1
|
Jacinto C, Silva WF, Garcia J, Zaragosa GP, Ilem CND, Sales TO, Santos HDA, Conde BIC, Barbosa HP, Malik S, Sharma SK. Nanoparticles based image-guided thermal therapy and temperature feedback. J Mater Chem B 2024; 13:54-102. [PMID: 39535040 DOI: 10.1039/d4tb01416b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanoparticles have emerged as versatile tools in the realm of thermal therapy, offering precise control and feedback mechanisms for targeted treatments. This review explores the intersection of nanotechnology and thermal therapy, focusing on the utilization of nanoparticles for image-guided interventions and temperature monitoring. Starting with an exploration of local temperature dynamics compared to whole-body responses, we delve into the landscape of nanomaterials and their pivotal role in nanomedicine. Various physical stimuli employed in therapy and imaging are scrutinized, laying the foundation for nanothermal therapies and the accompanying challenges. A comprehensive analysis of nanomaterial architecture ensues, delineating the functionalities of magnetic, plasmonic, and luminescent nanomaterials within the context of thermal therapies. Nano-design intricacies, including core-shell structures and monodisperse properties, are dissected for their impact on therapeutic efficacy. Furthermore, considerations in designing in vivo nanomaterials, such as hydrodynamic radii and core sizes at sub-tissue levels, are elucidated. The review then delves into specific modalities of thermally induced therapy, including magnetically induced hyperthermia and luminescent-based thermal treatments. Magnetic hyperthermia treatment is explored alongside its imaging and relaxometric properties, emphasizing the implications of imaging formulations on biotransformation and biodistribution. This review also provides an overview of the magnetic hyperthermia treatment using magnetic nanoparticles to induce localized heat in tissues. Similarly, optical and thermal imaging techniques utilizing luminescent nanomaterials are discussed, highlighting their potential for light-induced thermal therapy and cellular-level temperature monitoring. Finally, the application landscape of diagnosis and photothermal therapy (PTT) is surveyed, encompassing diverse areas such as cancer treatment, drug delivery, antibacterial therapy, and immunotherapy. The utility of nanothermometers in elucidating thermal relaxation dynamics as a diagnostic tool is underscored, alongside discussions on PTT hyperthermia protocols. Moreover, the advancements in nanoparticle magnetic imaging and implications of imaging formulations especially in creating positive MRI contrast agents are also presented. This comprehensive review offers insights into the evolving landscape of nanoparticle-based image-guided thermal therapies, promising advancements in precision medicine and targeted interventions, underscoring the importance of continued research in optimization for the full potential of magnetic hyperthermia to improve its efficacy and clinical translation.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Wagner F Silva
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Joel Garcia
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | - Gelo P Zaragosa
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | | | - Tasso O Sales
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Harrisson D A Santos
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | | | | | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans, 45067, France.
- Department of Biotechnology, Baba Farid College, Bathinda, 151001, India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
- Department of Physics, Federal University of Maranhão, São Luís, 65080-805, Brazil
| |
Collapse
|
2
|
Fan M, Guo W, Li X, Fan H, Luo Z, Xu J, Huang H, Wang S. A DNA conformational nanoswitch for amplification of both low-abundance protein imaging in living cells and photodynamic therapy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39688467 DOI: 10.1039/d4ay02053g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A method was developed for inducing a DNA conformational nanoswitch triggered by proteins, intended for fluorescence signal amplification imaging and photodynamic therapy targeting tumor cells.
Collapse
Affiliation(s)
- Mingzhu Fan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Wei Guo
- Guangxi Medical University, Nanning, China.
| | - Xinran Li
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Huile Fan
- Guangxi Nanning Intellectual Property Protection Center, Nanning, China
| | - Zhihui Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Jiayao Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | | | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| |
Collapse
|
3
|
Song ZH, Ma YF, Han H, Li DY, Fu R, Zhao QY, Wang R, Guo DS, Cai K. Enantiopure Macrocycles Based on Tröger's Base and Diphenyl Maleimide Exhibiting Strong Chiral Emission and Host-Guest Properties. Chemistry 2024:e202403271. [PMID: 39624941 DOI: 10.1002/chem.202403271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Indexed: 12/13/2024]
Abstract
While a plenty of macrocyclic hosts have been developed in supramolecular chemistry, those that combine chiral luminescent properties and host-guest recognition abilities are still uncommon. Herein, two pairs of enantiomeric macrocycles were synthesized via Suzuki-Miyaura [2+2] cyclization reactions using Tröger's base and diphenyl maleimide as the building blocks. The diphenyl maleimide units impart these macrocycles with highly strong fluorescence, achieving quantum yields up to 100 % in apolar solvents. Furthermore, the chiral, V-shaped Tröger's base units provide the macrocycles with circularly polarized luminescence (|glum|=1.68×10-3) and well-define cavity for hosting electron-deficient or positively charged guests with Ka up to 1.7×106 M-1.
Collapse
Affiliation(s)
- Zi-Hang Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yi-Fan Ma
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dai-Yuan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Qing-Yu Zhao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ruiguo Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Kang Cai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Bayle EA, Ilhami FB, Chen JK, Cheng CC. Potential of a CO 2-Responsive supramolecular drug-carrier system as a safer and more effective treatment for cancer. Mater Today Bio 2024; 29:101319. [PMID: 39554842 PMCID: PMC11567101 DOI: 10.1016/j.mtbio.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
We combined carbon dioxide (CO2)-responsive cytosine-containing rhodamine 6G (Cy-R6G) as a hydrophobic anticancer agent with hydrogen-bonded cytosine-functionalized polyethylene glycol (Cy-PEG) as a hydrophilic supramolecular carrier to construct a CO2-responsive drug delivery system, with the aim of enhancing the responsiveness of the system to the tumor microenvironment and thus the overall effectiveness of anticancer therapy. Due to self-complementary hydrogen bonding interactions between cytosine units, Cy-R6G and Cy-PEG co-assemble in water to form spherical-like nanogels, with Cy-R6G effectively encapsulated within the nanogels. The nanogels exhibit several distinctive physical features, such as widely tunable nanogel size and drug loading capacity for Cy-R6G, intriguing fluorescence properties, high co-assembled structural stability in normal aqueous environments, enhanced anti-hemolytic characteristics, sensitive dual CO2/pH-responsive behavior, and precise and easily controllable CO2-induced release of Cy-R6G. Cytotoxicity assays clearly indicated that, due to the presence of cytosine receptors on the surface of cancer cells, Cy-R6G-loaded nanogels exert selective cytotoxicity against cancer cells in pristine culture medium, but do not affect the viability of normal cells. Surprisingly, in CO2-rich culture medium, Cy-R6G-loaded nanogels exhibit a further significant enhancement in cytotoxicity against cancer cells, and remain non-cytotoxic to normal cells. More importantly, a series of in vitro experiments demonstrated that compared to pristine culture medium, CO2-rich culture medium promotes more rapid selective internalization of Cy-R6G-loaded nanogels into cancer cells through cytosine-mediated macropinocytosis and thus accelerates the induction of apoptosis. Therefore, this newly developed system provides novel avenues for the development of highly effective CO2-responsive drug delivery systems with potent anticancer capabilities.
