1
|
Vogt AM, Engesser TA, Krahmer J, Michaelis N, Pfeil M, Junge J, Näther C, Le Poul N, Tuczek F. Chemocatalytic Conversion of Dinitrogen to Ammonia Mediated by a Tungsten Complex. Angew Chem Int Ed Engl 2024:e202420220. [PMID: 39688523 DOI: 10.1002/anie.202420220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Whereas molybdenum dinitrogen complexes have played a major role as catalytic model systems of nitrogenase, corresponding tungsten complexes were in most cases found to be catalytically inactive. Herein, we present a modified pentadentate tetrapodal (pentaPod) phosphine ligand in which two dimethylphosphine groups of the pentaPodMe (P5Me) ligand have been replaced with phospholanes (Pln). The derived molybdenum complex [Mo(N2)P5Pln] generates 22 and the analogous tungsten complex [W(N2)P5Pln] 7 equivalents of NH3 from N2 in the presence of 180 equivalents of SmI2(THF)2/H2O, rendering the latter the first tungsten complex chemocatalytically converting N2 to NH3. In contrast, the tungsten complex [W(N2)P5Me] generates ammonia from N2 only in a slightly overstoichiometric fashion. The reasons for these reactivity differences are investigated with the help of spectroscopic and electrochemical methods.
Collapse
Affiliation(s)
- Anna-Marlene Vogt
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Tobias A Engesser
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Jan Krahmer
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Niels Michaelis
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Mareike Pfeil
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Jannik Junge
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | | | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| |
Collapse
|
2
|
Weber JE, McMillion ND, Hegg AS, Wertz AE, Aliahmadi M, Mercado BQ, Crabtree RH, Shafaat HS, Miller AJM, Holland PL. Isocyanide Ligation Enables Electrochemical Ammonia Formation in a Synthetic Cycle for N 2 Fixation. J Am Chem Soc 2024; 146:33595-33607. [PMID: 39589758 DOI: 10.1021/jacs.4c11187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Transition-metal-mediated splitting of N2 to form metal nitride complexes could constitute a key step in electrocatalytic nitrogen fixation, if these nitrides can be electrochemically reduced to ammonia under mild conditions. The envisioned nitrogen fixation cycle involves several steps: N2 binding to form a dinuclear end-on bridging complex with appropriate electronic structure to cleave the N2 bridge followed by proton/electron transfer to release ammonia and bind another molecule of N2. The nitride reduction and N2 splitting steps in this cycle have differing electronic demands that a catalyst must satisfy. Rhenium systems have had limited success in meeting these demands, and studying them offers an opportunity to learn strategies for modulating reactivity. Here, we report a rhenium system in which the pincer supporting ligand is supplemented by an isocyanide ligand that can accept electron density, facilitating reduction and enabling the protonation/reduction of the nitride to ammonia under mild electrochemical conditions. The incorporation of isocyanide raises the N-H bond dissociation free energy of the first N-H bond by 10 kcal/mol, breaking the usual compensation between pKa and redox potential; this is attributed to the separation of the protonation site (nitride) and the reduction site (delocalized between Re and isocyanide). Ammonia evolution is accompanied by formation of a terminal N2 complex, which can be oxidized to yield bridging N2 complexes including a rare mixed-valent complex. These rhenium species define the steps in a synthetic cycle that converts N2 to NH3 through an electrochemical N2 splitting pathway, and show the utility of a second, tunable supporting ligand for enhancing nitride reactivity.
Collapse
Affiliation(s)
- Jeremy E Weber
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Noah D McMillion
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexander S Hegg
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mehrnaz Aliahmadi
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
3
|
Ghosh B, Ahmed S, Phukan AK. Unravelling the potential of low-valent tunable vanadium complexes in the nitrogen reduction reaction (NRR). Dalton Trans 2024; 53:19179-19195. [PMID: 39502072 DOI: 10.1039/d4dt02217c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Density functional theory calculations have been carried out to investigate the potential of several hitherto unknown low-valent tripodal vanadium complexes towards conversion of dinitrogen to ammonia as a function of different equatorial (PiPr2 and SiPr) and bridgehead groups (B, C and Si). All the newly proposed vanadium complexes were probed towards understanding their efficiency in some of the key steps involved in the dinitrogen fixation process. They were found to be successful in preventing the release of hydrazine during the nitrogen reduction reaction. We have performed a comprehensive mechanistic study by considering all the possible pathways (distal, alternate and hybrid) to understand the efficiency of some of the proposed catalysts towards the dinitrogen reduction process. The exergonic reaction free energies obtained for some of the key steps and the presence of thermally surmountable barrier heights involved in the catalytic cycle indicate that these complexes may be considered as suitable platforms for the functionalization of dinitrogen.
Collapse
Affiliation(s)
- Bijoy Ghosh
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Sahtaz Ahmed
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| |
Collapse
|
4
|
Zhang S, Zhao W, Liu J, Tao Z, Zhang Y, Zhao S, Zhang Z, Du M. Spin Manipulation of Co sites in Co 9S 8/Nb 2CT x Mott-Schottky Heterojunction for Boosting the Electrocatalytic Nitrogen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407301. [PMID: 39225309 PMCID: PMC11516103 DOI: 10.1002/advs.202407301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Regulating the adsorption of an intermediate on an electrocatalyst by manipulating the electron spin state of the transition metal is of great significance for promoting the activation of inert nitrogen molecules (N2) during the electrocatalytic nitrogen reduction reaction (eNRR). However, achieving this remains challenging. Herein, a novel 2D/2D Mott-Schottky heterojunction, Co9S8/Nb2CTx-P, is developed as an eNRR catalyst. This is achieved through the in situ growth of cobalt sulfide (Co9S8) nanosheets over a Nb2CTx MXene using a solution plasma modification method. Transformation of the Co spin state from low (t2g 6eg 1) to high (t2g 5eg 2) is achieved by adjusting the interface electronic structure and sulfur vacancy of Co9S8/Nb2CTx-P. The adsorption ability of N2 is optimized through high spin Co(II) with more unpaired electrons, significantly accelerating the *N2→*NNH kinetic process. The Co9S8/Nb2CTx-P exhibits a high NH3 yield of 62.62 µg h-1 mgcat. -1 and a Faradaic efficiency (FE) of 30.33% at -0.40 V versus the reversible hydrogen electrode (RHE) in 0.1 m HCl. Additionally, it achieves an NH3 yield of 41.47 µg h-1 mgcat. -1 and FE of 23.19% at -0.60 V versus RHE in 0.1 m Na2SO4. This work demonstrates a promising strategy for constructing heterojunction electrocatalysts for efficient eNRR.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Weihua Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Jiameng Liu
- School of Medical EngineeringXinxiang Medical UniversityXinxiang453003P. R. China
| | - Zheng Tao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Yinpeng Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Shuangrun Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Zhihong Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Miao Du
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| |
Collapse
|
5
|
Boegli MC, Coffinet A, Bijani C, Simonneau A. Seven-Coordinate Group 6 Metal Hydrides Obtained by H 2 Activation at B(C 6F 5) 3 Adducts of N 2 Complexes: Frustrated Lewis Pair-Type Reactivity of The B-N Linkage. Chem Asian J 2024; 19:e202400451. [PMID: 38864406 DOI: 10.1002/asia.202400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The adducts 2M,R of general formula trans-[(L)M{R2P(CH2)2PR2}2{N2B(C6F5)3}] (L=ø or N2, M=Mo or W, R=Et or Ph), formed from Lewis acid-base pairing of B(C6F5)3 to a dinitrogen ligand of zero-valent group 6 bis(phosphine) complexes trans-[M{R2P(CH2)2PR2}2(N2)2] are shown to react with dihydrogen to afford hepta-coordinated bis(hydride) complexes [M(H)2{R2P(CH2)2PR2}{N2B(C6F5)3}] 3M,R which feature the rare ability to activate both dinitrogen and dihydrogen at a single metal center, except in the case where M=Mo and R=Ph for which fast precipitation of insoluble [Mo(H)4(dppe)2] (dppe=1,2-bis(diphenylphosphino)ethane) occurs. The frustrated Lewis pair (FLP)-related reactivity of the B-N linkage in compounds 3W,R was explored and led to distal N functionalization without involvement of the hydride ligands. It is shown in one example that the resulting bis(hydride) diazenido compounds may also be obtained through a sequence involving first FLP-type N-functionalization followed by oxidative addition of H2. Those oily compounds were found to have limited stability in solution or in their isolated states. Finally, treatment of 3W,Et with the Lewis base N,N-dimethylaminopyridine (DMAP) affords the simple but unknown bis(hydride)-dinitrogen species [W(H)2(depe)2(N2)] 11Et (depe=1,2-bis(diethylphosphino)ethane) which direct, selective formation from trans-[W(N2)2(depe)2] is not possible.
