1
|
Xiao Y, Wu F, Tang L, Zhang X, Wei M, Wang G, Feng JJ. Divergent Synthesis of Sulfur-Containing Bridged Cyclobutanes by Lewis Acid Catalyzed Formal Cycloadditions of Pyridinium 1,4-Zwitterionic Thiolates and Bicyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202408578. [PMID: 38818620 DOI: 10.1002/anie.202408578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Bridged cyclobutanes and sulfur heterocycles are currently under intense investigation as building blocks for pharmaceutical drug design. Two formal cycloaddition modes involving bicyclobutanes (BCBs) and pyridinium 1,4-zwitterionic thiolate derivatives were described to rapidly expand the chemical space of sulfur-containing bridged cyclobutanes. By using Ni(ClO4)2 as the catalyst, an uncommon higher-order (5+3) cycloaddition of BCBs with quinolinium 1,4-zwitterionic thiolate was achieved with broad substrate scope under mild reaction conditions. Furthermore, the first Lewis acid-catalyzed asymmetric polar (5+3) cycloaddition of BCB with pyridazinium 1,4-zwitterionic thiolate was accomplished. In contrast, pyridinium 1,4-zwitterionic thiolates undergo an Sc(OTf)3-catalyzed formal (3+3) reaction with BCBs to generate thia-norpinene products, which represent the initial instance of synthesizing 2-thiabicyclo[3.1.1]heptanes (thia-BCHeps) from BCBs. Moreover, we have successfully used this (3+3) protocol to rapidly prepare thia-BCHeps-substituted analogues of the bioactive molecule Pitofenone. Density functional theory (DFT) computations imply that kinetic factors govern the (5+3) cycloaddition reaction between BCB and quinolinium 1,4-zwitterionic thiolate, whereas the (3+3) reaction involving pyridinium 1,4-zwitterionic thiolates is under thermodynamic control.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China
| | - Mengran Wei
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
2
|
Li LZ, Huang YR, Xu ZX, He HS, Ran HW, Zhu KY, Han JC, Li CC. Synthesis of Bridged Five-Membered Ring Systems by Type II [3 + 2] Annulation of Allenylsilane-ene. J Am Chem Soc 2024; 146:24782-24787. [PMID: 39207015 DOI: 10.1021/jacs.4c09384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The first type II intramolecular [3 + 2] annulation of allenylsilane-ene has been achieved, enabling diastereoselective and efficient construction of synthetically challenging bridged five-membered ring systems such as bicyclo[3.2.1]. This mild and direct process shows a broad substrate scope and is highly stereospecific. Particularly, this work represents the first stereoselective method for the direct synthesis of bicyclo[3.2.1] ring systems from acyclic precursors. Additionally, the first asymmetric total syntheses of (+)- and (-)-strepsesquitriol, and the efficient formation of the synthetically challenging tetracyclic core of pierisjaponol D are achieved by this type II [3 + 2] annulation reaction.
Collapse
Affiliation(s)
- Ling-Zi Li
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Rou Huang
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zi-Xun Xu
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong-Sen He
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong-Wei Ran
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke-Yu Zhu
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
3
|
Li K, Zhao Z, Qin W, Liu Y, Yan H. Catalytic asymmetric construction of bridged bicyclo[ m.3.1] rings using an intramolecular Diels-Alder reaction. Chem Commun (Camb) 2024; 60:9570-9573. [PMID: 39139075 DOI: 10.1039/d4cc02850c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we presented an enantioselective intramolecular Diels-Alder (IMDA) reaction with vinyl branched vinylidene ortho-quinone methide (VQM). The control of site selectivity in the IMDA reaction led to both chiral bridged bicyclo[4.3.1] and [5.3.1] architectures with high isolated yields (up to 85%) and excellent enantioselectivities (up to 97% ee).
Collapse
Affiliation(s)
- Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Zhengxing Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hailong Yan
- Chongqing University FuLing Hospital, Chongqing University, Chongqing 408000, P. R. China.