Collapse
Affiliation(s)
- Enyew Alemayehu Bayle
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya, 60231, Indonesia
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
5
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
6
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024; 13:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
7
|
Xue W, Benchimol E, Walther A, Ouyang N, Holstein JJ, Ronson TK, Openy J, Zhou Y, Wu K, Chowdhury R, Clever GH, Nitschke JR. Interplay of Stereochemistry and Charge Governs Guest Binding in Flexible Zn II4L 4 Cages. J Am Chem Soc 2024; 146:32730-32737. [PMID: 39541177 PMCID: PMC11613429 DOI: 10.1021/jacs.4c12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Here, we report the synthesis of a family of chiral ZnII4L4 tetrahedral cages by subcomponent self-assembly. These cages contain a flexible trialdehyde subcomponent that allows them to adopt stereochemically distinct configurations. The incorporation of enantiopure 1-phenylethylamine produced Δ4 and Λ4 enantiopure cages, in contrast to the racemates that resulted from the incorporation of achiral 4-methoxyaniline. The stereochemistry of these ZnII4L4 tetrahedra was characterized by X-ray crystallography and chiroptical spectroscopy. Upon binding the enantiopure natural product podocarpic acid, the ZnII stereocenters of the enantiopure Δ4-ZnII4L4 cage retained their Δ handedness. In contrast, the metal stereocenters of the enantiomeric Λ4-ZnII4L4 cage underwent inversion to a Δ configuration upon encapsulation of the same guest. Insights gained about the stereochemical communication between host and guest enabled the design of a process for acid/base-responsive guest uptake and release, which could be followed by chiroptical spectroscopy.
Collapse
Affiliation(s)
- Weichao Xue
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Elie Benchimol
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandre Walther
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Nianfeng Ouyang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Julian J. Holstein
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Joseph Openy
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Yujuan Zhou
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | | | - Guido H. Clever
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
8
|
Gong X, Han Y, Wang T, Song G, Chen H, Tang H, Huang X, Deng K, Wang S, Wang Y. Cell-Penetrating Peptide Induced Superstructures Triggering Highly Efficient Antibacterial Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414357. [PMID: 39600036 DOI: 10.1002/adma.202414357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
To endow non-antibacterial molecules with highly efficient bactericide activity is an important but challenging issue. Herein, a kind of cell-penetrating peptide octa-arginine (R8) is found to be effective in activating antibacterial ability when assembling with anionic surfactant sodium dodecyl sulfate (SDS), while individual R8 or SDS shows poor or no antibacterial ability. By combined electrostatic, hydrogen bond, and hydrophobic interactions, R8 and SDS associate into wormlike micelle and lamellar structure by forming supramolecular self-assembling units, depending on their charge ratio (CR). The lamellar aggregates show particularly high antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Interestingly, E. coli and S. aureus are killed by membrane-disrupting and membrane-penetrating mechanisms, respectively. Furthermore, in vivo experiments evidence that the R8/SDS lamellar aggregates accelerate the recovery of bacteria-infected wounds, wherein the reduced inflammation and promoted angiogenesis are clearly presented. This study proves that highly efficient bactericidal activity is triggered by the synergistic action of penetrating peptide and anionic amphiphiles, thus providing a new strategy to realize highly efficient and targetable antibacterial application.
Collapse
Affiliation(s)
- Xuefeng Gong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuchun Han
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tengda Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Suzhou Institute for Advanced Research, School of Nanoscience and Nanotechnology, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongling Chen
- Procter & Gamble Technology (Beijing) Co., Ltd., No. 35 Yu'an Road, Beijing, 101312, P. R. China
| | - Haiqiu Tang
- Procter & Gamble Technology (Beijing) Co., Ltd., No. 35 Yu'an Road, Beijing, 101312, P. R. China
| | - Xu Huang
- Procter & Gamble Technology (Beijing) Co., Ltd., No. 35 Yu'an Road, Beijing, 101312, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yilin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Suzhou Institute for Advanced Research, School of Nanoscience and Nanotechnology, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
9
|
Yao L, Xie S, Liu Y, Mengqi L, Xia J, Lu B. Singlet oxygen storage and controlled release for improving photodynamic therapy against hypoxic tumor. Chem Commun (Camb) 2024; 60:14012-14021. [PMID: 39535143 DOI: 10.1039/d4cc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy (PDT) is considered to be a promising tumor treatment method due to its non-invasiveness and low risk. However, there are two factors that affect the efficacy of this therapy. One is the light source and the other is the tumor hypoxia. An emerging PDT strategy has been developed to break these limits. This strategy is to adopt compounds, such as 2-pyridone, anthracene, and naphthalene derivatives, that have the ability to store and controlledly release the singlet oxygen (1O2) to achieve PDT in the dark. In this review, we focus on the construction strategies for integrated antitumor drugs containing these 1O2 storage/release units and photosensitizers and summarize their PDT performance in hypoxic tumors or in the dark. The methods to integrate these compounds with photosensitizers or nanocarriers are also discussed in detail to provide insightful design guidelines for the design of highly efficient antitumor systems based on 1O2 storage and controlled release.
Collapse
Affiliation(s)
- Long Yao
- Analysis and Testing Center, Nantong University, Nantong 226019, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuqing Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Liu Mengqi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
10
|
Zheng X, Zhao Y, Zhang Y, Deng R, Li B, Chen S, Zhu J. Multilevel Hollow-Structured Particles through Halogen-Bond Regulated Polymer Assembly under 3D Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405103. [PMID: 39229787 PMCID: PMC11538654 DOI: 10.1002/advs.202405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Engineering of hollow particles with tunable internal structures often requires complicated processes and/or invasive cleavage. Halogen-bond driven 3D confined-assembly of block copolymers has shed light on the engineering of polymer organization along with the fabricating of unique nanostructures. Herein, a family of multilevel hollow-structured particles (e.g., fully porous, multi-chamber, multi-shell, and concentric multi-layer architectures) is reported via halogen-bond regulated 3D confined-assembly of amphiphilic polymer networks. To do so, polystyrene-b-poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) amphiphilic triblock copolymer is selected, where P2VP blocks act as halogen acceptor. Meanwhile, poly(3-(2,3,5,6-tetrafluoro-4-iodophenoxy) propyl acrylate) (PTFIPA) is employed as halogen donor. Halogen-bond driven donor-acceptor linking between PTFIPA and P2VP block presented in PS-b-P2VP-b-PEO, can lead to the formation of supramolecular polymeric networks, along with the increased P2VP domain and tunable hydrophobic volume. Therefore, an adjustable packing parameter (p) is thus anticipated, which can enable the morphology transformation sequence until an equilibrium state is reached. Moreover, computer simulations are further utilized as the tool to interpret such morphologies transition and identify the precise distribution of each component. Benefiting from the tunable hollow structure and a substantial surface for transporting purpose, these structurally novel particles open perspectives toward promising applications including encapsulation, nanoreactor, and catalyst support.
Collapse
Affiliation(s)
- Xihuang Zheng
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Yi Zhao
- Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, School of PhysicsNankai UniversityTianjin300071China
| | - Yuping Zhang
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Renhua Deng
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Baohui Li
- Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, School of PhysicsNankai UniversityTianjin300071China
| | - Senbin Chen
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Jintao Zhu
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| |
Collapse
|
11
|
Wu Q, Zhou Z, Xu L, Zhong H, Xiong B, Ren T, Li Z, Yuan L, Zhang XB. Multivalent supramolecular fluorescent probes for accurate disease imaging. SCIENCE ADVANCES 2024; 10:eadp8719. [PMID: 39423274 PMCID: PMC11488570 DOI: 10.1126/sciadv.adp8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging is a powerful tool for early disease detection and effective treatment planning, but its accuracy is often compromised by the uptake of imaging materials by the mononuclear phagocyte system (MPS). Herein, we leverage multivalent host-guest interactions between cyanine dyes and β-cyclodextrin polymers to develop supramolecular probes with enhanced stability, optical, and transport profiles for accurate in vivo imaging. These multivalent interactions not only ensure the stability of the probes but also enhance fluorescence efficiency by minimizing nonradiative decay. Our self-assembly approach effectively modulates probe size and surface properties, enabling evasion of MPS clearance and promoting prolonged bloodstream circulation, thereby improving the signal-to-background ratio for imaging. The effectiveness of our design is demonstrated by substantial advancements in the early diagnosis of acute kidney injury and by providing high-contrast imaging and precise surgical navigation across various tumor models. Our strategy not only advances optical imaging materials toward clinical translation but also establishes a versatile platform applicable to multiple imaging modalities.