Collapse
Affiliation(s)
- Marie-Christine Boegli
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Anaïs Coffinet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Christian Bijani
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| |
Collapse
|
6
|
Tanabe Y, Nishibayashi Y. Catalytic Nitrogen Fixation Using Well-Defined Molecular Catalysts under Ambient or Mild Reaction Conditions. Angew Chem Int Ed Engl 2024; 63:e202406404. [PMID: 38781115 DOI: 10.1002/anie.202406404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Ammonia (NH3) is industrially produced from dinitrogen (N2) and dihydrogen (H2) by the Haber-Bosch process, although H2 is prepared from fossil fuels, and the reaction requires harsh conditions. On the other hand, microorganisms have fixed nitrogen under ambient reaction conditions. Recently, well-defined molecular transition metal complexes have been found to work as catalyst to convert N2 into NH3 by reactions with chemical reductants and proton sources under ambient reaction conditions. Among them, involvement of both N2-splitting pathway and proton-coupled electron transfer is found to be very effective for high catalytic activity. Furthermore, direct electrocatalytic and photocatalytic conversions of N2 into NH3 have been recently achieved. In addition to catalytic formation of NH3, selective catalytic conversion of N2 into hydrazine (NH2NH2) and catalytic silylation of N2 into silylamines have been reported. Catalytic C-N bond formation has been more recently established to afford cyanate anion (NCO-) under ambient reaction conditions. Further development of direct conversion of N2 into nitrogen-containing compounds as well as green ammonia synthesis leading to the use of ammonia as an energy carrier is expected.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
7
|
Maslać N, Cadoux C, Bolte P, Murken F, Gu W, Milton RD, Wagner T. Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine Methanococcales. FEBS J 2024; 291:3454-3480. [PMID: 38696373 DOI: 10.1111/febs.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The nitrogenase reductase NifH catalyses ATP-dependent electron delivery to the Mo-nitrogenase, a reaction central to biological dinitrogen (N2) fixation. While NifHs have been extensively studied in bacteria, structural information about their archaeal counterparts is limited. Archaeal NifHs are considered more ancient, particularly those from Methanococcales, a group of marine hydrogenotrophic methanogens, which includes diazotrophs growing at temperatures near 92 °C. Here, we structurally and biochemically analyse NifHs from three Methanococcales, offering the X-ray crystal structures from meso-, thermo-, and hyperthermophilic methanogens. While NifH from Methanococcus maripaludis (37 °C) was obtained through heterologous recombinant expression, the proteins from Methanothermococcus thermolithotrophicus (65 °C) and Methanocaldococcus infernus (85 °C) were natively purified from the diazotrophic archaea. The structures from M. thermolithotrophicus crystallised as isolated exhibit high flexibility. In contrast, the complexes of NifH with MgADP obtained from the three methanogens are superposable, more rigid, and present remarkable structural conservation with their homologues. They retain key structural features of P-loop NTPases and share similar electrostatic profiles with the counterpart from the bacterial model organism Azotobacter vinelandii. In comparison to the NifH from the phylogenetically distant Methanosarcina acetivorans, these reductases do not cross-react significantly with Mo-nitrogenase from A. vinelandii. However, they associate with bacterial nitrogenase when ADP·AlF 4 - is added to mimic a transient reactive state. Accordingly, detailed surface analyses suggest that subtle substitutions would affect optimal binding during the catalytic cycle between the NifH from Methanococcales and the bacterial nitrogenase, implying differences in the N2-machinery from these ancient archaea.
Collapse
Affiliation(s)
- Nevena Maslać
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Pauline Bolte
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Fenja Murken
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wenyu Gu
- Laboratory of Microbial Physiology and Resource Biorecovery, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
8
|
Le Dé Q, Valyaev DA, Simonneau A. Nitrogen Fixation by Manganese Complexes - Waiting for the Rush? Chemistry 2024; 30:e202400784. [PMID: 38709147 DOI: 10.1002/chem.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Manganese is currently experiencing a great deal of attention in homogeneous catalysis as a sustainable alternative to platinum group metals due to its abundance, affordable price and low toxicity. While homogeneous nitrogen fixation employing well-defined transition metal complexes has been an important part of coordination chemistry, manganese derivatives have been only sporadically used in this research area. In this contribution, the authors systematically cover manganese organometallic chemistry related to N2 activation spanning almost 60 years, identify apparent pitfalls and outline encouraging perspectives for its future development.
Collapse
Affiliation(s)
- Quentin Le Dé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| |
Collapse
|
9
|
Wei J, Li Y, Lin H, Lu X, Zhou C, Li YY. Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100383. [PMID: 38304117 PMCID: PMC10830547 DOI: 10.1016/j.ese.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Chucheng Zhou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ya-yun Li
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
10
|
Liu Q, Wang P, Wang Y, Zou J, Leng X, Deng L. Iron(I) Complex Bearing an Open-Shell Diazenido Ligand. J Am Chem Soc 2024; 146:13629-13640. [PMID: 38706251 DOI: 10.1021/jacs.4c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Low-valent transition-metal diazenido species are important intermediates in transition-metal-mediated dinitrogen reduction reactions. Isolable complexes of the type unanimously feature closed-shell diazenido ligands. Those bearing open-shell diazenido ligands have remained elusive. Herein, we report the synthesis, characterization, and reactivity of a d7 iron(I) complex featuring an open-shell silyldiazenido ligand, [(ICy)Fe(NNSiiPr3)(η2:η2-dvtms)] (1, ICy = 1,3-dicyclohexylimidazole-2-ylidene, dvtms = divinyltetramethyldisiloxane). Complex 1 is prepared in good yield by silylation of the iron(-I)-N2 complex [K(18-crown-6)][(ICy)Fe(N2)(η2:η2-dvtms)] with iPr3SiOTf and has been fully characterized by various spectroscopic methods. Theoretical studies, in combination with characterization data, established an S = 1/2 ground spin-state for 1 that can best be described as a quartet iron(I) center featuring an antiferromagnetically coupled triplet silyldiazenido ligand. The diazenido and alkene ligands in 1 are labile, as indicated by the facile disproportionation reaction of 1 at ambient temperature to transform into the iron(II) bis(diazenido) species [(ICy)(NNSiiPr3)2Fe(dvtms)Fe(NNSiiPr3)2(ICy)] (2) and the iron(0) species [(ICy)Fe(η2:η2-dvtms)] and also the alkene-exchange reaction of 1 with PhCH═CHBC8H14 to form [(ICy)Fe(NNSiiPr3)(η2-trans-PhCH═CHBC8H14)] (3). Complex 1 is light-sensitive. Upon photolysis, it undergoes a SiiPr3 radical-transfer reaction to yield [(ICy)Fe(σ:η2-MeCHSiMe2OSiMe2CH═CHSiiPr3)] (4) and N2. The reactions of 1 with the trityl radical and organic bromides yield iron(II) complexes, which indicates its reducing nature. Moreover, 1 is a weak hydrogen-atom abstractor, as indicated by its inertness toward HSi(SiMe3)3 and cyclohexa-1,4-diene and the low calculated N-H bond dissociation energy (48 kcal/mol) of its corresponding iron(II) iso-hydrazenido species.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yujian Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Junjie Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
11
|
Beasley CH, Duletski OL, Stankevich KS, Arulsamy N, Mock MT. Catalytic dinitrogen reduction to hydrazine and ammonia using Cr(N 2) 2(diphosphine) 2 complexes. Dalton Trans 2024; 53:6496-6500. [PMID: 38563332 DOI: 10.1039/d4dt00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The synthesis, characterization of trans-[Cr(N2)2(depe)2] (1) is described. 1 and trans-[Cr(N2)2(dmpe)2] (2) catalyze the reduction of N2 to N2H4 and NH3 in THF using SmI2 and H2O or ethylene glycol as proton sources. 2 produces the highest total fixed N for a molecular Cr catalyst to date.