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
4
|
Zhu J, Yan J, Wang F, Zhang L, Li J, Cheng M, Yang L, Liu Y. Gold-Catalyzed Oxidative Rearrangement Strategy to Yield 2-Hydroxycyclohepta-1,3-diene-1-carbonyl Compounds. J Org Chem 2024; 89:8734-8744. [PMID: 38814709 DOI: 10.1021/acs.joc.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A gold-catalyzed oxidative rearrangement of propargyl alcohols, derived from commercially available cyclohex-2-en-1-ones and alkynes, was successfully developed for the efficient synthesis of seven-membered rings. Thorough investigations were conducted to optimize the reaction conditions and evaluate its compatibility with various functional groups. Additionally, this methodology was applied to the formal total synthesis of guanacastepene A, demonstrating its practical utility in complex natural product synthesis. This versatile and efficient approach opens up new possibilities for the construction of diverse seven-membered ring systems, providing valuable building blocks for further exploration in drug discovery and the synthesis of intricate molecules.
Collapse
Affiliation(s)
- Jiang Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jianghao Yan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Fudong Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiaji Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
5
|
Fulton BB, Hartzell AJ, Dias HVR, Lovely CJ. Room Temperature Diels-Alder Reactions of 4-Vinylimidazoles. Molecules 2024; 29:1902. [PMID: 38675720 PMCID: PMC11053432 DOI: 10.3390/molecules29081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
In the course of studying Diels-Alder reactions of 4-vinylimidazoles with N-phenylmaleimide, it was discovered that they engage in cycloaddition at room temperature to give high yields of the initial cycloadduct as a single stereoisomer. In certain cases, the product precipitated out of the reaction mixture and could be isolated by simple filtration, thereby avoiding issues with aromatization observed during chromatographic purification. Given these results, intramolecular variants using doubly activated dienophiles were also investigated at room temperature. Amides underwent cycloaddition at room temperature in modest yields, but the initial adducts were not isolable with Nimid-benzyl-protected systems. Attempts to extend these results to the corresponding esters and hydroxamate were less successful with these substrates only undergoing cycloaddition at elevated temperatures in lower yields. Density functional theory calculations were performed to evaluate the putative transition states for both the inter- and intramolecular variants to rationalize experimental observations.
Collapse
Affiliation(s)
| | | | | | - Carl J. Lovely
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| |
Collapse
|
6
|
León Rojas AF, Chong YY, Kyne SH, Xia B, Chan PWH. Enantioselective and Regiodivergent Gold and Chiral Brønsted Acid Catalyzed Cycloisomerization/Diels-Alder Reaction of 1,10-Dien-4-yn-3-yl Acetates: Synthesis of Norbornene-Embedded Tricarbocycles. Org Lett 2024; 26:3037-3042. [PMID: 38557076 DOI: 10.1021/acs.orglett.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A synthetic method for the enantioselective and regiodivergent synthesis of hexahydro-2H-2,4a-methanonaphthalen-4-yl and octahydro-2,4-methanoazulen-1-yl esters that relies on the gold(I)- and chiral Brønsted acid-catalyzed cycloisomerization/Diels-Alder (CDA) reaction of (E)-1,10-dien-4-yn-3-yl acetates is described.
Collapse
Affiliation(s)
| | - Ying Yan Chong
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Sara Helen Kyne
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bo Xia
- Department of the Biological Environment, Jiyang College of Zhejiang A&F University, Zhuji 311800, China
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Philip Wai Hong Chan
- Department of the Biological Environment, Jiyang College of Zhejiang A&F University, Zhuji 311800, China
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Abstract
ConspectusSteroids continue to play a significant role in organic chemistry, medicinal chemistry, and drug discovery due to their important biological activities and diverse intriguing structures. Although synthetic organic chemists have successfully constructed and elaborated the classical [6-6-6-5] tetracyclic steroid skeleton for nearly a century, synthesis of the unusual rearranged steroids, particularly abeo-steroids with a medium-sized ring, remains a challenge in the synthetic community. Furthermore, the structures of abeo-steroids are complex and diverse, containing a seven-membered ring embedded in the fused or bridged A/B ring system and possessing numerous stereogenic centers. Besides their structural complexity, various abeo-steroids have shown remarkable biological activities. However, the relative scarcity of abeo-steroids in natural sources has impeded the systematic evaluation of their biological activities. In addition, direct strategies to build the core structures of abeo-steroids are very rare, partially because of the high ring-strain energies of their rearranged A/B ring systems. Therefore, the development of direct and efficient synthetic approaches to these complex molecules is highly desired.Our long-standing interest in the total synthesis of abeo-steroids and the development of new cycloaddition reactions for streamlining complex molecule synthesis have led us to develop a series of unique and powerful intramolecular cycloaddition strategies to access a diverse array of highly strained abeo-steroids. These strategies include Ru-catalyzed [5 + 2] cycloaddition, acid-promoted type I [5 + 2] cycloaddition, Rh-catalyzed [2 + 2 + 1] cycloaddition, and type II [5 + 2] cycloaddition. Since 2018, we have accomplished the first total syntheses of five synthetically challenging abeo-steroids, i.e., bufogargarizins A and B, phomarol, bufospirostenin A, and cyclocitrinol, thus facilitating the evaluation of their pharmacological potentials. In this Account, we summarize our laboratory's systematic efforts in the total synthesis of these abeo-steroids via cycloaddition strategies. We highlight the efficiency and versatility of each cycloaddition strategy for constructing structurally complex abeo-steroid cores by forming the A/B ring system. The evolution of each strategy and key lessons learned from the synthetic journey are also discussed. We believe that our unique perspective in this field will promote advances in the total synthesis of abeo- and related steroids.