Collapse
Affiliation(s)
| | | | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haichen Zhong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianbing Ren
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Wu D, Du X, Xue Q, Zhou J, Ping K, Cao Y, Liu S, Zhu Q. Supramolecular Porphyrin Photosensitizers Based on Host-Guest Recognition for In Situ Bacteria-Responsive Near-Infrared Photothermal Therapy. Adv Healthc Mater 2024:e2401662. [PMID: 39388515 DOI: 10.1002/adhm.202401662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Antibiotic resistance resulting from the overuse of antibiotics sets a high challenge for brutal antimicrobial treatment. Although photothermal therapy (PTT) overcomes the awkward situation of antibiotic resistance, it usually mistakenly kills the beneficial bacteria strains when eliminating pernicious bacteria. Specifically recognizing and damaging the target pathogens is urgently required for PTT-mediated sterilization strategy. Based on the host-guest recognition between cucurbit[10]uril (CB[10]) and porphyrins, two water-soluble supramolecular porphyrins are designed and implement selective bactericidal effect via in situ bacteria-responsive near-infrared (NIR) PTT. With the help of CB[10], the π-π stacking and hydrophobic interactions of porphyrins are efficiently inhibited, thus contributing to a good photostability and a high photothermal conversion efficiency. Attributing to the matching reduction potential between facultative anaerobic Escherichia coli (E. coli) and porphyrins, they are selectively in situ reduced into supramolecular phlorin and supramolecular chlorin by E. coli, successfully achieving a selective sterilization against E. coli. In vivo, the in situ bacteria-responsive NIR PTT systems also promote the quick recovery of E. coli-infected abscesses and trauma on mice without inducing obvious systemic toxicity, providing a new alternative to the current antibiotics and helping relieve the global public health crisis of abusive antibiotics.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, P. R. China
| | - Qiangqiang Xue
- Shanxi Provincial Department of Science and Technology, Taiyuan, 030021, P. R. China
| | - Jie Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shuang Liu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou, Hangzhou, 310014, P. R. China
| |
Collapse
|
13
|
Liu H, Gao C, Xu P, Li Y, Yan X, Guo X, Wen C, Shen XC. Biomimetic Gold Nanorods-Manganese Porphyrins with Surface-Enhanced Raman Scattering Effect for Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401117. [PMID: 39031811 DOI: 10.1002/smll.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Surface-enhanced Raman scattering (SERS) imaging integrating photothermal and photodynamic therapy (PTT/PDT) is a promising approach for achieving accurate diagnosis and effective treatment of cancers. However, most available Raman reporters show multiple signals in the fingerprint region, which overlap with background signals from cellular biomolecules. Herein, a 4T1 cell membrane-enveloped gold nanorods-manganese porphyrins system (GMCMs) is designed and successfully fabricated as a biomimetic theranostic nanoplatform. Manganese porphyrins are adsorbed on the surface of Au nanorods via the terminal alkynyl group. Cell membrane encapsulation protects the manganese porphyrins from falling off the gold nanorods. The biomimetic GMCMs confirm specific homologous targeting to 4T1 cells with good dispersibility, excellent photoacoustic (PA) imaging properties, and preferable photothermal and 1O2 generation performance. GMCMs exhibit distinct SERS signals in the silent region without endogenous biomolecule interference both in vitro and in vivo. Manganese ions could not only quench the fluorescence of porphyrins to enhance the SERS imaging effect but also deplete cellular GSH to increase 1O2 yield. Both in vitro and in vivo studies demonstrate that GMCMs effectively eradicate tumors through SERS/PA imaging-guided PTT/PDT. This study provides a feasible strategy for augmenting the Raman imaging effects of the alkynyl group and integrating GSH-depletion to enhance PTT/PDT efficacy.
Collapse
Affiliation(s)
- Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Peijing Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yingshu Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaoxiao Yan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
14
|
Scimeca M, Giacobbi E, Servadei F, Palumbo V, Palumbo C, Finazzi-Agrò E, Albisinni S, Mauriello A, Albonici L. Prognostic Value of PlGF Upregulation in Prostate Cancer. Biomedicines 2024; 12:2194. [PMID: 39457506 PMCID: PMC11505493 DOI: 10.3390/biomedicines12102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, with metastasis, particularly to bone, being the primary cause of mortality. Currently, prognostic markers like PSA levels and Gleason classification are limited in predicting metastasis, emphasizing the need for novel clinical biomarkers. New molecules predicting tumor progression have been identified over time. Some, such as the immune checkpoint inhibitors (ICIs) PD-1/PD-L1, have become valid markers as theranostic tools essential for prognosis and drug target therapy. However, despite the success of ICIs as an anti-cancer therapy for solid tumors, their efficacy in treating bone metastases has mainly proven ineffective, suggesting intrinsic resistance to this therapy in the bone microenvironment. This study explores the potential of immunological intratumoral biomarkers, focusing on placental growth factor (PlGF), Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), and Programmed Cell Death Protein 1 (PD-1), in predicting bone metastasis formation. METHODS we analyzed PCa samples from patients with and without metastasis by immunohistochemical analysis. RESULTS Results revealed that PlGF expression is significantly higher in primary tumors of patients that developed metastasis within five years from the histological diagnosis. Additionally, PlGF expression correlates with increased VEGFR1 and PD-1 levels, as well as the presence of intratumoral M2 macrophages. CONCLUSIONS These findings suggest that PlGF contributes to an immunosuppressive environment, thus favoring tumor progression and metastatic process. Results here highlight the potential of integrating these molecular markers with existing prognostic tools to enhance the accuracy of metastasis prediction in PCa. By identifying patients at risk for metastasis, clinicians can tailor treatment strategies more effectively, potentially improving survival outcomes and quality of life. This study underscores the importance of further research into the role of intratumoral biomarkers in PCa management.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Enrico Finazzi-Agrò
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Simone Albisinni
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Department of Biomedical Sciences, “Our Lady of Good Counsel” University, Rruga Dritan Hoxha, 1000 Tirana, Albania
| |
Collapse
|
15
|
Sahoo PR, Spernyak JA, Turowski SG, Morrow JR. Self-Assembled Iron(III) Coordination Cage as an MRI-Active Carrier for a Gold(I) Drug. Bioconjug Chem 2024. [PMID: 39303010 DOI: 10.1021/acs.bioconjchem.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A T1 MRI probe based on a self-assembled coordination cage with four iron(III) centers acts as a host for the hydrolysis product of the gold(I) anticancer drug, Au(PEt3)Cl. 1H NMR characterization of the gold complex encapsulated within the diamagnetic Ga(III) analog of the coordination cage is consistent with loss of chloride to give aquated gold complex, most likely [Au(PEt3)(OH2)]+ within the cage. The gold complex undergoes pH-dependent speciation changes in the Ga(III) cage and is released at mildly acidic pH from both the Ga(III) and Fe(III) cages. NMR spectroscopy studies of the encapsulated gold complex in the presence of human serum albumin (HSA) show that the gold complex remains inside of the Ga(III) cage for several hours, resisting release and binding to cysteine residues of HSA. The Fe(III) cage with encapsulated gold complex shows enhanced contrast of the vasculature and uptake into CT26 tumors in BALB/c mice as shown by MRI. The gold complex is solubilized by the iron(III) cage for intravenous injection, whereas the free complex must be injected intraperitoneally. Gold complex accumulates in the tumor for both caged and free complex over 1-48 h as measured by ex-vivo analysis. Encapsulation in the Fe(III) cage modulates the biodistribution of the gold complex in mice in comparison to the free complex, consistent with the function of the cage as a carrier.