Collapse
Affiliation(s)
- Charles H Beasley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Olivia L Duletski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Ksenia S Stankevich
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | | | - Michael T Mock
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
12
|
Zhang X, Tan Y, Zhao J, Cai Z, Zhang J, Madhusudan P. NiFeB-assisted adsorption and activation of nitrogen to improve the photooxidation activity of zinc porphyrin. Chem Commun (Camb) 2024; 60:4298-4301. [PMID: 38530709 DOI: 10.1039/d4cc00249k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This study effectively addresses the challenge of nitrogen adsorption and activation in photocatalytic nitrogen fixation by introducing an oxidizing co-catalyst, NiFeB hydroxides. The NiFeB hydroxides could provide reactive active sites and significantly enhance the nitrogen oxidation activity, offering a novel pathway for co-catalysts in nitrogen fixation reactions.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Yawen Tan
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Juntao Zhao
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Zixuan Cai
- Wuhan Jingkai Foreign Language School, Wuhan 430056, PR China
| | - Jun Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Puttaswamy Madhusudan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
13
|
Eberle L, Ballmann J. Synthesis of Collidine from Dinitrogen via a Tungsten Nitride. J Am Chem Soc 2024; 146:7979-7984. [PMID: 38489245 DOI: 10.1021/jacs.4c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The synthesis of pyridines from dinitrogen in homogeneous solution is known to be challenging considering that an N2 cleavage step needs to be combined with two N-C coupling steps. Herein, a tungsten complex bearing a tailor-made 2,2'-(tBu2As)2-substituted tolane ligand scaffold was shown to split N2 to afford the corresponding tungsten nitride, which is not the case for the corresponding (iPr2As)2-substituted derivative. The former nitride was then reacted with 2,4,6-trimethylpyrylium triflate, which led to the formation of a tungsten oxo complex, along with collidine. Over the course of this reaction, the O atom of the pyrylium starting material was replaced with an N atom via a hitherto unprecedented skeletal editing process.
Collapse
Affiliation(s)
- Lukas Eberle
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg Germany
| |
Collapse
|
14
|
Wang GX, Shan C, Chen W, Wu B, Zhang P, Wei J, Xi Z, Ye S. Unusual Electronic Structures of an Electron Transfer Series of [Cr(μ-η 1 : η 1 -N 2 )Cr] 0/1+/2. Angew Chem Int Ed Engl 2024; 63:e202315386. [PMID: 38299757 DOI: 10.1002/anie.202315386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
In dinitrogen (N2 ) fixation chemistry, bimetallic end-on bridging N2 complexes M(μ-η1 : η1 -N2 )M can split N2 into terminal nitrides and hence attract great attention. To date, only 4d and 5d transition complexes, but none of 3d counterparts, could realize such a transformation. Likewise, complexes {[Cp*Cr(dmpe)]2 (μ-N2 )}0/1+/2+ (1-3) are incapable to cleave N2 , in contrast to their Mo congeners. Remarkably, cross this series the N-N bond length of the N2 ligand and the N-N stretching frequency exhibit unprecedented nonmonotonic variations, and complexes 1 and 2 in both solid and solution states display rare thermally activated ligand-mediated two-center spin transitions, distinct from discrete dinuclear spin crossovers. In-depth analyses using wave function based ab initio calculations reveal that the Cr-N2 -Cr bonding in complexes 1-3 is distinguished by strong multireference character and cannot be described by solely one electron configuration or Lewis structure, and that all intriguing spectroscopic observations originate in their sophisticate multireference electronic structures. More critical is that such multireference bonding of complexes 1-3 is at least a key factor that contributes to their kinetic inertness toward N2 splitting. The mechanistic understanding is then used to rationalize the disparate reactivity of related 3d M(μ-η1 : η1 -N2 )M complexes compared to their 4d and 5d analogs.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Chunxiao Shan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
15
|
White MV, Claveau EE, Miliordos E, Vogiatzis KD. Electronic Structure and Ligand Effects on the Activation and Cleavage of N 2 on a Molybdenum Center. J Phys Chem A 2024; 128:2038-2048. [PMID: 38447072 DOI: 10.1021/acs.jpca.3c07801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Dinitrogen fixation under ambient conditions remains a challenge in the field of catalytic chemistry due to the inertness of N2. Nitrogenases and heterogeneous solid catalysts have displayed remarkable performance in the catalytic conversion of dinitrogen to ammonia. By introduction of molybdenum centers in molecular complexes, one of the most azophilic metals of the transitional metal series, moderate ammonia yields have been attained. Here, we present a combined multiconfigurational/density functional theory study that addresses how ligand fields of different strengths affect the binding and activation of dinitrogen on molybdenum atoms. First, we explored with MRCI computations the diatomic Mo-N and triatomic Mo-N2 molecular systems. Then, we performed a systematic examination on the stabilization effects introduced by external NH3 ligands, before we explore model neutral and charged complexes with different types of ligands (H2O, NH3, and PH3) and their consequences on the N2 binding and activation.
Collapse
Affiliation(s)
- Maria V White
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Konstantinos D Vogiatzis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
16
|
Zhang X, Su R, Li J, Huang L, Yang W, Chingin K, Balabin R, Wang J, Zhang X, Zhu W, Huang K, Feng S, Chen H. Efficient catalyst-free N 2 fixation by water radical cations under ambient conditions. Nat Commun 2024; 15:1535. [PMID: 38378822 PMCID: PMC10879522 DOI: 10.1038/s41467-024-45832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The growth and sustainable development of humanity is heavily dependent upon molecular nitrogen (N2) fixation. Herein we discover ambient catalyst-free disproportionation of N2 by water plasma which occurs via the distinctive HONH-HNOH+• intermediate to yield economically valuable nitroxyl (HNO) and hydroxylamine (NH2OH) products. Calculations suggest that the reaction is prompted by the coordination of electronically excited N2 with water dimer radical cation, (H2O)2+•, in its two-center-three-electron configuration. The reaction products are collected in a 76-needle array discharge reactor with product yields of 1.14 μg cm-2 h-1 for NH2OH and 0.37 μg cm-2 h-1 for HNO. Potential applications of these compounds are demonstrated to make ammonia (for NH2OH), as well as to chemically react and convert cysteine, and serve as a neuroprotective agent (for HNO). The conversion of N2 into HNO and NH2OH by water plasma could offer great profitability and reduction of polluting emissions, thus giving an entirely look and perspectives to the problem of green N2 fixation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Rui Su
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jingling Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Wenwen Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Roman Balabin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Jingjing Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China.
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China.
| |
Collapse
|
17
|
Oloyede UN, Flowers RA. Coordination-induced bond weakening and small molecule activation by low-valent titanium complexes. Dalton Trans 2024; 53:2413-2441. [PMID: 38224159 DOI: 10.1039/d3dt03454b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Bond activation of small molecules through coordination to low valent metal complexes in M⋯X-H type interactions (where X = O, N, B, Si, etc.) leads to the formation of unusually weak X-H bonds and provides a powerful approach for the synthesis of target compounds under very mild conditions. Coordination of small molecules like water, amides, silanes, boranes, and dinitrogen to Ti(III) or Ti(II) complexes results in the synergetic redistribution of electrons between the metal orbitals and the ligand orbitals which weakens and enables the facile cleavage of the X-H or N-N bonds of the ligands. This review presents an overview of coordination-induced bond activation of small molecules by low valent titanium complexes. In particular, the applications of low valent titanium-induced bond weakening in nitrogen fixation are presented. The review concludes with potential future directions for work in this area including low-valent Ti-based PCET systems, photocatalytic nitrogen reduction, and approaches to tailoring complexes for optimal bond activation.