Collapse
Affiliation(s)
- Long Min
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Ping Zhong
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
8
|
Xie X, Hu F, Zhou Y, Liu Z, Shen X, Fu J, Zhao X, Yu Z. Photoswitchable Oxidopyrylium Ylide for Photoclick Reaction with High Spatiotemporal Precision: A Dynamic Switching Strategy to Compensate for Molecular Diffusion. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Xinyu Xie
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Fuqiang Hu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhihao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xin Shen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jielin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
9
|
Xie X, Hu F, Zhou Y, Liu Z, Shen X, Fu J, Zhao X, Yu Z. Photoswitchable Oxidopyrylium Ylide for Photoclick Reaction with High Spatiotemporal Precision: A Dynamic Switching Strategy to Compensate for Molecular Diffusion. Angew Chem Int Ed Engl 2023; 62:e202300034. [PMID: 36825842 DOI: 10.1002/anie.202300034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
We describe a novel type of photoclick reaction between 2,3-diaryl indenone epoxide (DIO) and ring-strained dipolarophiles, in which DIO serves as a P-type photoswitch to produce mesoionic oxidopyrylium ylide (PY) to initiate an ultra-fast [5+2] cycloaddition (k2hν =1.9×105 M-1 s-1 ). The photoisomerization between DIO and PY can be tightly controlled by either 365 or 520 nm photo-stimulation, which allows reversion or regeneration of the reactive PY dipole on demand. Thus, this reversible photoactivation was exploited to increase the chemoselectivity of the [5+2] cycloaddition in complex environments via temporal dual-λ stimulation sequences and to recycle the DIO reagent for batch-wise protein conjugation. A dynamic photoswitching strategy is also proposed to compensate for molecular diffusion of PY in aqueous solution, enhancing the spatial resolution of lithographic surface decoration and bioorthogonal labeling on living cells via a spatiotemporal dual-λ photo-modulation.
