting to 4T1 cells with good dispersibility, excellent photoacoustic (PA) imaging properties, and preferable photothermal and 1O2 generation performance. GMCMs exhibit distinct SERS signals in the silent region without endogenous biomolecule interference both in vitro and in vivo. Manganese ions could not only quench the fluorescence of porphyrins to enhance the SERS imaging effect but also deplete cellular GSH to increase 1O2 yield. Both in vitro and in vivo studies demonstrate that GMCMs effectively eradicate tumors through SERS/PA imaging-guided PTT/PDT. This study provides a feasible strategy for augmenting the Raman imaging effects of the alkynyl group and integrating GSH-depletion to enhance PTT/PDT efficacy.
Collapse
Affiliation(s)
- Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Peijing Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yingshu Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaoxiao Yan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
24
|
Scimeca M, Giacobbi E, Servadei F, Palumbo V, Palumbo C, Finazzi-Agrò E, Albisinni S, Mauriello A, Albonici L. Prognostic Value of PlGF Upregulation in Prostate Cancer. Biomedicines 2024; 12:2194. [PMID: 39457506 PMCID: PMC11505493 DOI: 10.3390/biomedicines12102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, with metastasis, particularly to bone, being the primary cause of mortality. Currently, prognostic markers like PSA levels and Gleason classification are limited in predicting metastasis, emphasizing the need for novel clinical biomarkers. New molecules predicting tumor progression have been identified over time. Some, such as the immune checkpoint inhibitors (ICIs) PD-1/PD-L1, have become valid markers as theranostic tools essential for prognosis and drug target therapy. However, despite the success of ICIs as an anti-cancer therapy for solid tumors, their efficacy in treating bone metastases has mainly proven ineffective, suggesting intrinsic resistance to this therapy in the bone microenvironment. This study explores the potential of immunological intratumoral biomarkers, focusing on placental growth factor (PlGF), Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), and Programmed Cell Death Protein 1 (PD-1), in predicting bone metastasis formation. METHODS we analyzed PCa samples from patients with and without metastasis by immunohistochemical analysis. RESULTS Results revealed that PlGF expression is significantly higher in primary tumors of patients that developed metastasis within five years from the histological diagnosis. Additionally, PlGF expression correlates with increased VEGFR1 and PD-1 levels, as well as the presence of intratumoral M2 macrophages. CONCLUSIONS These findings suggest that PlGF contributes to an immunosuppressive environment, thus favoring tumor progression and metastatic process. Results here highlight the potential of integrating these molecular markers with existing prognostic tools to enhance the accuracy of metastasis prediction in PCa. By identifying patients at risk for metastasis, clinicians can tailor treatment strategies more effectively, potentially improving survival outcomes and quality of life. This study underscores the importance of further research into the role of intratumoral biomarkers in PCa management.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Enrico Finazzi-Agrò
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Simone Albisinni
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Department of Biomedical Sciences, “Our Lady of Good Counsel” University, Rruga Dritan Hoxha, 1000 Tirana, Albania
| |
Collapse
|
25
|
Sahoo PR, Spernyak JA, Turowski SG, Morrow JR. Self-Assembled Iron(III) Coordination Cage as an MRI-Active Carrier for a Gold(I) Drug. Bioconjug Chem 2024. [PMID: 39303010 PMCID: PMC11922791 DOI: 10.1021/acs.bioconjchem.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A T1 MRI probe based on a self-assembled coordination cage with four iron(III) centers acts as a host for the hydrolysis product of the gold(I) anticancer drug, Au(PEt3)Cl. 1H NMR characterization of the gold complex encapsulated within the diamagnetic Ga(III) analog of the coordination cage is consistent with loss of chloride to give aquated gold complex, most likely [Au(PEt3)(OH2)]+ within the cage. The gold complex undergoes pH-dependent speciation changes in the Ga(III) cage and is released at mildly acidic pH from both the Ga(III) and Fe(III) cages. NMR spectroscopy studies of the encapsulated gold complex in the presence of human serum albumin (HSA) show that the gold complex remains inside of the Ga(III) cage for several hours, resisting release and binding to cysteine residues of HSA. The Fe(III) cage with encapsulated gold complex shows enhanced contrast of the vasculature and uptake into CT26 tumors in BALB/c mice as shown by MRI. The gold complex is solubilized by the iron(III) cage for intravenous injection, whereas the free complex must be injected intraperitoneally. Gold complex accumulates in the tumor for both caged and free complex over 1-48 h as measured by ex-vivo analysis. Encapsulation in the Fe(III) cage modulates the biodistribution of the gold complex in mice in comparison to the free complex, consistent with the function of the cage as a carrier.