Collapse
Affiliation(s)
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| |
Collapse
|
18
|
Garnes-Portolés F, Lloret V, Vidal-Moya JA, Löffler M, Mayrhofer KJJ, Cerón-Carrasco JP, Abellán G, Leyva-Pérez A. Few-layer black phosphorus enables nitrogen fixation under ambient conditions. RSC Adv 2024; 14:4742-4747. [PMID: 38318612 PMCID: PMC10839751 DOI: 10.1039/d3ra07331a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Nitrogen (N2) fixation is a key reaction in biological and industrial chemistry, which does not occur spontaneously under ambient conditions but often depends on very specific catalysts and harsh reaction processes. Here we show that exposing exfoliated black phosphorus to the open air triggers, concomitantly, the oxidation of the two-dimensional (2D) material and the fixation of up to 100 parts per million (0.01%) of N2 on the surface. The fixation also occurs in pristine non-exfoliated material. Besides, other allotropic forms of phosphorus, like red P, also fixes N2 during ambient oxidation, suggesting that the N2 fixation process is intrinsic with phosphorus oxidation and does not depend on the chemical structure or the dimensionality of the solid. Despite the low amounts of N2 fixed, this serendipitous discovery could have fundamental implications on the chemistry and environmental stability of phosphorous and the design of related catalysts for N2 fixation.
Collapse
Affiliation(s)
- Francisco Garnes-Portolés
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34 9638 77809 +34 963877800
| | - Vicent Lloret
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Henkestrasse 42, 91054 Erlangen and Dr.-Mack Strasse 81 90762 Fürth Germany +49 91165078-65015 +49 91165078-65031
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH Cauerstr. 1 91058 Erlangen Germany
| | - José Alejandro Vidal-Moya
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34 9638 77809 +34 963877800
| | - Mario Löffler
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg Cauerstr. 1 91058 Erlangen Germany
| | - Karl J J Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg Cauerstr. 1 91058 Erlangen Germany
| | - Jose Pedro Cerón-Carrasco
- Centro Universitario de la Defensa, Academia General del Aire, Universidad Politécnica de Cartagena C/ Coronel López Peña S/N, Santiago de La Ribera 30720 Murcia Spain
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Valencia Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34 9638 77809 +34 963877800
| |
Collapse
|
19
|
Zapata-Rivera J, Calzado CJ. Dinitrogen Activation Mediated by the (P 2P Ph)Fe Complex: Electronic Structure, Dimerization Mechanism, and Magnetic Coupling. Inorg Chem 2024; 63:1633-1641. [PMID: 38194669 PMCID: PMC10954229 DOI: 10.1021/acs.inorgchem.3c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Herein, we report the estimation of the extent of dinitrogen activation by different charged and structural forms of (P2PPh)Fe biomimetic catalysts, which, in the presence of light, exhibit significant yield in the N2-to-NH3 conversion. Complete active space self-consistent field (CASSCF) calculations have been used to determine the electronic structure of different reduced forms of the mononuclear complexes: the neutral (P2PPh)Fe(N2)2 adduct and the anionic [(P2PPh)Fe(N2)]- and [(P2PPh)Fe(N2)]2- complexes. These calculations also revealed that the extent of reduction of a dinitrogen molecule reaches up to one electron (N21-) due to the back-bonding from the Fe center, in agreement with the changes observed in the vibration frequency of the N-N bond in these complexes. In addition, the energy profile of the dimerization of the mononuclear (P2PPh)Fe(N2)2 complex to the dinuclear mono-N2-bridged [(P2PPh)Fe]2(μ-N2) complex has been determined by means of density functional theory (DFT) calculations. A three-step mechanism has been proposed for the dimerization, favored by both kinetics and thermodynamics criteria. Finally, the magnetic coupling constant in the diiron (μ-N2) complex is estimated from CASSCF/NEVPT2 calculations. Such a dinuclear complex presents a strong antiferromagnetic coupling resulting from the interaction between two S = 1 d6 Fe2+ ions, bridged by a highly activated dinitrogen molecule (N22-) with two electrons on the π* orbitals.
Collapse
Affiliation(s)
- Jhon Zapata-Rivera
- Facultad
de Ciencias Naturales y Exactas, Departamento de Química, Universidad del Valle, Calle 13 N° 100–00, 25360 Cali, Colombia
| | - Carmen J. Calzado
- Departamento
de Química Física, Universidad
de Sevilla, c/Profesor
García González, s/n, 41012 Sevilla, Spain
| |
Collapse
|
20
|
Yang W, Li X, Li SY, Li Q, Sun H, Li X. Synthesis of Bis(silylene) Iron Chlorides and Their Catalytic Activity for Dinitrogen Silylation. Inorg Chem 2023; 62:21014-21024. [PMID: 38095917 DOI: 10.1021/acs.inorgchem.3c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
In this study, three tetracoordinated bis(silylene) iron(II) chlorides, namely, [SiCHRSi]FeCl2 (1) (R = H), (2) (R = CH3), and (3) (R = Ph), were synthesized through the reactions of the three different bis(silylene) ligands [LSiCHRSiL] (L = PhC(NtBu)2, L1 (R = H), L2 (R = CH3), L3 (R = Ph)) with FeCl2·(THF)1.5 in THF. The bis(silylene) Fe complexes 1-3 could be used as effective catalysts for dinitrogen silylation, with complex 3 demonstrating the highest turnover number (TON) of 746 equiv among the three complexes. The catalytic mechanism was explored, revealing the involvement of the pentacoordinated bis(dinitrogen) iron(0) complexes [SiCHRSi]Fe(N2)2(THF), (4)-(6), as the active catalysts in the dinitrogen silylation reaction. Additionally, the cyclic silylene compound 10 was obtained from the reaction of L1 with KC8. Single-crystal X-ray diffraction analyses confirmed the molecular structures of complexes 1-3 and 10 in the solid state.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaomiao Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Sheng-Yong Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
21
|
Specklin D, Boegli MC, Coffinet A, Escomel L, Vendier L, Grellier M, Simonneau A. An orbitally adapted push-pull template for N 2 activation and reduction to diazene-diide. Chem Sci 2023; 14:14262-14270. [PMID: 38098710 PMCID: PMC10718075 DOI: 10.1039/d3sc04390h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
A Lewis superacidic bis(borane) C6F4{B(C6F5)2}2 was reacted with tungsten N2-complexes [W(N2)2(R2PCH2CH2PR2)2] (R = Ph or Et), affording zwitterionic boryldiazenido W(ii) complexes trans-[W(L)(R2PCH2CH2PR2)2(N2{B(C6F5)2(C6F4B(C6F5)3})] (L = ø, N2 or THF). These compounds feature only one N-B linkage of the covalent type, as a result of intramolecular boron-to-boron C6F5 transfer. Complex trans-[W(THF)(Et2PCH2CH2PEt2)2(N2{B(C6F5)2C6F4B(C6F5)3})] (5) was shown to split H2, leading to a seven-coordinate complex [W(H)2(Et2PCH2CH2PEt2)2(N2{B(C6F5)2}2C6F4)] (7). Interestingly, hydride storage at the metal triggers backward C6F5 transfer. This reverts the bis(boron) moiety to its bis(borane) state, now doubly binding the distal N, with structural parameters and DFT computations pointing to dative N→B bonding. By comparison with an N2 complex [W(H)2(Et2PCH2CH2PEt2)2(N2{B(C6F5)3}] (10) differing only in the Lewis acid (LA), namely B(C6F5)3, coordinated to the distal N, we demonstrate that two-fold LA coordination imparts strong N2 activation up to the diazene-diide (N22-) state. To the best of our knowledge, this is the first example of a neutral LA coordination that induces reduction of N2.