Collapse
Affiliation(s)
- Xinyu Xie
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fuqiang Hu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhihao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xin Shen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jielin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
10
|
Yu T, Yang J, Wang Z, Ding Z, Xu M, Wen J, Xu L, Li P. Selective [2σ + 2σ] Cycloaddition Enabled by Boronyl Radical Catalysis: Synthesis of Highly Substituted Bicyclo[3.1.1]heptanes. J Am Chem Soc 2023; 145:4304-4310. [PMID: 36763965 DOI: 10.1021/jacs.2c13740] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In contrast to the traditional and widely-used cycloaddition reactions involving at least a π bond component, a [2σ + 2σ] radical cycloaddition between bicyclo[1.1.0]butanes (BCBs) and cyclopropyl ketones has been developed to provide a modular, concise, and atom-economical synthetic route to substituted bicyclo[3.1.1]heptane (BCH) derivatives that are 3D bioisosteres of benzenes and core skeleton of a number of terpene natural products. The reaction was catalyzed by a combination of simple tetraalkoxydiboron(4) compound B2pin2 and 3-pentyl isonicotinate. The broad substrate scope has been demonstrated by synthesizing a series of new highly functionalized BCHs with up to six substituents on the core with up to 99% isolated yield. Computational mechanistic investigations supported a pyridine-assisted boronyl radical catalytic cycle.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Xu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jingru Wen
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
He J, Yang L, Zhang X, Xu W, Wang H, Lang M, Wang J, Peng S. Stereodivergent Syntheses of N-heterocycles by Catalyst-Controlled Reaction of Imidazolidines with Allenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jieyin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Liangliang Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Xue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Wendi Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Haiyang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| |
Collapse
|
12
|
Huang G, Kouklovsky C, de la Torre A. Gram-Scale Enantioselective Synthesis of (+)-Lucidumone. J Am Chem Soc 2022; 144:17803-17807. [PMID: 36150082 DOI: 10.1021/jacs.2c08760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first enantioselective total synthesis of (+)-lucidumone is described through a 13-step synthetic pathway (longest linear sequence). The key steps involve the formation of a bridged bicyclic lactone by an enantioselective inverse-electron-demand Diels-Alder cycloaddition, C-O bond formation to assemble two fragments, and a one-pot retro-[4 + 2]/[4 + 2] cycloaddition cascade. The synthesis is scalable, and more than one gram of natural product was synthesized in one batch.
Collapse
Affiliation(s)
- Guanghao Huang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 15 rue Georges Clémenceau, 91405 Orsay, Cedex, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 15 rue Georges Clémenceau, 91405 Orsay, Cedex, France
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 15 rue Georges Clémenceau, 91405 Orsay, Cedex, France
| |
Collapse
|
13
|
Yokoyama H, Kimaru N, Kozuma A, Komatsuki K, Yamada T, Saito K. Decarboxylative Intramolecular Cyclization and Sequential Halogenation of Cyclic Enol Carbonates —Synthesis of Stereochemically-defined Seven-membered Carbocycles—. CHEM LETT 2022. [DOI: 10.1246/cl.220211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Haruki Yokoyama
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Natsuki Kimaru
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akane Kozuma
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Keiichi Komatsuki
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Tohru Yamada
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kodai Saito
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
14
|
Liu RM, Zhang M, Han XX, Liu XL, Pan BW, Tian YP, Peng LJ, Yuan WC. Catalytic asymmetric Michael/cyclization reaction of 3-isothiocyanato thiobutyrolactone: an approach to the construction of a library of bispiro[pyrazolone-thiobutyrolactone] skeletons. Org Biomol Chem 2022; 20:5060-5065. [PMID: 35703322 DOI: 10.1039/d2ob00773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we demonstrate the first example of 3-isothiocyanato thiobutyrolactone serving as a useful building block in the Michael/cyclization reaction with alkylidene pyrazolones for the enantioselective construction of optically active structural bispiro[pyrazolone-thiobutyrolactone] skeletons containing three contiguous stereocenters with two spiroquaternary stereocenters. These products were smoothly afforded in up to 90% yield, >20 : 1 dr and >99% ee with chiral squaramide as the catalyst under mild conditions. Notably, this is also the first example of the merger of a spirocyclic pyrazolone scaffold with a spirocyclic thiobutyrolactone scaffold, potentially useful in medicinal chemistry.
Collapse
Affiliation(s)
- Ren-Ming Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Min Zhang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiao-Xue Han
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Bo-Wen Pan
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - You-Ping Tian
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Li-Jun Peng
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Harry NA, Ujwaldev SM. Recent advances in [5+2] cycloadditions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220510152025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The existence of a seven-membered cyclic core in several natural products and biomolecules vitalized the research on its synthesis. [5+2] cycloaddition has become a promising strategy for the construction of seven-membered ring systems by the formation of carbon-carbon bonds in a single step, with strong regioselectivity and stereoselectivity. This review mainly focuses on recent developments in the area of [5+2] cycloaddition since 2019. Total synthesis of natural products involving [5+2] cycloaddition as key step leading to heptacyclic core is also discussed. Synthesis of fused and bridged ring systems via the reactions involving inter and intramolecular [5+2] cycloadditions like oxidopyrylium-mediated [5+2] cycloadditions, [5+2] cycloadditions of vinyl cyclopropanes (VCPs), vinyl phenols, etc is explained in the review with the latest examples. This review provides a useful guide for researchers exploring this powerful strategy to create more elegant heptacycles in their future research.