Collapse
Affiliation(s)
- Priya Ranjan Sahoo
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Steven G Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
26
|
Xue SS, Zhu W, Li Y, Pan W, Li N, Tang B. Dual-stimuli responsive theranostic agents based on small molecules. Chem Commun (Camb) 2024; 60:9860-9870. [PMID: 39157895 DOI: 10.1039/d4cc02565b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Stimuli-responsive theranostic agents represent a class of molecules that integrate therapeutic and diagnostic functions, offering the capability to respond to disease-associated biomarkers. Dual-stimuli responsive agents, particularly those based on small molecules, have shown considerable promise for precise imaging-guided therapeutic applications. In this Highlight, we summarize the progress of dual-stimuli responsive theranostic agents based on small molecules, for diagnostic and therapeutic studies in biological systems. The Highlight focuses on comparing different responsive groups and chemical structures of these dual-stimuli responsive theranostic agents towards different biomarkers. The potential future directions of the agents for further applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
27
|
Fang F, Chen X. Carrier-Free Nanodrugs: From Bench to Bedside. ACS NANO 2024; 18:23827-23841. [PMID: 39163559 DOI: 10.1021/acsnano.4c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Carrier-free nanodrugs with extraordinary active pharmaceutical ingredient (API) loading (even 100%), avoidable carrier-induced toxicity, and simple synthetic procedures are considered as one of the most promising candidates for disease theranostics. Substantial studies and the commercial success of "carrier-free" nanocrystals have demonstrated their strong clinical potential. However, their practical translations remain challenging and are impeded by unpredictable assembly processes, insufficient delivery efficiency, and an unclear in vivo fate. In this Perspective, we systematically outline the contemporary and emerging carrier-free nanodrugs based on diverse APIs, as well as highlight their opportunities and challenges in clinical translation. Looking ahead, further improvements in design and preparation, drug delivery, in vivo efficacy, and safety of carrier-free nanomedicines are essential to facilitate their translation from the bench to bedside.
Collapse
Affiliation(s)
- Fang Fang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
28
|
Giordano A, Provenza AC, Reverchon G, Baldino L, Reverchon E. Lipid-Based Nanocarriers: Bridging Diagnosis and Cancer Therapy. Pharmaceutics 2024; 16:1158. [PMID: 39339195 PMCID: PMC11434863 DOI: 10.3390/pharmaceutics16091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Theranostics is a growing field that matches diagnostics and therapeutics. In this approach, drugs and techniques are uniquely coupled to diagnose and treat medical conditions synergically or sequentially. By integrating diagnostic and treatment functions in a single platform, the aim of theranostics is to improve precision medicine by tailoring treatments based on real-time information. In this context, lipid-based nanocarriers have attracted great scientific attention due to their biodegradability, biocompatibility, and targeting capabilities. The present review highlights the latest research advances in the field of lipid-based nanocarriers for cancer theranostics, exploring several ways of improving in vivo performance and addressing associated challenges. These nanocarriers have significant potential to create new perspectives in the field of nanomedicine and offer promise for a significant step towards more personalized and precise medicine, reducing side effects and improving clinical outcomes for patients. This review also presents the actual barriers to and the possible challenges in the use of nanoparticles in the theranostic field, such as regulatory hurdles, high costs, and technological integration. Addressing these issues through a multidisciplinary and collaborative approach among institutions could be essential for advancing lipid nanocarriers in the theranostic field. Such collaborations can leverage diverse expertise and resources, fostering innovation and overcoming the complex challenges associated with clinical translation. This approach will be crucial for realizing the full potential of lipid-based nanocarriers in precision medicine.
Collapse
Affiliation(s)
- Alessandra Giordano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Anna Chiara Provenza
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Giorgio Reverchon
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli, 1, 40136 Bologna, Italy;
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| |
Collapse
|
29
|
Zheng Y, Zhu L, Ke C, Li Y, Zhou Z, Jiang M, Wang F, He P, Zhou X, Jiang ZX, Chen S. Fluorinated macromolecular amphiphiles as prototypic molecular drones. Proc Natl Acad Sci U S A 2024; 121:e2405877121. [PMID: 39163338 PMCID: PMC11363298 DOI: 10.1073/pnas.2405877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.