Collapse
Affiliation(s)
- David Specklin
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Marie-Christine Boegli
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Anaïs Coffinet
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Léon Escomel
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Mary Grellier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| |
Collapse
|
22
|
Wang GX, Yin ZB, Wei J, Xi Z. Dinitrogen Activation and Functionalization Affording Chromium Diazenido and Hydrazido Complexes. Acc Chem Res 2023; 56:3211-3222. [PMID: 37937752 PMCID: PMC10666292 DOI: 10.1021/acs.accounts.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
ConspectusThe activation and functionalization of N2 to form nitrogen-element bonds have long posed challenges to industrial, biological, and synthetic chemists. The first transition-metal dinitrogen complex prepared by Allen and Senoff in 1965 provoked researchers to explore homogeneous N2 fixation. Despite intensive research in the last six decades, efficient and quantitative conversion of N2 to diazenido and hydrazido species remains problematic. Relative to a plethora of reactions to generate N2 complexes, their functionalization reactions are rather rare, and the yields are often unsatisfactory, emphasizing the need for systematic investigations of the reaction mechanisms.In this Account, we summarize our recent work on the synthesis, spectroscopic features, electronic structures, and reactivities of several Cr-N2 complexes. Initially, a series of dinuclear and trinuclear Cr(I)-N2 complexes bearing cyclopentadienyl-phosphine ligands were accessed. However, they cannot achieve N2 functionalization but undergo oxidative addition reactions with phenylsilane, azobenzene, and other unsaturated organic compounds at the low-valent Cr(I) centers rather than at the N2 unit. Further reduction of these Cr(I) complexes leads to the formation of more activated mononuclear Cr(0) bis-dinitrogen complexes. Remarkably, silylation of the cyclopentadienyl-phosphine Cr(0)-N2 complex with Me3SiCl afforded the first Cr hydrazido complex. This process follows the distal pathway to functionalize the Nβ atom twice, yielding an end-on η1-hydrazido complex, Cr(III)═N-N(SiMe3)2. In contrast, upon substitution of the phosphine ligand in the Cr(0)-N2 complex with a N-heterocyclic carbene (NHC) ligand, the corresponding reaction with Me3SiCl proceeds via the alternating pathway; the silylation occurs at both Nα and Nβ atoms and generates a side-on η2-hydrazido complex, Cr(III)(η2-Me3SiN-NSiMe3). Both silylation reactions are inevitably accompanied by the formation of Cr(III) hydrazido complexes and Cr(II) chlorides with a 2:1 ratio. These processes exhibit a peculiar '3-4-2-1' stoichiometry (i.e., treating 3 equiv of Cr(0)-N2 complexes with 4 equiv of Me3SiCl yields 2 equiv of Cr(III) disilyl-hydrazido complexes and 1 equiv of Cr(II) chloride). Upon replacing the monodentate phosphine and/or NHC ligand with a bisphosphine ligand, a monodinitrogen Cr(0) complex, instead of the bis-dinitrogen Cr(0) complexes, is obtained; consequently, the silylation reactions progress via the normal two-electron route, which passes through Cr(II)-N═N-R diazenido species as an intermediate and furnishes [Cr(IV)═N-NR2]+ hydrazido as the final products. More importantly, this type of Cr(0)-N2 complex can be not only silylated but also protonated and alkylated proficiently. All of the second-order reaction rates of the first and second transformations are determined along with the lifetimes of the intervening diazenido species. Based on these findings, we have successfully carried out nearly quantitative preparations of the Cr(IV) hydrazido species with unmixed or hybrid substituents.The studies of Cr-N2 systems provide effective approaches for the activation and functionalization of N2, deepening the understanding of N2 electrophilic attack. We hope that this Account will inspire more discoveries related to the transformation of gaseous N2 to high-value-added nitrogen-containing organic compounds.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhu-Bao Yin
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Le Dé Q, Bouammali A, Bijani C, Vendier L, Del Rosal I, Valyaev DA, Dinoi C, Simonneau A. An Experimental and Computational Investigation Rules Out Direct Nucleophilic Addition on the N 2 Ligand in Manganese Dinitrogen Complex [Cp(CO) 2 Mn(N 2 )]. Angew Chem Int Ed Engl 2023; 62:e202305235. [PMID: 37379032 DOI: 10.1002/anie.202305235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
We have re-examined the reactivity of the manganese dinitrogen complex [Cp(CO)2 Mn(N2 )] (1, Cp=η5 -cyclopentadienyl, C5 H5 ) with phenylithium (PhLi). By combining experiment and density functional theory (DFT), we have found that, unlike previously reported, the direct nucleophilic attack of the carbanion onto coordinated dinitrogen does not occur. Instead, PhLi reacts with one of the CO ligands to provide an anionic acylcarbonyl dinitrogen metallate [Cp(CO)(N2 )MnCOPh]Li (3) that is stable only below -40 °C. Full characterization of 3 (including single crystal X-ray diffraction) was performed. This complex decomposes quickly above -20 °C with N2 loss to give a phenylate complex [Cp(CO)2 MnPh]Li (2). The latter compound was erroneously formulated as an anionic diazenido compound [Cp(CO)2 MnN(Ph)=N]Li in earlier reports, ruling out the claimed and so-far unique behavior of the N2 ligand in 1. DFT calculations were run to explore both the hypothesized and the experimentally verified reactivity of 1 with PhLi and are fully consistent with our results. Direct attack of a nucleophile on metal-coordinated N2 remains to be demonstrated.
Collapse
Affiliation(s)
- Quentin Le Dé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077, Toulouse cedex 4, France
| | - Amal Bouammali
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077, Toulouse cedex 4, France
| | - Christian Bijani
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077, Toulouse cedex 4, France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077, Toulouse cedex 4, France
| | - Iker Del Rosal
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077, Toulouse cedex 4, France
| | - Chiara Dinoi
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077, Toulouse cedex 4, France
| |
Collapse
|
24
|
Chen Z, Quek G, Zhu JY, Chan SJW, Cox-Vázquez SJ, Lopez-Garcia F, Bazan GC. A Broad Light-Harvesting Conjugated Oligoelectrolyte Enables Photocatalytic Nitrogen Fixation in a Bacterial Biohybrid. Angew Chem Int Ed Engl 2023; 62:e202307101. [PMID: 37438952 DOI: 10.1002/anie.202307101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC, which endows aerobic N2 -fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC/A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15 N2 atmosphere led to the enrichment of 15 N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2 .
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Glenn Quek
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Ji-Yu Zhu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Sarah J Cox-Vázquez
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Fernando Lopez-Garcia
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
25
|
Zhao C, Wu R, Zhang S, Hong X. Benchmark Study of Density Functional Theory Methods in Geometry Optimization of Transition Metal-Dinitrogen Complexes. J Phys Chem A 2023; 127:6791-6803. [PMID: 37530446 DOI: 10.1021/acs.jpca.3c04215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The current benchmark study is focused on determining the most precise theoretical method for optimizing the geometry of transition metal-dinitrogen complexes. To accomplish this goal, seven density functional (DF) methods from five distinct classes of density functional theory (DFT) have been selected, including B3LYP-D3(BJ), BP86-D3(BJ), PBE0-D3(BJ), ωB97X-D, M06, M06-L, and TPSSh-D3(BJ). These DFs will be utilized with the Karlsruhe basis set (def2-SVP). To carry out this benchmark study, a total of forty-two structurally diverse transition metal-dinitrogen compounds with experimentally known X-ray data have been selected from the Cambridge Crystallographic Data Centre (CCDC). Based on a comparison of the theoretical data with experimental values (X-ray) of the selected transition metal-dinitrogen compounds, statistical parameters such as root-mean-square deviation (RMSD) and N-N and M-N bond lengths are obtained to evaluate the performance of the seven chosen DFs. According to the obtained results, among all DFT methods used in the study, Minnesota functionals (M06 and M06-L) and TPSSh-D3(BJ) show good performance, with lower RMSD values. This suggests that these three methods are the most reliable for optimizing the geometry of transition metal-dinitrogen complexes. Based on the absolute errors of the N-N and M-N bond lengths relative to the X-ray data, further analysis is conducted, and it is determined that M06-L is the best functional for optimizing the geometry of transition metal-dinitrogen compounds. Additionally, the influence of using a high-level basis set (def2-TZVP) compared to def2-SVP on the calculated RMSD among the seven chosen methods is found to be negligible.