Collapse
Affiliation(s)
- Priya Ranjan Sahoo
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Steven G Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
16
|
Xue SS, Zhu W, Li Y, Pan W, Li N, Tang B. Dual-stimuli responsive theranostic agents based on small molecules. Chem Commun (Camb) 2024; 60:9860-9870. [PMID: 39157895 DOI: 10.1039/d4cc02565b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Stimuli-responsive theranostic agents represent a class of molecules that integrate therapeutic and diagnostic functions, offering the capability to respond to disease-associated biomarkers. Dual-stimuli responsive agents, particularly those based on small molecules, have shown considerable promise for precise imaging-guided therapeutic applications. In this Highlight, we summarize the progress of dual-stimuli responsive theranostic agents based on small molecules, for diagnostic and therapeutic studies in biological systems. The Highlight focuses on comparing different responsive groups and chemical structures of these dual-stimuli responsive theranostic agents towards different biomarkers. The potential future directions of the agents for further applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
17
|
Fang F, Chen X. Carrier-Free Nanodrugs: From Bench to Bedside. ACS NANO 2024; 18:23827-23841. [PMID: 39163559 DOI: 10.1021/acsnano.4c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Carrier-free nanodrugs with extraordinary active pharmaceutical ingredient (API) loading (even 100%), avoidable carrier-induced toxicity, and simple synthetic procedures are considered as one of the most promising candidates for disease theranostics. Substantial studies and the commercial success of "carrier-free" nanocrystals have demonstrated their strong clinical potential. However, their practical translations remain challenging and are impeded by unpredictable assembly processes, insufficient delivery efficiency, and an unclear in vivo fate. In this Perspective, we systematically outline the contemporary and emerging carrier-free nanodrugs based on diverse APIs, as well as highlight their opportunities and challenges in clinical translation. Looking ahead, further improvements in design and preparation, drug delivery, in vivo efficacy, and safety of carrier-free nanomedicines are essential to facilitate their translation from the bench to bedside.
Collapse
Affiliation(s)
- Fang Fang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
18
|
Giordano A, Provenza AC, Reverchon G, Baldino L, Reverchon E. Lipid-Based Nanocarriers: Bridging Diagnosis and Cancer Therapy. Pharmaceutics 2024; 16:1158. [PMID: 39339195 PMCID: PMC11434863 DOI: 10.3390/pharmaceutics16091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Theranostics is a growing field that matches diagnostics and therapeutics. In this approach, drugs and techniques are uniquely coupled to diagnose and treat medical conditions synergically or sequentially. By integrating diagnostic and treatment functions in a single platform, the aim of theranostics is to improve precision medicine by tailoring treatments based on real-time information. In this context, lipid-based nanocarriers have attracted great scientific attention due to their biodegradability, biocompatibility, and targeting capabilities. The present review highlights the latest research advances in the field of lipid-based nanocarriers for cancer theranostics, exploring several ways of improving in vivo performance and addressing associated challenges. These nanocarriers have significant potential to create new perspectives in the field of nanomedicine and offer promise for a significant step towards more personalized and precise medicine, reducing side effects and improving clinical outcomes for patients. This review also presents the actual barriers to and the possible challenges in the use of nanoparticles in the theranostic field, such as regulatory hurdles, high costs, and technological integration. Addressing these issues through a multidisciplinary and collaborative approach among institutions could be essential for advancing lipid nanocarriers in the theranostic field. Such collaborations can leverage diverse expertise and resources, fostering innovation and overcoming the complex challenges associated with clinical translation. This approach will be crucial for realizing the full potential of lipid-based nanocarriers in precision medicine.
Collapse
Affiliation(s)
- Alessandra Giordano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Anna Chiara Provenza
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Giorgio Reverchon
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli, 1, 40136 Bologna, Italy;
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| |
Collapse
|
19
|
Zheng Y, Zhu L, Ke C, Li Y, Zhou Z, Jiang M, Wang F, He P, Zhou X, Jiang ZX, Chen S. Fluorinated macromolecular amphiphiles as prototypic molecular drones. Proc Natl Acad Sci U S A 2024; 121:e2405877121. [PMID: 39163338 PMCID: PMC11363298 DOI: 10.1073/pnas.2405877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.
Collapse
Affiliation(s)
- Yujie Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Lijun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Changsheng Ke
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Zhiwen Zhou
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Mou Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430071, China
| | - Fang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Pei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
20
|
Skládal P, Farka Z. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Mikrochim Acta 2024; 191:551. [PMID: 39167235 DOI: 10.1007/s00604-024-06615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic
| |
Collapse
|
21
|
Wang R, Hua S, Xing Y, Wang R, Wang H, Jiang T, Yu F. Organic dye-based photosensitizers for fluorescence imaging-guided cancer phototheranostics. Coord Chem Rev 2024; 513:215866. [DOI: 10.1016/j.ccr.2024.215866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
|
22
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
23
|
Xiong LH, Yang L, Geng J, Tang BZ, He X. All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic-Photodynamic Therapy. ACS NANO 2024; 18:17837-17851. [PMID: 38938113 DOI: 10.1021/acsnano.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities. Consequently, the activated AIE probes can efficiently destroy cancer cell membranes and lead to the death of cancer cells within 30 min. A superior efficacy in cancer cell ablation is demonstrated in vitro and in vivo. The cancer-associated biomarker response-derived discriminative FL imaging and synergistic chemodynamic-photodynamic therapy are expected to provide a promising avenue for precise image-guided cancer therapy.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Langyi Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangtao Geng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
Chen JF, Gao QX, Yao H, Shi B, Zhang YM, Wei TB, Lin Q. Recent advances in circularly polarized luminescence of planar chiral organic compounds. Chem Commun (Camb) 2024; 60:6728-6740. [PMID: 38884278 DOI: 10.1039/d4cc01698j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Circularly polarized luminescence (CPL), as an important chiroptical phenomenon, can not only directly characterize excited-state structural information about chiroptical materials but also has great application prospects in 3D optical displays, information storage, biological probes, CPL lasers and so forth. Recently, chiral organic small molecules with CPL have attracted a lot of research interest because of their excellent luminescence efficiency, clear molecular structures, unique flexibility and easy functionalization. Planar chiral organic compounds make up an important class of chiral organic small molecular materials and often have rigid macrocyclic skeletons, which have important research value in the field of chiral supramolecular chemistry (e.g., chiral self-assembly and chiral host-guest chemistry). Therefore, research into planar chiral organic compounds has become a hotspot for CPL. It is time to summarize the recent developments in CPL-active compounds based on planar chirality. In this feature article, we summarize various types of CPL-active compounds based on planar chirality. Meanwhile, we overview recent research in the field of planar chiral CPL-active compounds in terms of optoelectronic devices, asymmetric catalysis, and chiroptical sensing. Finally, we discuss their future research prospects in the field of CPL-active materials. We hope that this review will be helpful to research work related to planar chiral luminescent materials and promote the development of chiral macrocyclic chemistry.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Bingbing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
25
|
