1
|
Ma LY, Zhao ZG, Yang XY, Yue LJ, Gong FL, Xie KF, Zhou PP, Zhang YH. Synthesis of in-plane Mo 2C/MoO 3 heterostructures by a novel spatial-confined partial oxidation approach for enhanced TEA sensing. Dalton Trans 2024. [PMID: 39639758 DOI: 10.1039/d4dt02925a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In-plane heterostructures exhibit extraordinary chemical and electron transfer properties, which have received remarkable research attention. However, the synthesis of an in-plane Mo2C/MoO3 heterostructure has been rarely reported, and the deep investigation of the effect of its fine structure on reactivity is of great significance. Notably, the in-plane heterostructures endow the material with abundant grain boundaries, which facilitate the formation of surface acid sites and active oxygen species, thus contributing to the sensing performance. Our work provides a promising platform to design in-plane heterostructures for various advanced applications.
Collapse
Affiliation(s)
- Liang-Yu Ma
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, P. R. China.
| | - Zheng-Guang Zhao
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, P. R. China.
| | - Xuan-Yu Yang
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, P. R. China.
| | - Li-Juan Yue
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, P. R. China.
| | - Fei-Long Gong
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, P. R. China.
| | - Ke-Feng Xie
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China.
| | - Pan-Pan Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Advanced Catalysis Center, Lanzhou University, 222 South Tianshui Road, 730000 Lanzhou, P. R. China.
| | - Yong-Hui Zhang
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, P. R. China.
| |
Collapse
|
2
|
Shin H, Jeong W, Han TH. Maximizing light-to-heat conversion of Ti 3C 2T x MXene metamaterials with wrinkled surfaces for artificial actuators. Nat Commun 2024; 15:10507. [PMID: 39627230 PMCID: PMC11614877 DOI: 10.1038/s41467-024-54802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
MXene, a promising photothermal nanomaterial, faces challenges due to densely stacked nanosheets with high refractive index (RI). To maximize photothermal performance, MXene metamaterials (m-MXenes) are developed with a superlattice with alternating MXene and organic layers, reducing RI and inducing multiple light reflections. This approach increases light absorption, inducing 90% photothermal conversion efficiency. The m-MXene is coated onto liquid crystal elastomer (LCE) fibers, as actuating platforms via a dip-coating (m-MXene/aLCE fiber), exhibiting excellent light-driven actuating owing to the synergetic effect of the patterned m-MXene laysers by structural deformation. The m-MXene/aLCE fibers lift ~6,900 times their weight and exhibit a work density 6 times higher than that of human skeletal muscle. It is applied to artificial muscles, grippers, and a bistable structure (a shooting device, and switchable gripper). Our study offers an effective strategy to enhance light absorption in 2D nanomaterials and contributes to advancements in photothermal technologies in various fields.
Collapse
Affiliation(s)
- Hwansoo Shin
- Department of Organic and Nano Engineering, Hanyang University, Seoul, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, Republic of Korea
| | - Woojae Jeong
- Department of Organic and Nano Engineering, Hanyang University, Seoul, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul, Republic of Korea.
- Human-Tech Convergence Program, Hanyang University, Seoul, Republic of Korea.