Collapse
Affiliation(s)
- Chaoyue Zhao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Rongkai Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shuoqing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
- Beijing National Laboratory for Molecular Sciences, No. 2, Zhongguancun North First Street, Beijing 100190, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
- Beijing National Laboratory for Molecular Sciences, No. 2, Zhongguancun North First Street, Beijing 100190, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
26
|
Cheng X, Li ZY, Jiang GD, Liu XX, Liu QY, He SG. Activation of Dinitrogen Promoted by Adsorption of C 6H 6 on Fe 2VC - Cluster Anions. J Phys Chem Lett 2023:6431-6436. [PMID: 37432842 DOI: 10.1021/acs.jpclett.3c01367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The introduction of organic ligands is one of the effective strategies to improve the stability and reactivity of metal clusters. Herein, the enhanced reactivity of benzene-ligated cluster anions Fe2VC(C6H6)- with respect to naked Fe2VC- is identified. Structural characterization suggests that C6H6 is molecularly bound to the dual metal site in Fe2VC(C6H6)-. Mechanistic details reveal that the cleavage of N≡N is feasible in Fe2VC(C6H6)-/N2 but hindered by an overall positive barrier in the Fe2VC-/N2 system. Further analysis discloses that the ligated C6H6 regulates the compositions and energy levels of the active orbitals of the metal clusters. More importantly, C6H6 serves as an electron reservoir for the reduction of N2 to lower the crucial energy barrier of N≡N splitting. This work demonstrates that the flexibility of C6H6 in terms of withdrawing and donating electrons is crucial to regulating the electronic structures of the metal cluster and enhancing the reactivity.
Collapse
Affiliation(s)
- Xin Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Xiao-Xiao Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
27
|
Wang GX, Wang X, Jiang Y, Chen W, Shan C, Zhang P, Wei J, Ye S, Xi Z. Snapshots of Early-Stage Quantitative N 2 Electrophilic Functionalization. J Am Chem Soc 2023; 145:9746-9754. [PMID: 37067517 DOI: 10.1021/jacs.3c01497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Electrophilic functionalization of N2 moieties in metal dinitrogen complexes typically initiates the catalytic synthesis of N-containing molecules directly from N2. Despite intensive research in the last six decades, how to efficiently and even quantitatively convert N2 into diazenido and hydrazido species still poses a great challenge. In this regard, systematic and comprehensive investigations to elucidate the reaction intricacies are of profound significance. Herein, we report a kinetic dissection on the first and second electrophilic functionalization steps of a new Cr0-N2 system with HOTf, MeOTf, and Me3SiOTf. All reactions pass through fleeting diazenido intermediates and furnish long-lived final hydrazido products, and both steps are quantitative conversions at low temperatures. All of the second-order reaction rates of the first and second transformations were determined as well as the lifetimes of the intervening diazenido species. Based on these findings, we succeeded in large-scale and near-quantitative preparation of all hydrazido species.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xueli Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiao Shan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Kokubo Y, Tsuzuki K, Sugiura H, Yomura S, Wasada-Tsutsui Y, Ozawa T, Yanagisawa S, Kubo M, Takeyama T, Yamaguchi T, Shimazaki Y, Kugimiya S, Masuda H, Kajita Y. Syntheses, Characterizations, Crystal Structures, and Protonation Reactions of Dinitrogen Chromium Complexes Supported with Triamidoamine Ligands. Inorg Chem 2023; 62:5320-5333. [PMID: 36972224 DOI: 10.1021/acs.inorgchem.2c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A novel dinitrogen-dichromium complex, [{Cr(LBn)}2(μ-N2)] (1), has been prepared from reaction of CrCl3 with a lithiated triamidoamine ligand (Li3LBn) under dinitrogen. The X-ray crystal structure analysis of 1 revealed that it is composed of two independent dimeric Cr complexes bridged by N2 in the unit cell. The bridged N-N bond lengths (1.188(4) and 1.185(7) Å) were longer than the free dinitrogen molecule. The elongations of N-N bonds in 1 were also supported by the fact that the ν(N-N) stretching vibration at 1772 cm-1 observed in toluene is smaller than the free N2. Complex 1 was identified to be a 5-coordinated high spin Cr(IV) complex by Cr K-edge XANES measurement. The 1H NMR spectrum and temperature dependent magnetic susceptibility of 1 indicated that complex 1 is in the S = 1 ground state, in which two Cr(IV) ions and unpaired electron spins of the bridging N22- ligand are strongly antiferromagnetically coupled. Reaction of complex 1 with 2.3 equiv of Na or K gave chromium complexes with N2 between the Cr ion and the respective alkali metal ion, [{CrNa(LBn)(N2)(Et2O)}2] (2) and [{CrK(LBn)(N2)}4(Et2O)2] (3), respectively. Furthermore, the complexes 2 and 3 reacted with 15-crown-5 and 18-crown-6 to form the respective crown-ether adducts, [CrNa(LBn)(N2)(15-crown-5)] (4) and [CrK(LBn)(N2)(18-crown-6)] (5). The XANES measurements of complexes 2, 3, 4, and 5 revealed that they are high spin Cr(IV) complexes like complex 1. All complexes reacted with a reducing agent and a proton source to form NH3 and/or N2H4. The yields of these products in the presence of K+ were higher than those in the presence of Na+. The electronic structures and binding properties of 1, 2, 3, 4, and 5 were evaluated and discussed based on their DFT calculations.
Collapse
|
29
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
30
|
Martin Del Campo JS, Rigsbee J, Bueno Batista M, Mus F, Rubio LM, Einsle O, Peters JW, Dixon R, Dean DR, Dos Santos PC. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. Crit Rev Biochem Mol Biol 2023; 57:492-538. [PMID: 36877487 DOI: 10.1080/10409238.2023.2181309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.
Collapse
Affiliation(s)
| | - Jack Rigsbee
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Oliver Einsle
- Department of Biochemistry, University of Freiburg, Freiburg, Germany
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
31
|
Bhutto SM, Hooper RX, Mercado BQ, Holland PL. Mechanism of Nitrogen-Carbon Bond Formation from Iron(IV) Disilylhydrazido Intermediates during N 2 Reduction. J Am Chem Soc 2023; 145:4626-4637. [PMID: 36794981 DOI: 10.1021/jacs.2c12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We recently reported a reaction sequence that activates C-H bonds in simple arenes as well as the N-N triple bond in N2, delivering the aryl group to N2 to form a new N-C bond (Nature 2020, 584, 221). This enables the transformation of abundant feedstocks (arenes and N2) into N-containing organic compounds. The key N-C bond forming step occurs upon partial silylation of N2. However, the pathway through which reduction, silylation, and migration occurred was unknown. Here, we describe synthetic, structural, magnetic, spectroscopic, kinetic, and computational studies that elucidate the steps of this transformation. N2 must be silylated twice at the distal N atom before aryl migration can occur, and sequential silyl radical and silyl cation addition is a kinetically competent pathway to a formally iron(IV)-NN(SiMe3)2 intermediate that can be isolated at low temperature. Kinetic studies show its first-order conversion to the migrated product, and DFT calculations indicate a concerted transition state for migration. The electronic structure of the formally iron(IV) intermediate is examined using DFT and CASSCF calculations, which reveal contributions from iron(II) and iron(III) resonance forms with oxidized NNSi2 ligands. The depletion of electron density from the Fe-coordinated N atom makes it electrophilic enough to accept the incoming aryl group. This new pathway for the N-C bond formation offers a method for functionalizing N2 using organometallic chemistry.