Wan D, Wu Y, Liu Y, Liu Y, Pan J. Advances in 2,3-Dimethylmaleic Anhydride (DMMA)-Modified Nanocarriers in Drug Delivery Systems. Pharmaceutics 2024; 16:809. [PMID: 38931929 PMCID: PMC11207803 DOI: 10.3390/pharmaceutics16060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer represents a significant threat to human health. The cells and tissues within the microenvironment of solid tumors exhibit complex and abnormal properties in comparison to healthy tissues. The efficacy of nanomedicines is inhibited by the presence of substantial and complex physical barriers in the tumor tissue. The latest generation of intelligent drug delivery systems, particularly nanomedicines capable of charge reversal, have shown promise in addressing this issue. These systems can transform their charge from negative to positive upon reaching the tumor site, thereby enhancing tumor penetration via transcytosis and promoting cell internalization by interacting with the negatively charged cell membranes. The modification of nanocarriers with 2,3-dimethylmaleic anhydride (DMMA) and its derivatives, which are responsive to weak acid stimulation, represents a significant advance in the field of charge-reversal nanomedicines. This review provides a comprehensive examination of the recent insights into DMMA-modified nanocarriers in drug delivery systems, with a particular focus on their potential in targeted therapeutics. It also discusses the synthesis of DMMA derivatives and their role in charge reversal, shell detachment, size shift, and ligand reactivation mechanisms, offering the prospect of a tailored, next-generation therapeutic approach to overcome the diverse challenges associated with cancer therapy.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| | - Yujun Liu
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| |
Collapse
|
26
|
Geng WC, Jiang ZT, Chen SL, Guo DS. Supramolecular interaction in the action of drug delivery systems. Chem Sci 2024; 15:7811-7823. [PMID: 38817563 PMCID: PMC11134347 DOI: 10.1039/d3sc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Ze-Tao Jiang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Shi-Lin Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
27
|
Chen MM, Li Y, Zhu Y, Geng WC, Chen FY, Li JJ, Wang ZH, Hu XY, Tang Q, Yu Y, Sun T, Guo DS. Supramolecular 3 in 1: A Lubrication and Co-Delivery System for Synergistic Advanced Osteoarthritis Therapy. ACS NANO 2024; 18:13117-13129. [PMID: 38727027 DOI: 10.1021/acsnano.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuqiao Li
- Spine Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qiong Tang
- Department of Respiratory, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tianwei Sun
- Spine Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| |
Collapse
|
28
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
29
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
30
|
Hu W, Ye B, Yu G, Yang H, Wu H, Ding Y, Huang F, Wang W, Mao Z. Dual-Responsive Supramolecular Polymeric Nanomedicine for Self-Cascade Amplified Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305382. [PMID: 38493499 PMCID: PMC11132052 DOI: 10.1002/advs.202305382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by β-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Hao Wu
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Feihe Huang
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouZhejiang311215China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
31
|
Yang J, Yang Z, Wang H, Chang Y, Xu JF, Zhang X. A Polymeric Nanoparticle to Co-Deliver Mitochondria-Targeting Peptides and Pt(IV) Prodrug: Toward High Loading Efficiency and Combination Efficacy. Angew Chem Int Ed Engl 2024; 63:e202402291. [PMID: 38380542 DOI: 10.1002/anie.202402291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
Developing combination chemotherapy systems with high drug loading efficiency at predetermined drug ratios to achieve a synergistic effect is important for cancer therapy. Herein, a polymeric dual-drug nanoparticle composed of a Pt(IV) prodrug derived from oxaliplatin and a mitochondria-targeting cytotoxic peptide is constructed through emulsion interfacial polymerization, which processes high drug loading efficiency and high biocompatibility. The depolymerization of polymeric dual-drug nanoparticle and the activation of Pt prodrug can be effectively triggered by the acidic tumor environment extracellularly and the high levels of glutathione intracellularly in cancer cells, respectively. The utilization of mitochondria-targeting peptide can inhibit ATP-dependent processes including drug efflux and DNA damage repair. This leads to increased accumulation of Pt-drugs within cancer cells. Eventually, the polymeric dual-drug nanoparticle demonstrates appreciable antitumor effects on both cell line derived and patient derived xenograft lung cancer model. It is highly anticipated that the polymeric dual-or multi-drug systems can be applied for combination chemotherapy to achieve enhanced anticancer activity and reduced side effects.
Collapse
Affiliation(s)
- Jinpeng Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yincheng Chang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Li Y, Huang F, Stang PJ, Yin S. Supramolecular Coordination Complexes for Synergistic Cancer Therapy. Acc Chem Res 2024; 57:1174-1187. [PMID: 38557015 DOI: 10.1021/acs.accounts.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Supramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of the Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of the Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| |
Collapse
|
33
|
Martínez-Orts M, Pujals S. Responsive Supramolecular Polymers for Diagnosis and Treatment. Int J Mol Sci 2024; 25:4077. [PMID: 38612886 PMCID: PMC11012635 DOI: 10.3390/ijms25074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
Collapse
Affiliation(s)
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
34
|
Ouyang R, Geng C, Li J, Jiang Q, Shen H, Zhang Y, Liu X, Liu B, Wu J, Miao Y. Recent advances in photothermal nanomaterials-mediated detection of circulating tumor cells. RSC Adv 2024; 14:10672-10686. [PMID: 38572345 PMCID: PMC10988362 DOI: 10.1039/d4ra00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chongrui Geng
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Li
- Hunan Shizhuyuan Nonferrous Metals Co., Ltd Chenzhou Hunan 423037 China
| | - Qiliang Jiang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Hongyu Shen
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yulong Zhang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xueyu Liu
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingxiang Wu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
35
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
36
|
Yang K, Bai B, Huang F, Yu G. Drug-initiated poly(thiocitc acid) polymer incorporating host-guest interaction for cancer combination chemotherapy. iScience 2024; 27:109070. [PMID: 38375216 PMCID: PMC10875558 DOI: 10.1016/j.isci.2024.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Combination chemotherapy has shown considerable promise for cancer therapy. However, the hydrophobicity of chemotherapeutic agents and the difficulties of precise drug co-administration severely hinder the development of combination chemotherapy. Herein, we develop a polymeric drug delivery system (D-PTA-CD) to provide robust loading capacity, glutathione-responsive drug release, and precise combination therapy. The vehicle is prepared based on poly(thioctic acid) (PTA) polymers using DM1, a chemotherapeutic agent, as the initiator to endow the vehicle with cancer-inhibiting activity. β-cyclodextrins are incorporated into the side chains to enhance drug loading capacity via host-guest interactions. Attributing to the sufficient disulfide bond on the backbone, D-PTA-CD exhibits accelerated drug release triggered by elevated glutathione levels. Doxorubicin (DOX) and camptothecin (CPT) are encapsulated by D-PTA-CD to afford the combination chemotherapy nanoparticles (NP), DOX-NP, and CPT-NP, respectively, which exhibit significant synergetic anti-cancer effects, highlighting the enormous potential of D-PTA-CD as a versatile drug delivery platform for cancer combination chemotherapy.
Collapse
Affiliation(s)
- Kai Yang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P.R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P.R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
37
|
Zhang JL, Zhang XW, Yuan B, Zhang H, Wang XZ, Wang H, Zhao HW. Supramolecular Chemotherapy: Complexation by Carboxylated Pillar[6]arene for Decreasing Cytotoxicity of Nitrogen Mustard to Normal Cells and Enhancing Its Antitumor Efficiency against Breast Cancer. ACS OMEGA 2024; 9:11829-11835. [PMID: 38497008 PMCID: PMC10938388 DOI: 10.1021/acsomega.3c09353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Advances in chemotherapeutic strategies are urgently required to improve antitumor efficiency. Herein, a carboxylated pillar[6]arene (CP6A) was employed to load chemotherapy medication, nitrogen mustard (NM), via forming a direct host-guest complex, as this helps to decrease the cytotoxicity of NM on normal mammary epithelial cells. Attributed to the stronger complexation ability of CP6A for endogenous spermine (SPM) than for NM, the complexed NM could be competitively released from the CP6A cavity via replacement with SPM. This chemotherapy strategy performed well in vitro and in vivo for SPM-overexpressed cancers. In comparison with free NM, antitumor efficiency of NM/CP6A was significantly enhanced, which originated from the synergistic effect of competitive release of NM and simultaneous trapping of SPM. This strategy might guide expansion to other first-line antitumor agents to improve therapeutic efficacy and decrease side effects, thereby replenishing the possibilities of supramolecular chemotherapy.