- Research Institute of Industrial Science, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Yang R, Mei L, Lin Z, Fan Y, Lim J, Guo J, Liu Y, Shin HS, Voiry D, Lu Q, Li J, Zeng Z. Intercalation in 2D materials and in situ studies. Nat Rev Chem 2024; 8:410-432. [PMID: 38755296 DOI: 10.1038/s41570-024-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties - interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin-orbit coupling - of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Liang Mei
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Yingying Fan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jongwoo Lim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinghua Guo
- Advanced Light Source, Energy Storage and Distributed Resources Division, and Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yijin Liu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science, and Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
4
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Yang J, Zhang Y, Ge Y, Tang S, Li J, Zhang H, Shi X, Wang Z, Tian X. Interlayer Engineering of Layered Materials for Efficient Ion Separation and Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311141. [PMID: 38306408 DOI: 10.1002/adma.202311141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Layered materials are characterized by strong in-plane covalent chemical bonds within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, which enables the insertion of guest species into the interlayer gap. Rational design and regulation of interlayer nanochannels are crucial for converting these layered materials and their 2D derivatives into ion separation membranes or battery electrodes. Herein, based on the latest progress in layered materials and their derivative nanosheets, various interlayer engineering methods are briefly introduced, along with the effects of intercalated species on the crystal structure and interlayer coupling of the host layered materials. Their applications in the ion separation and energy storage fields are then summarized, with a focus on interlayer engineering to improve selective ion transport and ion storage performance. Finally, future research opportunities and challenges in this emerging field are comprehensively discussed.
Collapse
Affiliation(s)
- Jinlin Yang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yanzeng Ge
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Si Tang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jing Li
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaodong Shi
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Zhitong Wang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
6
|
Xu Y, Yang L, Li M, Shu H, Jia N, Gao Y, Shi R, Yang X, Zhang Z, Zhang L. Anti-osteosarcoma trimodal synergistic therapy using NiFe-LDH and MXene nanocomposite for enhanced biocompatibility and efficacy. Acta Pharm Sin B 2024; 14:1329-1344. [PMID: 38486993 PMCID: PMC10935502 DOI: 10.1016/j.apsb.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 03/17/2024] Open
Abstract
Osteosarcoma is usually resistant to immunotherapy and, thus primarily relies on surgical resection and high-dosage chemotherapy. Unfortunately, less invasive or toxic therapies such as photothermal therapy (PTT) and chemodynamic therapy (CDT) generally failed to show satisfactory outcomes. Adequate multimodal therapies with proper safety profiles may provide better solutions for osteosarcoma. Herein, a simple nanocomposite that synergistically combines CDT, PTT, and chemotherapy for osteosarcoma treatment was fabricated. In this composite, small 2D NiFe-LDH flakes were processed into 3D hollow nanospheres via template methods to encapsulate 5-Fluorouracil (5-FU) with high loading capacity. The nanospheres were then adsorbed onto larger 2D Ti3C2 MXene monolayers and finally shielded by bovine serum albumin (BSA) to form 5-FU@NiFe-LDH/Ti3C2/BSA nanoplatforms (5NiTiB). Both in vitro and in vivo data demonstrated that the 5-FU induced chemotherapy, NiFe-LDH driven chemodynamic effects, and MXene-based photothermal killing collectively exhibited a synergistic "all-in-one" anti-tumor effect. 5NiTiB improved tumor suppression rate from <5% by 5-FU alone to ∼80.1%. This nanotherapeutic platform achieved higher therapeutic efficacy with a lower agent dose, thereby minimizing side effects. Moreover, the composite is simple to produce, enabling the fine-tuning of dosages to suit different requirements. Thus, the platform is versatile and efficient, with potential for further development.