Collapse
Affiliation(s)
- Yujie Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Lijun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Changsheng Ke
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Zhiwen Zhou
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Mou Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430071, China
| | - Fang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Pei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
30
|
Skládal P, Farka Z. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Mikrochim Acta 2024; 191:551. [PMID: 39167235 DOI: 10.1007/s00604-024-06615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic
| |
Collapse
|
31
|
Wang R, Hua S, Xing Y, Wang R, Wang H, Jiang T, Yu F. Organic dye-based photosensitizers for fluorescence imaging-guided cancer phototheranostics. Coord Chem Rev 2024; 513:215866. [DOI: 10.1016/j.ccr.2024.215866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
|
32
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
33
|
Xiong LH, Yang L, Geng J, Tang BZ, He X. All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic-Photodynamic Therapy. ACS NANO 2024; 18:17837-17851. [PMID: 38938113 DOI: 10.1021/acsnano.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities. Consequently, the activated AIE probes can efficiently destroy cancer cell membranes and lead to the death of cancer cells within 30 min. A superior efficacy in cancer cell ablation is demonstrated in vitro and in vivo. The cancer-associated biomarker response-derived discriminative FL imaging and synergistic chemodynamic-photodynamic therapy are expected to provide a promising avenue for precise image-guided cancer therapy.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Langyi Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangtao Geng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Chen JF, Gao QX, Yao H, Shi B, Zhang YM, Wei TB, Lin Q. Recent advances in circularly polarized luminescence of planar chiral organic compounds. Chem Commun (Camb) 2024; 60:6728-6740. [PMID: 38884278 DOI: 10.1039/d4cc01698j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Circularly polarized luminescence (CPL), as an important chiroptical phenomenon, can not only directly characterize excited-state structural information about chiroptical materials but also has great application prospects in 3D optical displays, information storage, biological probes, CPL lasers and so forth. Recently, chiral organic small molecules with CPL have attracted a lot of research interest because of their excellent luminescence efficiency, clear molecular structures, unique flexibility and easy functionalization. Planar chiral organic compounds make up an important class of chiral organic small molecular materials and often have rigid macrocyclic skeletons, which have important research value in the field of chiral supramolecular chemistry (e.g., chiral self-assembly and chiral host-guest chemistry). Therefore, research into planar chiral organic compounds has become a hotspot for CPL. It is time to summarize the recent developments in CPL-active compounds based on planar chirality. In this feature article, we summarize various types of CPL-active compounds based on planar chirality. Meanwhile, we overview recent research in the field of planar chiral CPL-active compounds in terms of optoelectronic devices, asymmetric catalysis, and chiroptical sensing. Finally, we discuss their future research prospects in the field of CPL-active materials. We hope that this review will be helpful to research work related to planar chiral luminescent materials and promote the development of chiral macrocyclic chemistry.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Bingbing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
35
|