Collapse
Affiliation(s)
- Samuel M Bhutto
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Reagan X Hooper
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| |
Collapse
|
32
|
Junge J, Engesser TA, Tuczek F. N 2 Reduction versus H 2 Evolution in a Molybdenum- or Tungsten-Based Small-Molecule Model System of Nitrogenase. Chemistry 2023; 29:e202202629. [PMID: 36458957 DOI: 10.1002/chem.202202629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Molybdenum dinitrogen complexes have played a major role as catalytic model systems of nitrogenase. In comparison, analogous tungsten complexes have in most cases found to be catalytically inactive. Herein, a tungsten complex was shown to be supported by a pentadentate tetrapodal (pentaPod) phosphine ligand, under conditions of N2 fixation, primarily catalyzes the hydrogen evolution reaction (HER), in contrast to its Mo analogue, which catalytically mediates the nitrogen-reduction reaction (N2 RR). DFT calculations were employed to evaluate possible mechanisms and identify the most likely pathways of N2 RR and HER activities exhibited by Mo- and W-pentaPod complexes. Two mechanisms for N2 RR by PCET are considered, starting from neutral (M(0) cycle) and cationic (M(I) cycle) dinitrogen complexes (M=Mo, W). The latter was found to be energetically more favorable. For HER three scenarios are treated; that is, through bimolecular reactions of early M-Nx Hy intermediates, pure hydride intermediates or mixed M(H)(Nx Hy ) species.
Collapse
Affiliation(s)
- Jannik Junge
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| | - Tobias A Engesser
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| |
Collapse
|
33
|
Yamamoto A, Liu X, Arashiba K, Konomi A, Tanaka H, Yoshizawa K, Nishibayashi Y, Yoshida H. Coordination Structure of Samarium Diiodide in a Tetrahydrofuran-Water Mixture. Inorg Chem 2023; 62:5348-5356. [PMID: 36728764 DOI: 10.1021/acs.inorgchem.2c03752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemoselective reductive conversion of organic and inorganic compounds has been developed by the combination of samarium(II) diiodide (SmI2) and water. Despite the extensive previous studies to elucidate the role of water in the reactivity of SmI2, the direct structural data of the reactive Sm2+-water complexes, SmI2(H2O)n, in an organic solvent-water mixture have not been reported experimentally so far. Herein, we performed the structure analysis of the Sm2+-water complex in tetrahydrofuran (THF) in the presence of water by in situ X-ray absorption spectroscopy using high-energy X-rays (Sm K-edge, 46.8 keV). The analysis revealed the dissociation of the Sm2+-I bonds in the presence of ≥ eight equivalents of water in the THF-water mixture. The origin of the peak shift in the UV/visible absorption spectra after the addition of water into SmI2/THF solution was proposed based on electron transitions simulated with time-dependent density-functional-theory calculations using optimized structures in THF or water. The obtained structural information provides the fundamental insights for elucidating the reactivity and chemoselectivity in the Sm2+-water complex system.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan
| | - Xueshi Liu
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya457-8530, Japan
| | - Kazunari Yoshizawa
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Hisao Yoshida
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan
| |
Collapse
|
34
|
Huang W, Peng LY, Zhang J, Liu C, Song G, Su JH, Fang WH, Cui G, Hu S. Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]═NNH 2 Intermediate. J Am Chem Soc 2023; 145:811-821. [PMID: 36596224 DOI: 10.1021/jacs.2c08000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The catalytic transformation of N2 to NH3 by transition metal complexes is of great interest and importance but has remained a challenge to date. Despite the essential role of vanadium in biological N2 fixation, well-defined vanadium complexes that can catalyze the conversion of N2 to NH3 are scarce. In particular, a V(NxHy) intermediate derived from proton/electron transfer reactions of coordinated N2 remains unknown. Here, we report a dinitrogen-bridged divanadium complex bearing POCOP (2,6-(tBu2PO)2-C6H3) pincer and aryloxy ligands, which can serve as a catalyst for the reduction of N2 to NH3 and N2H4. Low-temperature protonation and reduction of the dinitrogen complex afforded the first structurally characterized neutral metal hydrazido(2-) species ([V]═NNH2), which mediated 15N2 conversion to 15NH3, indicating that it is a plausible intermediate of the catalysis. DFT calculations showed that the vanadium hydrazido complex [V]═NNH2 possessed a N-H bond dissociation free energy (BDFEN-H) of as high as 59.1 kcal/mol. The protonation of a vanadium amide complex ([V]-NH2) with [Ph2NH2][OTf] resulted in the release of NH3 and the formation of a vanadium triflate complex, which upon reduction under N2 afforded the vanadium dinitrogen complex. These transformations model the final steps of a vanadium-catalyzed N2 reduction cycle. Both experimental and theoretical studies suggest that the catalytic reaction may proceed via a distal pathway to liberate NH3. These findings provide unprecedented insights into the mechanism of N2 reduction related to FeV nitrogenase.
Collapse
Affiliation(s)
- Wenshuang Huang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiayu Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chenrui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Shaowei Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
35
|
Bennaamane S, Rialland B, Khrouz L, Fustier‐Boutignon M, Bucher C, Clot E, Mézailles N. Ammonia Synthesis at Room Temperature and Atmospheric Pressure from N 2 : A Boron-Radical Approach. Angew Chem Int Ed Engl 2023; 62:e202209102. [PMID: 36301016 PMCID: PMC10107438 DOI: 10.1002/anie.202209102] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Ammonia, NH3 , is an essential molecule, being part of fertilizers. It is currently synthesized via the Haber-Bosch process, from the very stable dinitrogen molecule, N2 and dihydrogen, H2 . This process requires high temperatures and pressures, thereby generating ca 1.6 % of the global CO2 emissions. Alternative strategies are needed to realize the functionalization of N2 to NH3 under mild conditions. Here, we show that boron-centered radicals provide a means of activating N2 at room temperature and atmospheric pressure whilst allowing a radical process to occur, leading to the production of borylamines. Subsequent hydrolysis released NH4 + , the acidic form of NH3 . EPR spectroscopy supported the intermediacy of radicals in the process, corroborated by DFT calculations, which rationalized the mechanism of the N2 functionalization by R2 B radicals.
Collapse
Affiliation(s)
- Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Barbara Rialland
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Lhoussain Khrouz
- Univ LyonENS LyonCNRSUniversite Lyon 1Laboratoire de ChimieUMR 518246 allée d'Italie69364LyonFrance
| | - Marie Fustier‐Boutignon
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Christophe Bucher
- Univ LyonENS LyonCNRSUniversite Lyon 1Laboratoire de ChimieUMR 518246 allée d'Italie69364LyonFrance
| | - Eric Clot
- ICGMUniv. MontpellierCNRSENSCM34000MontpellierFrance
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| |
Collapse
|
36
|
Li Z, Song G, Li ZH. Theoretical investigation of borane compounds mimicking transition metals for N 2 fixation and activation. Phys Chem Chem Phys 2023; 25:1331-1341. [PMID: 36533691 DOI: 10.1039/d2cp04560e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N2 fixation is very difficult because of the nonpolarity and high stability of N2. Traditionally, it is achieved by transition metal (TM) systems utilizing the back donation from the d orbitals of the TM to the antibonding π* orbitals of N2 to activate N2. This back donation is rare for main group compounds due to the lack of high-lying valence d orbitals. In the present study, we show that borane compounds with weak B-X (X = H, Si, Ge, and Sb) bonds can mimic TM systems and be used to fix and activate N2. This is achieved by the back donation from the σ bonding orbitals of the B-X bonds to the antibonding π* and σ* orbitals of N2. There is even a linear relationship between the number of B-X bonds and the binding potential energy of N2 with BR1R2R3 (R1, R2, R3 = H, CH3, SiH3, GeH3, and SbH2). Based on these findings, we designed several stable silylborane compounds that are feasible for N2 fixation and activation under mild reaction conditions, i.e., room temperature and 1 atm. In some sandwich-like complexes formed between N2 and silylborane compounds, N2 is even activated from the triple bond to double bond.