Collapse
Affiliation(s)
- Yani Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Min Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haozhou Shu
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Na Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunzhen Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaojia Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Liu Y, Qin L, Tan G, Guo Y, Fan Y, Song N, Zhou P, Yan CH, Tang Y. Titanium-Based Superlattice with Fe(III)-Regulable Bandgap and Performance for Optimal and Synergistic Sonodynamic-Chemotherapy Guided by Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2023; 62:e202313165. [PMID: 37828621 DOI: 10.1002/anie.202313165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Superlattices have considerable potential as sonosensitizers for cancer therapy because of their flexible and tunable band gaps, although they have not yet been reported. In this study, a Ti-based organic-inorganic superlattice with good electron-hole separation was synthesized, which consisted of orderly layered superlattices of 2,2'-bipyridine-5,5'-dicarboxylic acid (BPDC) and Ti-O layers. In addition, the superlattice was coordinated with Fe(III) and encapsulated doxorubicin (DOX) to prepare Ti-BPDC@Fe@DOX@PEG (TFDP) after biocompatibility modification. TFDP can realize the simultaneous generation of reactive oxygen species and release of DOX under ultrasound irradiation. Moreover, adjusting the Fe(III) content can effectively modulate the band gap of the superlattice and increase the efficiency of sonodynamic therapy (SDT). The mechanisms underlying this modulation were explored. TFDP with Fe(III) can also be used as a contrast agent for magnetic resonance imaging (MRI). Both in vitro and in vivo experiments demonstrated the ability of TFDP to precisely treat cancer using MRI-guided SDT/chemotherapy. This study expands the applications of superlattices as sonosensitizers with flexible and tailored modifications and indicates that superlattices are promising for precise and customized treatments.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Liying Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoying Tan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yanan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yifan Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Nan Song
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ping Zhou
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
8
|
Cui R, Li Y, Huang Y, Wang W, Wan C. Dielectric Matching by the Unique Dynamic Dipoles in Hybrid Organic/Inorganic Superlattices toward Ultrathin Microwave Absorber. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303008. [PMID: 37485638 DOI: 10.1002/smll.202303008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Indexed: 07/25/2023]
Abstract
There is an urgent demand of ultrathin high-performance microwave absorbing materials (MAMs) in the electromagnetic protection field. However, minimizing thickness is challenging mainly due to dielectric mismatch at high permittivity from excessive dielectric loss, leading to strong reflection at 2-18 GHz. Here, a hybrid TaS2 /Co(Cp)2 superlattice is fabricated with alternating [TaS2 ] inorganic layers and [Co(Cp)2 ] organic layers. Dynamic Ta─Co dipoles offer a unique interfacial polarization relaxation mechanism involving the inversion and rotation of dynamic Ta─Co dipoles. The prolonged relaxation time of limited dynamic Ta─Co dipoles contributes to enhanced dielectric matching at high permittivity, which is essential for ultrathin high-performance MAMs. Furthermore, the confinement of paramagnetic Co(Cp)2 molecules in the interlayer space of the diamagnetic TaS2 sublattice triggers unexpected ferromagnetism via interfacial magnetic coupling conducive to the improved microwave-absorbing performance at reduced thickness. Therefore, it presents a 1.271-mm thick ultrathin absorber that can attenuate up to 99.99% of electromagnetic wave energy with a broad effective absorption bandwidth of 4.05 GHz, thus pushing the limits of thickness of 2D-based high-performance MAMs. This paper demonstrates a new strategy toward ultrathin MAMs with tunable and decent electromagnetic loss derived from electrical and magnetic coupling at the atomic scale.
Collapse
Affiliation(s)
- Ruopeng Cui
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Li
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yujia Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, China
| | - Wei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chunlei Wan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Zhang L, Wang N, Li Y. Design, synthesis, and application of some two-dimensional materials. Chem Sci 2023; 14:5266-5290. [PMID: 37234883 PMCID: PMC10208047 DOI: 10.1039/d3sc00487b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Two-dimensional (2D) materials are widely used as key components in the fields of energy conversion and storage, optoelectronics, catalysis, biomedicine, etc. To meet the practical needs, molecular structure design and aggregation process optimization have been systematically carried out. The intrinsic correlation between preparation methods and the characteristic properties is investigated. This review summarizes the recent research achievements of 2D materials in the aspect of molecular structure modification, aggregation regulation, characteristic properties, and device applications. The design strategies to fabricate functional 2D materials starting from precursor molecules are introduced in detail referring to organic synthetic chemistry and self-assembly technology. It provides important research ideas for the design and synthesis of related materials.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| |
Collapse
|
10
|
Xing F, Ji G, Li Z, Zhong W, Wang F, Liu Z, Xin W, Tian J. Preparation, properties and applications of two-dimensional superlattices. MATERIALS HORIZONS 2023; 10:722-744. [PMID: 36562255 DOI: 10.1039/d2mh01206e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.