Collapse
|
16
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
17
|
Xing S, Wang Y, Jin C, Shi S, Zhang Y, Liao Z, Wang K, Zhu B. Construction of Bridged Aza- and Oxa-[ n.2.1] Skeletons via an Intramolecular Formal [3+2] Cycloaddition of Aziridines and Epoxides with Electron-Deficient Alkenes. J Org Chem 2022; 87:6426-6431. [PMID: 35439001 DOI: 10.1021/acs.joc.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intramolecular formal [3+2] cycloaddition of activated aziridines and epoxides with electron-deficient alkene has been developed for the general and efficient construction of bridged aza- and oxa-[n.2.1] (n = 3 or 4) skeletons. This strategy can be efficiently promoted by lithium iodide. To demonstrate its potential, the intramolecular formal [3+2] cycloaddition was used to access the important intermediate of homoepiboxidine.
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Changkun Jin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Shaochen Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yihui Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Ziya Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
18
|
Feng J, Zhang YJ, Ma SH, Yang C, Wang ZP, Ding SY, Li Y, Wang W. Fused-Ring-Linked Covalent Organic Frameworks. J Am Chem Soc 2022; 144:6594-6603. [PMID: 35380432 DOI: 10.1021/jacs.2c02173] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of linkage chemistry in the research area of covalent organic frameworks (COFs) is fundamentally important for creating robust structures with high crystallinity and diversified functionality. We reach herein a new level of complexity and controllability in linkage chemistry by achieving the first synthesis of fused-ring-linked COFs. A series of bicyclic pyrano[4,3-b]pyridine COFs have been constructed via a cascade protocol involving Schiff-base condensation, intramolecular [4 + 2] cycloaddition, and dehydroaromatization. With a broad scope of Brønsted or Lewis acids as the catalyst, the designed monomers, that is, O-propargylic salicylaldehydes and multitopic anilines, were converted into the fused-ring-linked frameworks in a one-pot fashion. The obtained COFs exhibited excellence in terms of purity, stability, and crystallinity, as comprehensively characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, and so on. Specifically, the highly selective formation (>94%) of pyrano[4,3-b]pyridine linkage was verified by quantitative NMR measurements combined with 13C-labeling synthesis. Moreover, the fused-ring linkage possesses fully locked conformation, which benefits to the high crystallinity observed for these COFs. Advancing the linkage chemistry from the formation of solo bonds or single rings to that of fused rings, this study has opened up new possibilities for the concise construction of sophisticated COF structures with high controllability.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Jie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sheng-Hua Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chen Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
19
|
He YT, Li LX, Lin X, Hou BL, Li CC. Synthesis of Various Bridged Ring Systems via Rhodium-Catalyzed Bridged (3+2) Cycloadditions. Org Lett 2021; 24:186-190. [PMID: 34939815 DOI: 10.1021/acs.orglett.1c03837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we describe the rhodium-catalyzed bridged (3+2) cycloaddition cascade reactions of N-sulfonyl-1,2,3-triazoles, which allowed the efficient diastereoselective construction of various functionalized and synthetically challenging bridged ring systems. This simple, direct transformation had a broad substrate scope and excellent functional group tolerance. The highly strained polycyclic bicyclo[2.2.2]octa[b]indole core of fruticosine was synthesized efficiently using this methodology.
Collapse
Affiliation(s)
- Yu-Tao He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Xuan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaohong Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bao-Long Hou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
He Y, Wang H, Xu L, Li DY, Ge JH, Feng DF, Feng W, Zou G, Liu PN. Direct Access to Bridged Polycyclic Skeletons by Merging Oxidative C-H Annulation and Cascade [4 + 2] Cycloaddition. Org Lett 2021; 24:121-126. [PMID: 34931834 DOI: 10.1021/acs.orglett.1c03652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a step-economic strategy for the direct synthesis of bridged polycyclic skeletons by merging oxidative C-H annulation and cascade cycloaddition. In the protocol, spiro[cyclopentane-1,3'-indoline]-2,4-dien-2'-ones were first synthesized by oxidative C-H annulation of ethylideneoxindoles with alkynes. Subsequent cascade [4 + 2] cycloaddition with dienophiles gave the bridged bicyclo[2.2.1]quinolin-2(1H)-ones and enabled the one-pot construction of two quaternary carbon centers and three C-C bonds. Mechanistic investigations of the latter suggest a cascade ring-opening, 1,5-sigmatropic rearrangement, and [4 + 2] cycloaddition process.