Wan D, Wu Y, Liu Y, Liu Y, Pan J. Advances in 2,3-Dimethylmaleic Anhydride (DMMA)-Modified Nanocarriers in Drug Delivery Systems. Pharmaceutics 2024; 16:809. [PMID: 38931929 PMCID: PMC11207803 DOI: 10.3390/pharmaceutics16060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer represents a significant threat to human health. The cells and tissues within the microenvironment of solid tumors exhibit complex and abnormal properties in comparison to healthy tissues. The efficacy of nanomedicines is inhibited by the presence of substantial and complex physical barriers in the tumor tissue. The latest generation of intelligent drug delivery systems, particularly nanomedicines capable of charge reversal, have shown promise in addressing this issue. These systems can transform their charge from negative to positive upon reaching the tumor site, thereby enhancing tumor penetration via transcytosis and promoting cell internalization by interacting with the negatively charged cell membranes. The modification of nanocarriers with 2,3-dimethylmaleic anhydride (DMMA) and its derivatives, which are responsive to weak acid stimulation, represents a significant advance in the field of charge-reversal nanomedicines. This review provides a comprehensive examination of the recent insights into DMMA-modified nanocarriers in drug delivery systems, with a particular focus on their potential in targeted therapeutics. It also discusses the synthesis of DMMA derivatives and their role in charge reversal, shell detachment, size shift, and ligand reactivation mechanisms, offering the prospect of a tailored, next-generation therapeutic approach to overcome the diverse challenges associated with cancer therapy.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| | - Yujun Liu
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| |
Collapse
|
36
|
Geng WC, Jiang ZT, Chen SL, Guo DS. Supramolecular interaction in the action of drug delivery systems. Chem Sci 2024; 15:7811-7823. [PMID: 38817563 PMCID: PMC11134347 DOI: 10.1039/d3sc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Ze-Tao Jiang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Shi-Lin Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
37
|
Chen MM, Li Y, Zhu Y, Geng WC, Chen FY, Li JJ, Wang ZH, Hu XY, Tang Q, Yu Y, Sun T, Guo DS. Supramolecular 3 in 1: A Lubrication and Co-Delivery System for Synergistic Advanced Osteoarthritis Therapy. ACS NANO 2024; 18:13117-13129. [PMID: 38727027 DOI: 10.1021/acsnano.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuqiao Li
- Spine Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qiong Tang
- Department of Respiratory, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tianwei Sun
- Spine Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| |
Collapse
|
38
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
39
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
40
|
Hu W, Ye B, Yu G, Yang H, Wu H, Ding Y, Huang F, Wang W, Mao Z. Dual-Responsive Supramolecular Polymeric Nanomedicine for Self-Cascade Amplified Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305382. [PMID: 38493499 PMCID: PMC11132052 DOI: 10.1002/advs.202305382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by β-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Hao Wu
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Feihe Huang
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouZhejiang311215China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
41
|
Yang J, Yang Z, Wang H, Chang Y, Xu JF, Zhang X. A Polymeric Nanoparticle to Co-Deliver Mitochondria-Targeting Peptides and Pt(IV) Prodrug: Toward High Loading Efficiency and Combination Efficacy. Angew Chem Int Ed Engl 2024; 63:e202402291. [PMID: 38380542 DOI: 10.1002/anie.202402291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
Developing combination chemotherapy systems with high drug loading efficiency at predetermined drug ratios to achieve a synergistic effect is important for cancer therapy. Herein, a polymeric dual-drug nanoparticle composed of a Pt(IV) prodrug derived from oxaliplatin and a mitochondria-targeting cytotoxic peptide is constructed through emulsion interfacial polymerization, which processes high drug loading efficiency and high biocompatibility. The depolymerization of polymeric dual-drug nanoparticle and the activation of Pt prodrug can be effectively triggered by the acidic tumor environment extracellularly and the high levels of glutathione intracellularly in cancer cells, respectively. The utilization of mitochondria-targeting peptide can inhibit ATP-dependent processes including drug efflux and DNA damage repair. This leads to increased accumulation of Pt-drugs within cancer cells. Eventually, the polymeric dual-drug nanoparticle demonstrates appreciable antitumor effects on both cell line derived and patient derived xenograft lung cancer model. It is highly anticipated that the polymeric dual-or multi-drug systems can be applied for combination chemotherapy to achieve enhanced anticancer activity and reduced side effects.