Collapse
Affiliation(s)
- Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Feiyue Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhibo Liu
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Jianguo Tian
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Chen Z, Li J, Meng L, Li J, Hao Y, Jiang T, Yang X, Li Y, Liu ZP, Gong M. Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organic oxidation with enzyme-like activities. Nat Commun 2023; 14:1184. [PMID: 36864050 PMCID: PMC9981682 DOI: 10.1038/s41467-023-36830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Simultaneously achieving abundant and well-defined active sites with high selectivity has been one of the ultimate goals for heterogeneous catalysis. Herein, we construct a class of Ni hydroxychloride-based inorganic-organic hybrid electrocatalysts with the inorganic Ni hydroxychloride chains pillared by the bidentate N-N ligands. The precise evacuation of N-N ligands under ultrahigh-vacuum forms ligand vacancies while partially retaining some ligands as structural pillars. The high density of ligand vacancies forms the active vacancy channel with abundant and highly-accessible undercoordinated Ni sites, exhibiting 5-25 fold and 20-400 fold activity enhancement compared to the hybrid pre-catalyst and standard β-Ni(OH)2 for the electrochemical oxidation of 25 different organic substrates, respectively. The tunable N-N ligand can also tailor the sizes of the vacancy channels to significantly impact the substrate configuration leading to unprecedented substrate-dependent reactivities on hydroxide/oxide catalysts. This approach bridges heterogenous and homogeneous catalysis for creating efficient and functional catalysis with enzyme-like properties.
Collapse
Affiliation(s)
- Zhe Chen
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jili Li
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Lingshen Meng
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jianan Li
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yaming Hao
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Tao Jiang
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Xuejing Yang
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Zhi-Pan Liu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
12
|
Hu P, Yang H, Chen S, Xue Y, Zhu Q, Tang M, Wang H, Liu LM, Gao P, Duan X, Guo L. Hybrid Lamellar Superlattices with Monoatomic Platinum Layers and Programmable Organic Ligands. J Am Chem Soc 2023; 145:717-724. [PMID: 36548984 DOI: 10.1021/jacs.2c11928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compared with layered materials such as graphite and transitional metal dichalcogenides with highly anisotropic in-plane covalent bonds, freestanding metallic two-dimensional (2D) films with atomic thickness are intrinsically more difficult to achieve. The omnidirectional nature of typical metallic bonds prevents the formation of highly anisotropic atomically thin metallic layers. Herein, we report a ligand regulation strategy to stabilize monoatomic platinum layers by forming a unique lamellar superlattice structure with self-assembled organic ligand layers. We show that the interlayer spacings and coordination environments could be systematically tuned by varying programmable molecular ligands with the designed length and structural motifs, which further modulate the electronic states and catalytic performances. The strategy can be extended for preparing lamellar superlattices with monoatomic metallic layers from silver and gold. Such general and delicate synthetic control provides an exciting model system for systematic investigation of the intriguing structure-property correlation of monoatomic layers and promises a molecular design pathway for heterogeneous catalysts.