Collapse
Affiliation(s)
- Yan He
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Heng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ji-Hong Ge
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Da-Fu Feng
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Feng
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
21
|
Davis AE, Lowe JM, Hilinski MK. Vinylazaarenes as dienophiles in Lewis acid-promoted Diels-Alder reactions. Chem Sci 2021; 12:15947-15952. [PMID: 35024118 PMCID: PMC8672738 DOI: 10.1039/d1sc05095h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Described are the first examples of Lewis acid-promoted Diels–Alder reactions of vinylpyridines and other vinylazaarenes with unactivated dienes. Cyclohexyl-appended azaarenes constitute a class of substructures of rising prominence in drug discovery. Despite this, thermal variants of the vinylazaarene Diels–Alder reaction are rare and have not been adopted for synthesis, and Lewis acid-promoted variants are virtually unexplored. The presented work addresses this gap and in the process furnishes increased scope, dramatically higher yields, improved regioselectivity, and high levels of diastereoselectivity compared to prior thermal examples. These reactions provide scalable access to druglike scaffolds not readily available through other methods. More broadly, these studies establish a useful new class of dienophiles that, based on preliminary mechanistic studies, should be amenable to conventional strategies for enantioselective catalysis. Vinyl-substituted azaarenes are rare and challenging substrates as dienophiles in Diels–Alder reactions; by employing Lewis acid activation, high yielding and highly selective cycloadditions with unactivated dienes are enabled.![]()
Collapse
Affiliation(s)
- Anna E Davis
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904-4319 USA
| | - Jared M Lowe
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904-4319 USA
| | - Michael K Hilinski
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904-4319 USA
| |
Collapse
|
22
|
Yadav J, Dolas AJ, Iype E, Rangan K, Ohshita J, Kumar D, Kumar I. Asymmetric Synthesis of Bridged N-Heterocycles with Tertiary Carbon Center through Barbas Dienamine-Catalysis: Scope and Applications. J Org Chem 2021; 86:17213-17225. [PMID: 34743517 DOI: 10.1021/acs.joc.1c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct aza-Diels-Alder reaction between 2-aryl-3H-indolin-3-ones and cyclic-enones has been developed to access chiral indolin-3-one fused polycyclic bridged compounds. This method proceeds via proline-catalyzed Barbas-dienamine intermediate formation from various cyclic-enones such as 2-cyclopenten-1-one, 2-cyclohexene-1-one, and 2-cycloheptene-1-one, followed by a reaction with 2-aryl-3H-indol-3-ones. Several indolin-3-ones fusing [2.2.2], [2.2.1], and [3.2.1] skeletons decorated with a tertiary carbon chiral center have been prepared. Computational studies (DFT) supported the observed stereoselectivity in the method. The synthesized compounds have shown exciting photophysical activities and selective sensing of Pd2+ and Fe3+ ions through the fluorescence quenching "switch-off" mode.
Collapse
Affiliation(s)
- Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Eldhose Iype
- Department of Chemical Engineering, Birla Institute of Technology and Science, Dubai Campus, Dubai 345055, United Arab Emirates
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Joji Ohshita
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima City, Hiroshima, 739-8527, Japan
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
23
|
Sendra J, Reyes E, Prieto L, Fernández E, Vicario JL. Transannular Enantioselective (3 + 2) Cycloaddition of Cycloalkenone Hydrazones under Brønsted Acid Catalysis. Org Lett 2021; 23:8738-8743. [PMID: 34726408 PMCID: PMC8609578 DOI: 10.1021/acs.orglett.1c03190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrazones derived from cycloalkenones undergo an enantioselective transannular formal (3 + 2) cycloaddition catalyzed by a chiral phosphoric acid. The reaction provides high yields and excellent stereocontrol in the formation of complex adducts with one or two α-tertiary amine moieties at the ring fusion, and these can be converted into very versatile stereodefined decalin- or octahydro-1H-indene-derived 1,3-diamines through simple reductive N-N cleavage.