Collapse
Affiliation(s)
- Jinpeng Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yincheng Chang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Li Y, Huang F, Stang PJ, Yin S. Supramolecular Coordination Complexes for Synergistic Cancer Therapy. Acc Chem Res 2024; 57:1174-1187. [PMID: 38557015 DOI: 10.1021/acs.accounts.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Supramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of the Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of the Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| |
Collapse
|
43
|
Martínez-Orts M, Pujals S. Responsive Supramolecular Polymers for Diagnosis and Treatment. Int J Mol Sci 2024; 25:4077. [PMID: 38612886 PMCID: PMC11012635 DOI: 10.3390/ijms25074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
Collapse
Affiliation(s)
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
44
|
Ouyang R, Geng C, Li J, Jiang Q, Shen H, Zhang Y, Liu X, Liu B, Wu J, Miao Y. Recent advances in photothermal nanomaterials-mediated detection of circulating tumor cells. RSC Adv 2024; 14:10672-10686. [PMID: 38572345 PMCID: PMC10988362 DOI: 10.1039/d4ra00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chongrui Geng
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Li
- Hunan Shizhuyuan Nonferrous Metals Co., Ltd Chenzhou Hunan 423037 China
| | - Qiliang Jiang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Hongyu Shen
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yulong Zhang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xueyu Liu
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingxiang Wu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
45
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
46
|
Yang K, Bai B, Huang F, Yu G. Drug-initiated poly(thiocitc acid) polymer incorporating host-guest interaction for cancer combination chemotherapy. iScience 2024; 27:109070. [PMID: 38375216 PMCID: PMC10875558 DOI: 10.1016/j.isci.2024.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Combination chemotherapy has shown considerable promise for cancer therapy. However, the hydrophobicity of chemotherapeutic agents and the difficulties of precise drug co-administration severely hinder the development of combination chemotherapy. Herein, we develop a polymeric drug delivery system (D-PTA-CD) to provide robust loading capacity, glutathione-responsive drug release, and precise combination therapy. The vehicle is prepared based on poly(thioctic acid) (PTA) polymers using DM1, a chemotherapeutic agent, as the initiator to endow the vehicle with cancer-inhibiting activity. β-cyclodextrins are incorporated into the side chains to enhance drug loading capacity via host-guest interactions. Attributing to the sufficient disulfide bond on the backbone, D-PTA-CD exhibits accelerated drug release triggered by elevated glutathione levels. Doxorubicin (DOX) and camptothecin (CPT) are encapsulated by D-PTA-CD to afford the combination chemotherapy nanoparticles (NP), DOX-NP, and CPT-NP, respectively, which exhibit significant synergetic anti-cancer effects, highlighting the enormous potential of D-PTA-CD as a versatile drug delivery platform for cancer combination chemotherapy.
Collapse
Affiliation(s)
- Kai Yang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P.R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P.R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
47
|
Zhang JL, Zhang XW, Yuan B, Zhang H, Wang XZ, Wang H, Zhao HW. Supramolecular Chemotherapy: Complexation by Carboxylated Pillar[6]arene for Decreasing Cytotoxicity of Nitrogen Mustard to Normal Cells and Enhancing Its Antitumor Efficiency against Breast Cancer. ACS OMEGA 2024; 9:11829-11835. [PMID: 38497008 PMCID: PMC10938388 DOI: 10.1021/acsomega.3c09353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Advances in chemotherapeutic strategies are urgently required to improve antitumor efficiency. Herein, a carboxylated pillar[6]arene (CP6A) was employed to load chemotherapy medication, nitrogen mustard (NM), via forming a direct host-guest complex, as this helps to decrease the cytotoxicity of NM on normal mammary epithelial cells. Attributed to the stronger complexation ability of CP6A for endogenous spermine (SPM) than for NM, the complexed NM could be competitively released from the CP6A cavity via replacement with SPM. This chemotherapy strategy performed well in vitro and in vivo for SPM-overexpressed cancers. In comparison with free NM, antitumor efficiency of NM/CP6A was significantly enhanced, which originated from the synergistic effect of competitive release of NM and simultaneous trapping of SPM. This strategy might guide expansion to other first-line antitumor agents to improve therapeutic efficacy and decrease side effects, thereby replenishing the possibilities of supramolecular chemotherapy.
Collapse
Affiliation(s)
- Jin Long Zhang
- Capital
Medical University Affiliated Beijing Tongren Hospital Department
of Radiology, Beijing 100730, China
| | | | - Bing Yuan
- Department
of Interventional Radiology, Chinese PLA
General Hospital, Beijing 100853, China
| | - Heng Zhang
- Department
of Radiology, Chinese PLA General Hospital
Second Medical Center, Beijing 100853, China
| | - Xing Zhi Wang
- Shenyang
Pharmaceutical University, Shenyang 117004, China
| | - Hao Wang
- Shenyang
Pharmaceutical University, Shenyang 117004, China
| | - Hong Wei Zhao
- Capital
Medical University Affiliated Beijing Tongren Hospital Department
of Radiology, Beijing 100730, China
| |
Collapse
|
48
|
Zhang F, Shen Z, Sui K, Liu M. Disassembly of spherical structures into nanohelices by good solvent dilution. J Colloid Interface Sci 2024; 657:853-857. [PMID: 38091908 DOI: 10.1016/j.jcis.2023.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/02/2024]
Abstract
Supramolecular self-assembly of low molecular weight molecules into various organic nanostructures has attracted considerable research interest. However, preparing organic nanostructures through a top-down method, such as the disassembly of one large structure into many smaller nanoscale nanostructures, still remains a big challenge. Here, we make use of anti-solvent method to regulate the hierarchical self-assembly of an achiral C3-symmetric molecule in THF/water to prepare various nanostructures, including spherical structures, nanofibers, nanoribbons and nanotwists. Interestingly, the spherical structures could disassemble into nanohelices through good solvent dilution, providing a nanoscale top-down method to prepare organic nanostructures.