Collapse
Affiliation(s)
- Pengfei Hu
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.,Research Institute of Aero-Engine, Beihang University, Beijing 102206, China
| | - Haosen Yang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Shulin Chen
- Electron Microscopy Laboratory, International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yufeng Xue
- School of Physics, Beihang University, Beijing 100191, China
| | - Qiaonan Zhu
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Mengyao Tang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Hua Wang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Peng Gao
- Electron Microscopy Laboratory, International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Lin Guo
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
13
|
Xu X, Zhang Z, Xiong R, Lu G, Zhang J, Ning W, Hu S, Feng Q, Qiao S. Bending Resistance Covalent Organic Framework Superlattice: "Nano-Hourglass"-Induced Charge Accumulation for Flexible In-Plane Micro-Supercapacitors. NANO-MICRO LETTERS 2022; 15:25. [PMID: 36583830 PMCID: PMC9803805 DOI: 10.1007/s40820-022-00997-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic framework (COF) film with highly exposed active sites is considered as the promising flexible self-supported electrode for in-plane micro-supercapacitor (MSC). Superlattice configuration assembled alternately by different nanofilms based on van der Waals force can integrate the advantages of each isolated layer to exhibit unexpected performances as MSC film electrodes, which may be a novel option to ensure energy output. Herein, a mesoporous free-standing A-COF nanofilm (pore size is 3.9 nm, averaged thickness is 4.1 nm) with imine bond linkage and a microporous B-COF nanofilm (pore size is 1.5 nm, averaged thickness is 9.3 nm) with β-keto-enamine-linkages are prepared, and for the first time, we assembly the two lattice matching films into sandwich-type superlattices via layer-by-layer transfer, in which ABA-COF superlattice stacking into a "nano-hourglass" steric configuration that can accelerate the dynamic charge transportation/accumulation and promote the sufficient redox reactions to energy storage. The fabricated flexible MSC-ABA-COF exhibits the highest intrinsic CV of 927.9 F cm-3 at 10 mV s-1 than reported two-dimensional alloy, graphite-like carbon and undoped COF-based MSC devices so far, and shows a bending-resistant energy density of 63.2 mWh cm-3 even after high-angle and repeat arbitrary bending from 0 to 180°. This work provides a feasible way to meet the demand for future miniaturization and wearable electronics.
Collapse
Affiliation(s)
- Xiaoyang Xu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhenni Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Rui Xiong
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Guandan Lu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Jia Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Wang Ning
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Qingliang Feng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
- Hebei Electronic Organic Chemicals Engineering Center, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
14
|
Erk H, Opitz K, Hein P, Jauernik S, Bauer M. Observation of electronic structure replicas in photoemission spectra of graphite upon adsorption of tin phthalocyanine. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:095501. [PMID: 36535026 DOI: 10.1088/1361-648x/acacdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Cone-type bands near the center of the surface Brillouin zone were observed in low-energy angle-resolved photoemission spectra of tin phthalocyanine adsorbed on graphite. Simulations in comparison with the experimental data show that the spectral features represent replicas of the electronic structure of graphite nearK‾resulting from high-order momentum transfer processes up to the fourth order owing to the interaction of substrate electrons with the long-range structural order of the adsorbate overlayer. The analysis of time-resolved photoemission data from one of the replicas yields a quantitative and very good agreement with previous studies on the excited carrier dynamics in the Dirac cones of graphite and graphene.