Collapse
Affiliation(s)
- Jana Sendra
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain.,Departament Química Física i Inorgànica, Universidad Rovira i Virgilli, C/Marcel·lí Domingo s/n, 50009 Tarragona, Spain
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| | - Elena Fernández
- Departament Química Física i Inorgànica, Universidad Rovira i Virgilli, C/Marcel·lí Domingo s/n, 50009 Tarragona, Spain
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
24
|
Pyrrolidine‐Catalyzed Annulations of Quinone Monoacetals with Naphthols: Synthesis of 2‐Oxabicyclo[3.3.1]nonane Skeletons, Transformations and Reaction Mechanism. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Huang X, Shi Y, Wang Y, Jiao J, Tang Y, Li J, Xu S, Li Y. Synthesis of Indole-Fused Oxepines via C-H Activation Initiated Diastereoselective [5 + 2] Annulation of Indoles with 1,6-Enynes. Org Lett 2021; 23:8365-8369. [PMID: 34652931 DOI: 10.1021/acs.orglett.1c03106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A rhodium-catalyzed diastereoselective formal [5 + 2] annulation of indoles with cyclohexadienone-containing 1,6-enynes has been established via indole 2,3-difunctionalization. The reaction, probably proceeding through tandem indole C2-H alkenylation and intramolecular Friedel-Crafts alkylation relay, provides rapid construction of indole-fused oxepines in good to excellent yields with a broad substrate scope. This method also features concomitant construction of cis-hydrobenzo[b] oxepine scaffolds, a core unit found in numerous natural products of important biological activities.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
26
|
Abstract
We herein describe a new approach for the efficient and asymmetric construction of the tricyclic core of eurifoloid A, which possesses a unique and highly strained bicyclo[4.4.1] ring system. A rhodium-catalyzed intramolecular [3 + 2] dipolar cycloaddition was developed to install synthetically challenging bridged bicyclo[4.3.1] ring systems. The reported chemistry shows the feasibility of constructing the eurifoloid A framework using a diastereoselective intramolecular [3 + 2] cycloaddition and a ring enlargement.
Collapse
Affiliation(s)
- Bao-Long Hou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Xuan Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
27
|
Manavi B, Tejeneki HZ, Rominger F, Armaghan M, Frank W, Bijanzadeh HR, Balalaie S. Copper(I)‐Catalyzed Intramolecular Cyclization of
o
‐Propargyloxy Diketopiperazines to Access Diverse Diazabicyclic and Spiro‐Diketopiperazinochromanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bita Manavi
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Hossein Zahedian Tejeneki
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Mahsa Armaghan
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Walter Frank
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
- Medical Biology Research Center Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
28
|
Facile generation of bridged medium-sized polycyclic systems by rhodium-catalysed intramolecular (3+2) dipolar cycloadditions. Nat Commun 2021; 12:5239. [PMID: 34475378 PMCID: PMC8413281 DOI: 10.1038/s41467-021-25513-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
Bridged medium-sized bicyclo[m.n.2] ring systems are common in natural products and potent pharmaceuticals, and pose a great synthetic challenge. Chemistry for making bicyclo[m.n.2] ring systems remains underdeveloped. Currently, there are no general reactions available for the single-step synthesis of various bridged bicyclo[m.n.2] ring systems from acyclic precursors. Here, we report an unusual type II intramolecular (3+2) dipolar cycloaddition strategy for the syntheses of various bridged bicyclo[m.n.2] ring systems. This rhodium-catalysed cascade reaction provides a relatively general strategy for the direct and efficient regioselective and diastereoselective synthesis of highly functionalized and synthetically challenging bridged medium-sized polycyclic systems. Asymmetric total synthesis of nakafuran-8 was accomplished using this method as a key step. Quantum mechanical calculations demonstrate the mechanism of this transformation and the origins of its multiple selectivities. This reaction will inspire the design of the strategies to make complex bioactive molecules with bridged medium-sized polycyclic systems. The bridged medium-sized ring bicyclo[m.n.2] family of natural products are commonly found but difficult to synthesize efficiently. Here the authors present a cascade reaction to form the carbon skeleton, via a [3+2] cycloaddition of a captured azavinyl carbene intermediate.