Collapse
Affiliation(s)
- Jin Long Zhang
- Capital
Medical University Affiliated Beijing Tongren Hospital Department
of Radiology, Beijing 100730, China
| | | | - Bing Yuan
- Department
of Interventional Radiology, Chinese PLA
General Hospital, Beijing 100853, China
| | - Heng Zhang
- Department
of Radiology, Chinese PLA General Hospital
Second Medical Center, Beijing 100853, China
| | - Xing Zhi Wang
- Shenyang
Pharmaceutical University, Shenyang 117004, China
| | - Hao Wang
- Shenyang
Pharmaceutical University, Shenyang 117004, China
| | - Hong Wei Zhao
- Capital
Medical University Affiliated Beijing Tongren Hospital Department
of Radiology, Beijing 100730, China
| |
Collapse
|
38
|
Zhang F, Shen Z, Sui K, Liu M. Disassembly of spherical structures into nanohelices by good solvent dilution. J Colloid Interface Sci 2024; 657:853-857. [PMID: 38091908 DOI: 10.1016/j.jcis.2023.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/02/2024]
Abstract
Supramolecular self-assembly of low molecular weight molecules into various organic nanostructures has attracted considerable research interest. However, preparing organic nanostructures through a top-down method, such as the disassembly of one large structure into many smaller nanoscale nanostructures, still remains a big challenge. Here, we make use of anti-solvent method to regulate the hierarchical self-assembly of an achiral C3-symmetric molecule in THF/water to prepare various nanostructures, including spherical structures, nanofibers, nanoribbons and nanotwists. Interestingly, the spherical structures could disassemble into nanohelices through good solvent dilution, providing a nanoscale top-down method to prepare organic nanostructures.
Collapse
Affiliation(s)
- Fang Zhang
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Zhaocun Shen
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
39
|
Chen X, Tan F, Liang R, Liao J, Yang J, Lan T, Yang Y, Liu N, Li F. A Proof-of-Concept Study on the Theranostic Potential of 177 Lu-labeled Biocompatible Covalent Polymer Nanoparticles for Cancer Targeted Radionuclide Therapy. Chemistry 2024; 30:e202303298. [PMID: 38050716 DOI: 10.1002/chem.202303298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Theranostic nanomedicine combined bioimaging and therapy probably rises more helpful and interesting opportunities for personalized medicine. In this work, 177 Lu radiolabeling and surface PEGylation of biocompatible covalent polymer nanoparticles (CPNs) have generated a new theranostic nanoformulation (177 Lu-DOTA-PEG-CPNs) for targeted diagnosis and treatment of breast cancer. The in vitro anticancer investigations demonstrate that 177 Lu-DOTA-PEG-CPNs possess excellent bonding capacity with breast cancer cells (4T1), inhibiting the cell viability, leading to cell apoptosis, arresting the cell cycle, and upregulating the reactive oxygen species (ROS), which can be attributed to the good targeting ability of the nanocarrier and the strong relative biological effect of the radionuclide labelled compound. Single photon emission computed tomography/ computed tomography (SPECT/CT) imaging and in vivo biodistribution based on 177 Lu-DOTA-PEG-CPNs reveal that notable radioactivity accumulation at tumor site in murine 4T1 models with both intravenous and intratumoral administration of the prepared radiotracer. Significant tumor inhibition has been observed in mice treated with 177 Lu-DOTA-PEG-CPNs, of which the median survival was highly extended. More strikingly, 50 % of mice intratumorally injected with 177 Lu-DOTA-PEG-CPNs was cured and showed no tumor recurrence within 90 days. The outcome of this work can provide new hints for traditional nanomedicines and promote clinical translation of 177 Lu radiolabeled compounds efficiently.
Collapse
Affiliation(s)
- Xijian Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Fuyuan Tan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 29, Wang Jiang Road, Sichuan Province, Chengdu, 610064, P. R. China
| |
Collapse
|
40
|
Gómez-González B, Basílio N, Vaz B, Pérez-Lorenzo M, García-Río L. Delving into the Variability of Supramolecular Affinity: Self-Ion Pairing as a Central Player in Aqueous Host-Guest Chemistry. Angew Chem Int Ed Engl 2024; 63:e202317553. [PMID: 38100517 DOI: 10.1002/anie.202317553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The determination of binding constants is a key matter in evaluating the strength of host-guest interactions. However, the profound impact of self-ion pairing on this parameter is often underrated in aqueous solution, leading in some cases to a misinterpretation of the true potential of supramolecular assemblies. In the present study, we aim to shed further light on this critical factor by exploring the concentration-dependent behavior of a multicharged pillararene in water. Our observations reveal an extraordinary 1-million-fold variability in the affinity of this macrocycle toward a given anion, showcasing the highly dynamic character of electrostatic interactions. We argue that these findings bring to the forefront the inherent determinism that underlies the estimation of affinity constants, a factor profoundly shaped by both the sensitivity of the instrumental technique in use and the intricacies of the experimental design itself. In terms of applications, these results may provide the opportunity to optimize the operational concentrations of multicharged hosts in different scenarios, aiming to achieve their maximum efficiency based on the intended application. Unlocking the potential of this hidden variability may pave the way for the creation of novel molecular materials with advanced functionalities.
Collapse
Affiliation(s)
- Borja Gómez-González
- Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Belén Vaz
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute, 36310, Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute, 36310, Vigo, Spain
| | - Luis García-Río
- Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
41
|
Chen J, Zhang W, Yang W, Xi F, He H, Liang M, Dong Q, Hou J, Wang M, Yu G, Zhou J. Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4]arene-based co-crystals. Nat Commun 2024; 15:1260. [PMID: 38341431 DOI: 10.1038/s41467-024-45592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The combination of macrocyclic chemistry with co-crystal engineering has promoted the development of materials with vapochromic behaviors in supramolecular science. Herein, we develop a macrocycle co-crystal based on hybrid[4]arene and 1,2,4,5-tetracyanobenzene that is able to construct vapochromic materials. After the capture of benzene and toluene vapors, activated hybrid[4]arene-based co-crystal forms new structures, accompanied by color changes from brown to yellow. However, when hybrid[4]arene-based co-crystal captures cyclohexane and pyridine, neither structures nor colors change. Interestingly, hybrid[4]arene-based co-crystal can separate benzene from a benzene/cyclohexane equal-volume mixture and allow toluene to be removed from a toluene/ pyridine equal-volume mixture with purities reaching 100%. In addition, the process of adsorptive separation can be visually monitored. The selectivity of benzene from a benzene/cyclohexane equal-volume mixture and toluene from a toluene/ pyridine equal-volume mixture is attributed to the different changes in the charge-transfer interaction between hybrid[4]arene and 1,2,4,5-tetracyanobenzene when hybrid[4]arene-based co-crystal captures different vapors. Moreover, hybrid[4]arene-based co-crystal can be reused without losing selectivity and performance. This work constructs a vapochromic material for hydrocarbon separation.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenjie Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Fengcheng Xi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Hongyi He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Qian Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jiawang Hou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Mengbin Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
42
|
Shi B, Jiang J, An H, Qi L, Wei TB, Qu WJ, Lin Q. Clamparene: Synthesis, Structure, and Its Application in Spontaneous Formation of 3D Porous Crystals. J Am Chem Soc 2024; 146:2901-2906. [PMID: 38271666 DOI: 10.1021/jacs.3c13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Macrocyclic arenes have emerged as pivotal scaffolds in supramolecular chemistry. Despite their significant contributions to molecular recognition and diverse applications, challenges persist in the development of macrocyclic arene-based crystalline materials, particularly in achieving porosity and addressing limitations in adsorption efficiency resulting from the small cavity sizes of existing macrocyclic arenes. In this study, we present the design and synthesis of a novel macrocyclic arene, clamparene (CLP), featuring a rigid backbone, easy synthesis, and a sizable cavity. CLP self-assembles into one-dimensional sub-nanotubes that further organize into a three-dimensional porous framework in the solid state. The crystalline solid of CLP exhibits potential as a porous crystalline adsorbent for various benzene-based contaminants with rapid adsorption kinetics, large uptake amounts, and good recyclability.