Collapse
Affiliation(s)
- Hermann Erk
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Klaas Opitz
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Petra Hein
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Stephan Jauernik
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Michael Bauer
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
15
|
Zhang Z, Liu P, Song Y, Hou Y, Xu B, Liao T, Zhang H, Guo J, Sun Z. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204297. [PMID: 36266983 PMCID: PMC9762311 DOI: 10.1002/advs.202204297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Exploring low-cost and high-efficient electrocatalyst is an exigent task in developing novel sustainable energy conversion systems, such as fuel cells and electrocatalytic fuel generations. 2D materials, specifically 2D superlattice materials focused here, featured highly accessible active areas, high density of active sites, and high compatibility with property-complementary materials to form heterostructures with desired synergetic effects, have demonstrated to be promising electrocatalysts for boosting the performance of sustainable energy conversion and storage devices. Nevertheless, the reaction kinetics, and in particular, the functional mechanisms of the 2D superlattice-based catalysts yet remain ambiguous. In this review, based on the recent progress of 2D superlattice materials in electrocatalysis applications, the rational design and fabrication of 2D superlattices are first summarized and the application of 2D superlattices in electrocatalysis is then specifically discussed. Finally, perspectives on the current challenges and the strategies for the future design of 2D superlattice materials are outlined. This review attempts to establish an intrinsic correlation between the 2D superlattice heterostructures and the catalytic properties, so as to provide some insights into developing high-performance electrocatalysts for next-generation sustainable energy conversion and storage.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ying Hou
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
- Materials Institute of Atomic and Molecular ScienceShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Ting Liao
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Haixia Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| |
Collapse
|
16
|
Ursi F, Virga S, Garcìa-Espejo G, Masciocchi N, Martorana A, Giannici F. Long-Term Stability of TiS 2-Alkylamine Hybrid Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8297. [PMID: 36499793 PMCID: PMC9736076 DOI: 10.3390/ma15238297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Layered TiS2 intercalated with linear alkylamines has recently attracted significant interest as a model compound for flexible n-type thermoelectric applications, showing remarkably high power factors at room temperature. The thermal and, particularly, environmental stability of such materials is, however, a still an open challenge. In this paper, we show that amine-intercalated TiS2 prepared by a simple mechanochemical process is prone to chemical decomposition through sulfur exsolution, and that the presence of molecular oxygen is likely to mediate the decomposition reaction. Through computational analysis of the possible reaction pathways, we propose that Ti-N adducts are formed as a consequence of amine groups substituting for S vacancies on the internal surfaces of the S-Ti-S layers. These findings provide insights for possible future applications of similar hybrid compounds as devices operating in ambient conditions, and suggest isolating them from atmospheric oxygen.
Collapse
Affiliation(s)
- Federica Ursi
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Simone Virga
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gonzalo Garcìa-Espejo
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab., Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab., Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Antonino Martorana
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Francesco Giannici
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
17
|
Yang H, Dai K, Zhang J, Dawson G. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Hu T, Liu Q, Zhou Z, Zhao W, Huang H, Meng F, Liu W, Zhang Q, Gu L, Liang R, Tan C. Preparation of Dye Molecule-Intercalated MoO 3 Organic/Inorganic Superlattice Nanoparticles for Fluorescence Imaging-Guided Catalytic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200595. [PMID: 35599433 DOI: 10.1002/smll.202200595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Intercalation of organic molecules into the van der Waals gaps of layered materials allows for the preparation of organic/inorganic superlattices for varying promising applications. Herein, the preparation of a series of dye molecule/MoO3 organic/inorganic superlattice nanoparticles by aqueous intercalation of several dye molecules into layered MoO3 for fluorescence imaging-guided catalytic therapy is reported. The long MoO3 nanobelts are treated by ball milling and subsequent aqueous intercalation followed by a cation ion exchange to obtain the dye molecule-intercalated MoO3 organic/inorganic superlattices. Importantly, because of the activation induced by organic intercalation, the Nile blue (NB)-intercalated MoO3-x (NB-MoO3-x ) nanoparticles show excellent catalytic activity for the generation of reactive oxygen species, that is, hydroxyl radical (·OH) and superoxide anion (·O2- ), through catalyzing H2 O2 and O2 , respectively. Moreover, the intense fluorescence of the intercalated NB molecules endows NB-MoO3-x with the in vivo fluorescence imaging capability. Thus, the polyvinylpyrrolidone-modified NB-MoO3-x nanoparticles can be used for tumor-specific catalytic therapy to realize efficient cancer cell elimination in vitro and fluorescence imaging-guided tumor ablation in vivo.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Wei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wanqiang Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
19
|
Zou Y, Huang Y, Jiang LW, Indra A, Wang Y, Liu H, Wang JJ. Polyaniline coating enables electronic structure engineering in Fe 3O 4to promote alkaline oxygen evolution reaction. NANOTECHNOLOGY 2022; 33:155402. [PMID: 34972094 DOI: 10.1088/1361-6528/ac475c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The electronic structure of active sites is of importance for catalysts to achieve an optimized interaction with the intermediates. In this study, a unique organic-inorganic hybrid oxygen evolution reaction electrocatalyst composed of electrochemically inactive conducting polyaniline (PANI) and non-precious Fe-based oxide Fe3O4is presented. PANI molecules werein situloaded on Fe3O4nanoparticles through an efficient and simple process under mild conditions. The electronic structure of Fe3O4was modulated by creating a strong interaction with PANI molecules, leading to enhanced activity and stability of the catalyst to achieve 10 mA cm-2geometrical current density at overpotential of 265 mV in 1 M aqueous KOH solution. This work demonstrates that a highly efficient electrocatalyst can be achieved by molecular modification and provides a novel strategy for the optimization of the inactive non-precious catalysts.