Collapse
|
29
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
30
|
Li L, Turnbull WL, McDonald R, West FG. Lithium Hydroxide Assisted
Endo
‐Selective [4+4]‐Photocycloaddition of Pyran‐2‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Li
- Department of Chemistry University of Alberta E3-43 Gunning-Lemieux Chemistry Centre Edmonton AB T6G 2G2 Canada
| | - William L. Turnbull
- Department of Chemistry University of Alberta E3-43 Gunning-Lemieux Chemistry Centre Edmonton AB T6G 2G2 Canada
| | - Robert McDonald
- X-Ray Crystallography Laboratory Department of Chemistry University of Alberta E3-43 Gunning-Lemieux Chemistry Centre Edmonton AB T6G 2G2 Canada
| | - F. G. West
- Department of Chemistry University of Alberta E3-43 Gunning-Lemieux Chemistry Centre Edmonton AB T6G 2G2 Canada
| |
Collapse
|
31
|
Zhao JQ, Zhou S, Wang ZH, You Y, Chen S, Liu XL, Zhou MQ, Yuan WC. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5 H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org Chem Front 2021. [DOI: 10.1039/d1qo01061a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones is developed for the construction of dihydrobenzofuran-bridged polycyclic skeletons with good results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
32
|
Hou XQ, Lin Y, Du DM. Organocatalytic domino annulation of in situ generated tert-butyl 2-hydroxybenzylidenecarbamates with 2-isothiocyanato-1-indanones for synthesis of bridged and fused ring heterocycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00626f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An asymmetric domino annulation of 2-isothiocyanato-1-indanones with tert-butyl 2-hydroxybenzylidenecarbamates was developed for the enantioselective construction of bridged and fused ring hererocycles in high yields with excellent stereoselectivities.
Collapse
Affiliation(s)
- Xi-Qiang Hou
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | - Ye Lin
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| |
Collapse
|
33
|
Lei L, Liang YF, Liang C, Qin JK, Pan CX, Su GF, Mo DL. Copper(i)-catalyzed [4 + 2] cycloaddition of aza-ortho-quinone methides with bicyclic alkenes. Org Biomol Chem 2021; 19:3379-3383. [DOI: 10.1039/d1ob00319d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient copper(i)-catalyzed [4 + 2] cycloaddition of aza-ortho-quinone methides (ao-QMs) and bicyclic alkenes to prepare tetrahydroquinoline-fused bicycles bearing multiple stereocenters in good yields is reported.
Collapse
Affiliation(s)
- Lu Lei
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Yu-Feng Liang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Cui Liang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Jiang-Ke Qin
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Cheng-Xue Pan
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Gui-Fa Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Dong-Liang Mo
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| |
Collapse
|
34
|
Gao W, Wang X, Yao L, Tang B, Mu G, Shi T, Wang Z. Synthesis of an isomer of lycoplanine A via cascade cyclization to construct the spiro-N,O-acetal moiety. Org Biomol Chem 2021; 19:1748-1751. [DOI: 10.1039/d0ob02399j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 6/10/5/5 tetracyclic isomer of lycoplanine A is synthesized using D–A reaction and cascade cyclization to respectively establish the [9.2.2] pentadecane skeleton and spirocenter, providing sufficient experience to synthesize lycoplanine A.
Collapse
Affiliation(s)
- Weiwei Gao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiaodong Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Linbin Yao
- Department of Chemical and Environmental Engineering
- Faculty of Science and Engineering
- The University of Nottingham Ningbo China
- Ningbo
- China
| | - Bencan Tang
- Department of Chemical and Environmental Engineering
- Faculty of Science and Engineering
- The University of Nottingham Ningbo China
- Ningbo
- China
| | - Guohao Mu
- Department of Chemical and Environmental Engineering
- Faculty of Science and Engineering
- The University of Nottingham Ningbo China
- Ningbo
- China
| | - Tao Shi
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Zhen Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
35
|
Abstract
The synthetically challenging and highly functionalized azabicyclo[6.4.1] ring system, which is found in lycopodium alkaloid lycoclavatumide and some natural molecules, was synthesized for the first time. The key reaction was a diastereoselective type II [5+2] cycloaddition with excellent functional group compatibility. We tried to install the desired eight-membered ring in the final product by RCM reaction.
Collapse
Affiliation(s)
- Xin-Feng Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|