Collapse
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Jingxiong Jiang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Hui An
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Lijuan Qi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| |
Collapse
|
43
|
Wu Y, Chen S, Zhu J. Deliver on a Promise: Hydrogen-Bonded Polymer Nanomedicine with a Precise Ratio of Chemodrug and Photosensitizer for Intelligent Cancer Therapy. ACS NANO 2024; 18:4104-4117. [PMID: 38190754 DOI: 10.1021/acsnano.3c08359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The outcomes of combined cancer therapy are largely related to loading content and contribution of each therapeutic agent; however, fine-tuning the ratio of two coloaded components toward precise cancer therapy is a great challenge and still remains in its infancy. We herein develop a supramolecular polymer scaffold to optimize the coloading ratio of chemotherapeutic agent and photosensitizer through hydrogen-bonding (H-bonding) interaction, for maximizing the efficacy of intelligent cancer chemo/photodynamic therapies (CT/PDT). To do so, we first synthesize a thymine (THY)-functionalized tetraphenylporphyrin photosensitizer (i.e., TTPP), featuring the same molecular configuration of H-bonding array with chemotherapeutic carmofur (e.g., 1-hexylcarbamoyl-5-fluorouracil, HCFU). Meanwhile, a six-arm star-shaped amphiphilic polymer vehicle P(DAPA-co-DPMA-co-OEGMA)6 (poly(diaminopyridine acrylamide-co-2-(diisopropylamino)ethyl methacrylate-co-oligo(ethylene glycol) monomethyl ether methacrylate)6) is prepared, bearing hydrophilic and biocompatible POEGMA segment, along with hydrophobic PDAPA and PDPMA segments, characterizing the randomly dispersed dual functionalities, i.e., heterocomplementary H-bonding DAP motifs and pH-responsive protonation DPMA content. Thanks to the identical DAP/HCFU and DAP/TTPP H-bonding association capability, the incorporation of both HCFU and TTPP to six-arm star-shaped P(DAPA-co-DPMA-co-OEGMA)6 vehicle, with an optimized coloading ratio, can be straightforwardly realized by adjusting the feeding concentrations, thus yielding the hydrogen-bonded supramolecular nanoparticles (i.e., HCFU-TTPP-SPNs), demonstrating the codelivery of two components with the promise to optimize the combined CT/PDT efficacy.
Collapse
Affiliation(s)
- Yanggui Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
44
|
Chang M, Zhang L, Wang Z, Chen L, Dong Y, Yang J, Chen Y. Nanomedicine/materdicine-enabled sonocatalytic therapy. Adv Drug Deliv Rev 2024; 205:115160. [PMID: 38110153 DOI: 10.1016/j.addr.2023.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
The advent of numerous treatment modalities with desirable therapeutic efficacy has been made possible by the fast development of nanomedicine and materdicine, among which the ultrasound (US)-triggered sonocatalytic process as minimal or non-invasive method has been frequently employed for diagnostic and therapeutic purposes. In comparison to phototherapeutic approaches with inherent penetration depth limitations, sonocatalytic therapy shatters the depth limit of photoactivation and offers numerous remarkable prospects and advantages, including mitigated side effects and appropriate tissue-penetration depth. Nevertheless, the optimization of sonosensitizers and therapies remains a significant issue in terms of precision, intelligence and efficiency. In light of the fact that nanomedicine and materdicine can effectively enhance the theranostic efficiency, we herein aim to furnish a cutting-edge review on the latest progress and development of nanomedicine/materdicine-enabled sonocatalytic therapy. The design methodologies and biological features of nanomedicine/materdicine-based sonosensitizers are initially introduced to reveal the underlying relationship between composition/structure, sonocatalytic function and biological effect, in accompany with a thorough discussion of nanomedicine/materdicine-enabled synergistic therapy. Ultimately, the facing challenges and future perspectives of this intriguing sonocatalytic therapy are highlighted and outlined to promote technological advancements and clinical translation in efficient disease treatment.
Collapse
Affiliation(s)
- Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei University, Baoding 071000, PR China
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Jishun Yang
- Naval Medical Center of PLA, Medical Security Center, Shanghai 200052, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
45
|
Zhong K, Zhang Z, Cheng W, Liu G, Zhang X, Zhang J, Sun S, Wang B. Photodynamic O 2 Economizer Encapsulated with DNAzyme for Enhancing Mitochondrial Gene-Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2302495. [PMID: 38056018 DOI: 10.1002/adhm.202302495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Emerging research suggests that mitochondrial DNA is a potential target for cancer treatment. However, achieving precise delivery of deoxyribozymes (DNAzymes) and combining photodynamic therapy (PDT) and DNAzyme-based gene silencing together for enhancing mitochondrial gene-photodynamic synergistic therapy remains challenging. Accordingly, herein, intelligent supramolecular nanomicelles are constructed by encapsulating a DNAzyme into a photodynamic O2 economizer for mitochondrial NO gas-enhanced synergistic gene-photodynamic therapy. The designed nanomicelles demonstrate sensitive acid- and red-light sequence-activated behaviors. After entering the cancer cells and targeting the mitochondria, these micelles will disintegrate and release the DNAzyme and Mn (II) porphyrin in the tumor microenvironment. Mn (II) porphyrin acts as a DNAzyme cofactor to activate the DNAzyme for the cleavage reaction. Subsequently, the NO-carrying donor is decomposed under red light irradiation to generate NO that inhibits cellular respiration, facilitating the conversion of more O2 into singlet oxygen (1 O2 ) in the tumor cells, thereby significantly enhancing the efficacy of PDT. In vitro and in vivo experiments reveal that the proposed system can efficiently target mitochondria and exhibits considerable antitumor effects with negligible systemic toxicity. Thus, this study provides a useful conditional platform for the precise delivery of DNAzymes and a novel strategy for activatable NO gas-enhanced mitochondrial gene-photodynamic therapy.
Collapse
Affiliation(s)
- Kaipeng Zhong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Zefan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
46
|
Li S, Wang Q, Ren Y, Zhong P, Bao P, Guan S, Qiu X, Qu X. Oxygen and pH responsive theragnostic liposomes for early-stage diagnosis and photothermal therapy of solid tumours. Biomater Sci 2024; 12:748-762. [PMID: 38131275 DOI: 10.1039/d3bm01514a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The development of cancer treatment is of great importance, especially in the early stage. In this work, we synthesized a pH-sensitive amphiphilic ruthenium complex containing two alkyl chains and two PEG chains, which was utilized as an oxygen sensitive fluorescent probe for co-assembly with lipids to harvest a liposomal delivery system (RuPC) for the encapsulation of a photothermal agent indocyanine green (ICG). The resultant ICG encapsulated liposome (RuPC@ICG) enabled the delivery of ICG into cells via a membrane fusion pathway, by which the ruthenium complex was localized in the cell membrane for better detection of the extracellular oxygen concentration. Such characteristics allowed ratiometric imaging to distinguish the tumour location from normal tissues just 3 days after cancer cells were implanted, by monitoring the hypoxia condition and tracing the metabolism. Moreover, the pH sensitivity of the liposomes favoured cell uptake, and improved the anti-tumour efficiency of the formulation in vivo under NIR irradiation. Assuming liposomal systems have fewer safety issues, our work not only provides a facile method for the construction of a theragnostic system by combining phototherapy with photoluminescence imaging, but hopefully paves the way for clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Siyi Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Qinglin Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Pengfei Zhong
- Hebei North University, Hebei 075000, China
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100094, China
| | - Pengtao Bao
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100094, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiaochen Qiu
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Shandong 256606, China
| |
Collapse
|
47
|
Yang L, Liu Y, Ren X, Jia R, Si L, Bao J, Shi Y, Sun J, Zhong Y, Duan PC, Yang X, Zhu R, Jia Y, Bai F. Microemulsion-Assisted Self-Assembly of Indium Porphyrin Photosensitizers with Enhanced Photodynamic Therapy. ACS NANO 2024; 18:3161-3172. [PMID: 38227816 DOI: 10.1021/acsnano.3c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Designing and constructing supramolecular photosensitizer nanosystems with highly efficient photodynamic therapy (PDT) is vital in the nanomedical field. Despite recent advances in forming well-defined superstructures, the relationship between molecular arrangement in nanostructures and photodynamic properties has rarely been involved, which is crucial for developing stable photosensitizers for highly efficient PDT. In this work, through a microemulsion-assisted self-assembly approach, indium porphyrin (InTPP) was used to fabricate a series of morphology-controlled self-assemblies, including nanorods, nanospheres, nanoplates, and nanoparticles. They possessed structure-dependent 1O2 generation efficiency. Compared with the other three nanostructures, InTPP nanorods featuring strong π-π stacking, J-aggregation, and high crystallinity proved to be much more efficient at singlet oxygen (1O2) production. Also, theoretical modeling and photophysical experiments verified that the intermolecular π-π stacking in the nanorods could cause a decreased singlet-triplet energy gap (ΔEST) compared with the monomer. This played a key role in enhancing intersystem crossing and facilitating 1O2 generation. Both in vitro and in vivo experiments demonstrated that the InTPP nanorods could trigger cell apoptosis and tumor ablation upon laser irradiation (635 nm, 0.1 W/cm2) and exhibited negligible dark toxicity and high phototoxicity. Thus, the supramolecular self-assembly strategy provides an avenue for designing high-performance photosensitizer nanosystems for photodynamic therapy and beyond.