Collapse
Affiliation(s)
- Yang Zou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Yuan Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, Guangdong, People's Republic of China
| | - Li-Wen Jiang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Arindam Indra
- Department of Chemistry, IIT BHU, Varanasi, Uttar Pradesh 221005, India
| | - Yongqing Wang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
21
|
Yu W, Dong Z, Abdelwahab I, Zhao X, Shi J, Shao Y, Li J, Hu X, Li R, Ma T, Wang Z, Xu QH, Tang DY, Song Y, Loh KP. High-Yield Exfoliation of Monolayer 1T'-MoTe 2 as Saturable Absorber for Ultrafast Photonics. ACS NANO 2021; 15:18448-18457. [PMID: 34714041 DOI: 10.1021/acsnano.1c08093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-phase exfoliation can be developed for the large-scale production of two-dimensional materials for photonic applications. Although atomically thin 2D transition metal dichalcogenides (TMDs) show enhanced nonlinear optical properties or photoluminescence quantum yield relative to the bulk phase, these properties are weak in the absolute sense due to the ultrashort optical path, and they are also sensitive to layer-dependent symmetry properties. Another practical issue is that the chemical stability of some TMDs (e.g., Weyl semimetals) decreases dramatically as the thickness scales down to monolayer, precluding application as optical components in air. To address these issues, a way of exfoliating TMDs that ensures instantaneous passivation needs to be developed. Here, we employed a polymer-assisted electrochemical exfoliation strategy to synthesize PVP-passivated TMDs monolayers that could be spin coated and restacked into organic-inorganic superlattices with well-defined X-ray diffraction patterns. The segregation of restacked TMDs (e.g., MoS2) by PVP allows the inversion asymmetry of individual layers to be maintained in these superlattices, which allows second harmonic generation and photoluminescence to be linearly scaled with thickness. PVP-passivated monolayer 1T'-MoTe2 saturable absorber fabricated from these flakes exhibits fast response and recovery time (<150 fs) and pulse stability. Continuous-wave mode-locking based on 1T'-MoTe2 saturable absorber in a fiber ring laser cavity has been realized, attaining a fundamental repetition rate of 3.15 MHz and pulse duration as short as 867 fs at 1563 nm.