Collapse
Affiliation(s)
- Fang Zhang
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Zhaocun Shen
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
49
|
Chen X, Tan F, Liang R, Liao J, Yang J, Lan T, Yang Y, Liu N, Li F. A Proof-of-Concept Study on the Theranostic Potential of 177 Lu-labeled Biocompatible Covalent Polymer Nanoparticles for Cancer Targeted Radionuclide Therapy. Chemistry 2024; 30:e202303298. [PMID: 38050716 DOI: 10.1002/chem.202303298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Theranostic nanomedicine combined bioimaging and therapy probably rises more helpful and interesting opportunities for personalized medicine. In this work, 177 Lu radiolabeling and surface PEGylation of biocompatible covalent polymer nanoparticles (CPNs) have generated a new theranostic nanoformulation (177 Lu-DOTA-PEG-CPNs) for targeted diagnosis and treatment of breast cancer. The in vitro anticancer investigations demonstrate that 177 Lu-DOTA-PEG-CPNs possess excellent bonding capacity with breast cancer cells (4T1), inhibiting the cell viability, leading to cell apoptosis, arresting the cell cycle, and upregulating the reactive oxygen species (ROS), which can be attributed to the good targeting ability of the nanocarrier and the strong relative biological effect of the radionuclide labelled compound. Single photon emission computed tomography/ computed tomography (SPECT/CT) imaging and in vivo biodistribution based on 177 Lu-DOTA-PEG-CPNs reveal that notable radioactivity accumulation at tumor site in murine 4T1 models with both intravenous and intratumoral administration of the prepared radiotracer. Significant tumor inhibition has been observed in mice treated with 177 Lu-DOTA-PEG-CPNs, of which the median survival was highly extended. More strikingly, 50 % of mice intratumorally injected with 177 Lu-DOTA-PEG-CPNs was cured and showed no tumor recurrence within 90 days. The outcome of this work can provide new hints for traditional nanomedicines and promote clinical translation of 177 Lu radiolabeled compounds efficiently.
Collapse
Affiliation(s)
- Xijian Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Fuyuan Tan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| |
Collapse
|
50
|
Gómez-González B, Basílio N, Vaz B, Pérez-Lorenzo M, García-Río L. Delving into the Variability of Supramolecular Affinity: Self-Ion Pairing as a Central Player in Aqueous Host-Guest Chemistry. Angew Chem Int Ed Engl 2024; 63:e202317553. [PMID: 38100517 DOI: 10.1002/anie.202317553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The determination of binding constants is a key matter in evaluating the strength of host-guest interactions. However, the profound impact of self-ion pairing on this parameter is often underrated in aqueous solution, leading in some cases to a misinterpretation of the true potential of supramolecular assemblies. In the present study, we aim to shed further light on this critical factor by exploring the concentration-dependent behavior of a multicharged pillararene in water. Our observations reveal an extraordinary 1-million-fold variability in the affinity of this macrocycle toward a given anion, showcasing the highly dynamic character of electrostatic interactions. We argue that these findings bring to the forefront the inherent determinism that underlies the estimation of affinity constants, a factor profoundly shaped by both the sensitivity of the instrumental technique in use and the intricacies of the experimental design itself. In terms of applications, these results may provide the opportunity to optimize the operational concentrations of multicharged hosts in different scenarios, aiming to achieve their maximum efficiency based on the intended application. Unlocking the potential of this hidden variability may pave the way for the creation of novel molecular materials with advanced functionalities.
Collapse
Affiliation(s)
- Borja Gómez-González
- Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Belén Vaz
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute, 36310, Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute, 36310, Vigo, Spain
| | - Luis García-Río
- Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|