Collapse
Affiliation(s)
- Linfeng Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yanqiu Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaorui Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Rixin Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Lulu Si
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jianshuai Bao
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yingying Shi
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jiajie Sun
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Peng-Cheng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaoyan Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Rui Zhu
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| |
Collapse
|
48
|
Dai XY, Song Q, Zhou WL, Liu Y. Cucurbit[8]uril Confinement-Based Secondary Coassembly for High-Efficiency Phosphorescence Energy Transfer Behavior. JACS AU 2024; 4:216-227. [PMID: 38274263 PMCID: PMC10806769 DOI: 10.1021/jacsau.3c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Aqueous supramolecular long-lived near-infrared (NIR) material is highly attractive but still remains great challenge. Herein, we report cucurbit[8]uril confinement-based secondary coassembly for achieving NIR phosphorescence energy transfer in water, which is fabricated from dicationic dodecyl-chain-bridged 4-(4-bromophenyl)-pyridine derivative (G), cucurbit[8]uril (CB[8]), and polyelectrolyte poly(4-styrene-sulfonic sodium) (PSS) via the hierarchical confinement strategy. As compared to the dumbbell-shaped G, the formation of unprecedented linear polypseudorotaxane G⊂CB[8] with nanofiber morphology engenders an emerging phosphorescent emission at 510 nm due to the macrocyclic confinement effect. Moreover, benefiting from the following secondary assembly confinement, such tight polypseudorotaxane G⊂CB[8] can further assemble with anionic polyelectrolyte PSS to yield uniform spherical nanoparticle, thereby significantly strengthening phosphorescence performance with an extended lifetime (i.e., 2.39 ms, c.f., 45.0 μs). Subsequently, the organic dye Rhodamine 800 serving as energy acceptor can be slightly doped into the polyelectrolyte assembly, which enables the occurrence of efficient phosphorescence energy transfer process with efficiency up to 80.1% at a high donor/acceptor ratio, and concurrently endows the final system with red-shifted and long-lived NIR emission (710 nm). Ultimately, the as-prepared assembly is successfully exploited as versatile imaging agent for NIR window labeling and detecting in living cells.
Collapse
Affiliation(s)
- Xian-Yin Dai
- School
of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical
Sciences, Taian, Shandong 271016, P. R. China
| | - Qi Song
- School
of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical
Sciences, Taian, Shandong 271016, P. R. China
| | - Wei-Lei Zhou
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
49
|
Oguz A, Saglik BN, Oguz M, Ozturk B, Yilmaz M. Novel mitochondrial and DNA damaging fluorescent Calix[4]arenes bearing isatin groups as aromatase inhibitors: Design, synthesis and anticancer activity. Bioorg Med Chem 2024; 98:117586. [PMID: 38171252 DOI: 10.1016/j.bmc.2023.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer causes a high rate of mortality all over the world. Therefore, the present study focuses on the anticancer activity of new lower rim-functionalized calix[4]arenes integrated with isatin and the p-position of calixarenes with 1,4-dimethylpyridinium iodine against various human cancer cells such as MCF-7 and MDA-MB-231 breast cancer cell lines, as well as the PNT1A healthy epithelial cell line. It was observed that compound 6c had the lowest values in MCF-7 (8.83 µM) and MDA-MB-231 (3.32 µM). Cell imaging and apoptotic activity studies were performed using confocal microscopy and flow cytometry, respectively. The confocal imaging studies with 6c showed that the compound easily entered the cell, and it was observed that 6c accumulated in the mitochondria. The Comet assay test was used to detect DNA damage of compounds in cells. It was found that treated cells had abnormal tail nuclei and damaged DNA structures compared with untreated cells. In vitro human aromatase enzyme inhibition profiles showed that compound 6c had a remarkable inhibitory effect on aromatase. Compound 6c displayed a significant inhibition capacity on aromatase enzyme with the IC50 value of 0.104 ± 0.004 µM. Thus, not only the anticancer activity of the new fluorescent derivatives, which are the subject of this study, but the aromatase inhibitory profiles have also been proven.
Collapse
Affiliation(s)
- Alev Oguz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey
| | - Begum Nurpelin Saglik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Mehmet Oguz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey
| | - Bahadir Ozturk
- Department of Biochemistry, Medical Faculty, Selcuk University, 42131 Konya, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey.
| |
Collapse
|
50
|
Xu P, Wen C, Gao C, Liu H, Li Y, Guo X, Shen XC, Liang H. Near-Infrared-II-Activatable Self-Assembled Manganese Porphyrin-Gold Heterostructures for Photoacoustic Imaging-Guided Sonodynamic-Augmented Photothermal/Photodynamic Therapy. ACS NANO 2024; 18:713-727. [PMID: 38117769 DOI: 10.1021/acsnano.3c09011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Porphyrins and their derivatives are widely used as photosensitizers and sonosensitizers in tumor treatment. Nevertheless, their poor water solubility and low chemical stability reduce their singlet oxygen (1O2) yield and, consequently, their photodynamic therapy (PDT) and sonodynamic therapy (SDT) efficiency. Although strategies for porphyrin molecule assembly have been developed to augment 1O2 generation, there is scope for further improving PDT and SDT efficiencies. Herein, we synthesized ordered manganese porphyrin (SM) nanoparticles with well-defined self-assembled metalloporphyrin networks that enabled efficient energy transfer for enhanced photocatalytic and sonocatalytic activity in 1O2 production. Subsequently, Au nanoparticles were grown in situ on the SM surface by anchoring the terminal alkynyl of porphyrin to form plasmonic SMA heterostructures, which showed the excellent near-infrared-II (NIR-II) region absorption and photothermal properties, and facilitated electron-hole pair separation and transfer. With the modification of hyaluronic acid (HA), SMAH heterostructure nanocomposites exhibited good water solubility and were actively targeted to cancer cells. Under NIR-II light and ultrasound (US) irradiation, the SMAH generates hyperthermia, and a large amount of 1O2, inducing cancer cell damage. Both in vitro and in vivo studies confirmed that the SMAH nanocomposites effectively suppressed tumor growth by decreasing GSH levels in SDT-augmented PDT/PTT. Moreover, by utilizing the strong absorption in the NIR-II window, SMAH nanocomposites can achieve NIR-II photoacoustic imaging-guided combined cancer treatment. This work provides a paradigm for enhancing the 1O2 yield of metalloporphyrins to improve the synergistic therapeutic effect of SDT/PDT/PTT.
Collapse
Affiliation(s)
- Peijing Xu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changchun Wen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yingshu Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xiaolu Guo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing-Can Shen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hong Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|