Collapse
Affiliation(s)
- Wei Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zikai Dong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Faculty of Science, Beijing University of Technology, 100124 Beijing, China
| | - Ibrahim Abdelwahab
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jia Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yan Shao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiao Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Runlai Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Teng Ma
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhe Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ding Yuan Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanrong Song
- Faculty of Science, Beijing University of Technology, 100124 Beijing, China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
22
|
Anantharaman SB, Jo K, Jariwala D. Exciton-Photonics: From Fundamental Science to Applications. ACS NANO 2021; 15:12628-12654. [PMID: 34310122 DOI: 10.1021/acsnano.1c02204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconductors in all dimensionalities ranging from 0D quantum dots and molecules to 3D bulk crystals support bound electron-hole pair quasiparticles termed excitons. Over the past two decades, the emergence of a variety of low-dimensional semiconductors that support excitons combined with advances in nano-optics and photonics has burgeoned an advanced area of research that focuses on engineering, imaging, and modulating the coupling between excitons and photons, resulting in the formation of hybrid quasiparticles termed exciton-polaritons. This advanced area has the potential to bring about a paradigm shift in quantum optics, as well as classical optoelectronic devices. Here, we present a review on the coupling of light in excitonic semiconductors and previous investigations of the optical properties of these hybrid quasiparticles via both far-field and near-field imaging and spectroscopy techniques. Special emphasis is given to recent advances with critical evaluation of the bottlenecks that plague various materials toward practical device implementations including quantum light sources. Our review highlights a growing need for excitonic material development together with optical engineering and imaging techniques to harness the utility of excitons and their host materials for a variety of applications.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
23
|
Wen Y, Wang G, Jiang X, Ye X, Li W, Xu G. A Covalent Organic–Inorganic Hybrid Superlattice Covered with Organic Functional Groups for Highly Sensitive and Selective Gas Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yingyi Wen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) 19A Yuquan Road Beijing 100049 P. R. China
| | - Guan‐E Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaoming Jiang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaoliang Ye
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Wenhua Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) 19A Yuquan Road Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
24
|
Wen Y, Wang GE, Jiang X, Ye X, Li W, Xu G. A Covalent Organic-Inorganic Hybrid Superlattice Covered with Organic Functional Groups for Highly Sensitive and Selective Gas Sensing. Angew Chem Int Ed Engl 2021; 60:19710-19714. [PMID: 34240809 DOI: 10.1002/anie.202107185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Indexed: 01/05/2023]
Abstract
Organic-inorganic hybrid superlattices (OIHSLs) hold attractive physical and chemical properties, while the construction of single-crystal covalent OIHSLs has not been achieved. Herein a coordination assembly strategy was proposed to create a single-crystal covalent OIHSL PbBDT (BDT=1,4-benzenedithiolate), where layered [PbS2 ] sublattice covalently connects with benzene sublattice. The covalent bonding offers better thermo-/chemi-stability, inter-sublattice electron transport, and unique organic-group-functionalized surface, which may enable better performances in chemical applications than non-covalent OIHSL. These features endow PbBDT with the highest sensitivity, the lowest detection limit and excellent selectivity towards NO2 at room temperature among all chemiresistive gas-sensing materials with reported response time less than 2 min without the need of light assistance.
Collapse
Affiliation(s)
- Yingyi Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences (UCAS), 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoliang Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Wenhua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences (UCAS), 19A Yuquan Road, Beijing, 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
25
|
2D Monomolecular Nanosheets Based on Thiacalixarene Derivatives: Synthesis, Solid State Self-Assembly and Crystal Polymorphism. NANOMATERIALS 2020; 10:nano10122505. [PMID: 33327421 PMCID: PMC7764881 DOI: 10.3390/nano10122505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022]
Abstract
Synthetic organic 2D materials are attracting careful attention of researchers due to their excellent functionality in various applications, including storage batteries, catalysis, thermoelectricity, advanced electronics, superconductors, optoelectronics, etc. In this work, thiacalix[4]arene derivatives functionalized by geranyl fragments at the lower rim in cone and 1,3-alternate conformations, that are capable of controlled self-assembly in a 2D nanostructures were synthesized. X-ray diffraction analysis showed the formation of 2D monomolecular-layer nanosheets from synthesized thiacalix[4]arenes, the distance between which depends on the stereoisomer used. It was established by DSC, FSC, and PXRD methods that the obtained macrocycles are capable of forming different crystalline polymorphs, moreover dimethyl sulphoxide (DMSO) is contributing to the formation of a more stable polymorph for cone stereoisomer. The obtained crystalline 2D materials based on synthesized thiacalix[4]arenes can find application in material science and medicine for the development of modern pharmaceuticals and new generation materials.
Collapse
|