Collapse
Affiliation(s)
- Zhipeng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Guoliang Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Zhen Hua Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Department of Chemistry, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
37
|
Shima T, Zhuo Q, Hou Z. Dinitrogen activation and transformation by multimetallic polyhydride complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Catalytic nitrogen fixation using visible light energy. Nat Commun 2022; 13:7263. [PMID: 36456553 PMCID: PMC9715552 DOI: 10.1038/s41467-022-34984-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
The synthesis of ammonia from atmospheric dinitrogen, nitrogen fixation, is one of the essential reactions for human beings. Because the current industrial nitrogen fixation depends on dihydrogen produced from fossil fuels as raw material, the development of a nitrogen fixation reaction that relies on the energy provided by renewable energy, such as visible light, is an important research goal from the viewpoint of sustainable chemistry. Herein, we establish an iridium- and molybdenum-catalysed process for synthesizing ammonia from dinitrogen under ambient reaction conditions and visible light irradiation. In this reaction system, iridium complexes and molybdenum triiodide complexes bearing N-heterocyclic carbene-based pincer ligands act as cooperative catalysts to activate 9,10-dihydroacridine and dinitrogen, respectively. The reaction of dinitrogen with 9,10-dihydroacridine is not thermodynamically favoured, and it only takes place under visible light irradiation. Therefore, the described reaction system is one that affords visible light energy-driven ammonia formation from dinitrogen catalytically.
Collapse
|
39
|
Tanabe Y, Nishibayashi Y. Recent advances in catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Bedbur K, Stucke N, Liehrs L, Krahmer J, Tuczek F. Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN 3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227843. [PMID: 36431964 PMCID: PMC9692791 DOI: 10.3390/molecules27227843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Three molybdenum trihalogenido complexes supported by different PN3P pincer ligands were synthesized and investigated regarding their activity towards catalytic N2-to-NH3 conversion. The highest yields were obtained with the H-PN3PtBu ligand. The corresponding Mo(V)-nitrido complex also shows good catalytic activity. Experiments regarding the formation of the analogous Mo(IV)-nitrido complex lead to the conclusion that the mechanism of catalytic ammonia formation mediated by the title systems does not involve N-N cleavage of a dinuclear Mo-dinitrogen complex, but follows the classic Chatt cycle.
Collapse
|
41
|
Wang H, Tian YM, König B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 2022; 6:745-755. [PMID: 37117495 DOI: 10.1038/s41570-022-00421-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.
Collapse
|
42
|
Suzuki N, Ishida Y, Kawaguchi H. Lewis Acid-Induced Dinitrogen Cleavage in an Anionic Side-on End-on Bound Dinitrogen Diniobium Hydride Complex. Molecules 2022; 27:molecules27175553. [PMID: 36080319 PMCID: PMC9457992 DOI: 10.3390/molecules27175553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
The side-on end-on dinitrogen hydride complex [{Na(dme)}2{(O3)Nb}2(μ-η1:η2-N2)(μ-H)2] (3-Na, [O3]3− = [(3,5-tBu2-2-O-C6H2)3CH]3−) was observed to undergo facile elimination of H2 and cleavage of the N–N bond in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN), AlMe3, and ZnMe2. Treatment of 3-Na with 9-BBN and ZnMe2 afforded the nitride complex [{K(dme)2}2{(O3)Nb}2(μ-N)2] (2-Na). The reaction of 3-Na with AlMe3 afforded [{Na(dme)}2{(O3)AlMe}2(NbMe2)2(μ-N)2] (5). The nitride complex 2-Na was treated with 9-BBN and AlMe3 to form [{Na(dme)}2{(O3)Nb}(μ-NH)(μ-NBC8H14){Nb(O3C)}] (4) and 5, respectively. Complex 2-Na, 4, and 5 were structurally characterized.
Collapse
|
43
|
Meng F, Kuriyama S, Egi A, Tanaka H, Yoshizawa K, Nishibayashi Y. Preparation and Reactivity of Rhenium–Nitride Complexes Bearing PNP-Type Pincer Ligands toward Nitrogen Fixation. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Nagoya 457-8530, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Haufe LC, Arrowsmith M, Dietz M, Gärtner A, Bertermann R, Braunschweig H. Spontaneous N 2-diboranylation of [W(N 2) 2(dppe) 2] with B 2Br 4(SMe 2) 2. Dalton Trans 2022; 51:12786-12790. [PMID: 35861163 DOI: 10.1039/d2dt02135h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1,3-bromoboration of [W(N2)2(dppe)2] (dppe = 1,2-bis(diphenylphosphino)ethane) with B2Br4(SMe2)2 in the presence of various Lewis bases L yields diboranyldiazenido complexes, with L coordinating either at the terminal or internal boron atom. The 2 : 1 reaction of [W(N2)2(dppe)2] and B2Br4(SMe2)2 yields a 1,2-bis(diazenido)diborane-bridged ditungsten complex with a fully planar π-conjugated BrWN2B2Br2N2WBr core.
Collapse
Affiliation(s)
- Lisa C Haufe
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Annalena Gärtner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rüdiger Bertermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
45
|
Chen Z, Liu C, Sun L, Wang T. Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province 310027, China
| | - Chunli Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
46
|
Nitrogen reduction by the Fe sites of synthetic [Mo 3S 4Fe] cubes. Nature 2022; 607:86-90. [PMID: 35794270 DOI: 10.1038/s41586-022-04848-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Nitrogen (N2) fixation by nature, which is a crucial process for the supply of bio-available forms of nitrogen, is performed by nitrogenase. This enzyme uses a unique transition-metal-sulfur-carbon cluster as its active-site co-factor ([(R-homocitrate)MoFe7S9C], FeMoco)1,2, and the sulfur-surrounded iron (Fe) atoms have been postulated to capture and reduce N2 (refs. 3-6). Although there are a few examples of synthetic counterparts of the FeMoco, metal-sulfur cluster, which have shown binding of N2 (refs. 7-9), the reduction of N2 by any synthetic metal-sulfur cluster or by the extracted form of FeMoco10 has remained elusive, despite nearly 50 years of research. Here we show that the Fe atoms in our synthetic [Mo3S4Fe] cubes11,12 can capture a N2 molecule and catalyse N2 silylation to form N(SiMe3)3 under treatment with excess sodium and trimethylsilyl chloride. These results exemplify the catalytic silylation of N2 by a synthetic metal-sulfur cluster and demonstrate the N2-reduction capability of Fe atoms in a sulfur-rich environment, which is reminiscent of the ability of FeMoco to bind and activate N2.
Collapse
|
47
|
Ashida Y, Egi A, Arashiba K, Tanaka H, Mitsumoto T, Kuriyama S, Yoshizawa K, Nishibayashi Y. Catalytic Reduction of Dinitrogen into Ammonia and Hydrazine by Using Chromium Complexes Bearing PCP-Type Pincer Ligands. Chemistry 2022; 28:e202200557. [PMID: 35199891 DOI: 10.1002/chem.202200557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/10/2022]
Abstract
A series of chromium-halide, -nitride, and -dinitrogen complexes bearing carbene- and phosphine-based PCP-type pincer ligands has been newly prepared, and some of them are found to work as effective catalysts to reduce dinitrogen under atmospheric pressure, whereby up to 11.60 equiv. of ammonia and 2.52 equiv. of hydrazine (16.6 equiv. of fixed N atom) are produced based on the chromium atom. To the best of our knowledge, this is the first successful example of chromium-catalyzed conversion of dinitrogen to ammonia and hydrazine under mild reaction conditions.
Collapse
Affiliation(s)
- Yuya Ashida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya, Japan
| | - Taichi Mitsumoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
48
|
Liu TT, Zhai DD, Guan BT, Shi ZJ. Nitrogen fixation and transformation with main group elements. Chem Soc Rev 2022; 51:3846-3861. [PMID: 35481498 DOI: 10.1039/d2cs00041e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen fixation is essential for the maintenance of life and development of society, however, the large bond dissociation energy and nonpolarity of the triple bond constitute a considerable challenge. The transition metals, by virtue of their combination of empty and occupied d orbitals, are prevalent in the nitrogen fixation studies and are continuing to receive a significant focus. The main group metals have always been considered incapable in dinitrogen activation owing to the absence of energetically and symmetrically accessible orbitals. The past decades have witnessed significant breakthroughs in the dinitrogen activation with the main group elements and compounds via either matrix isolation, theoretical calculations or synthetic chemistry. The successful reactions of the low-valent species of the main group elements with inert dinitrogen have been reported via the π back-donation from either the d orbitals (Ca, Sr, Ba) or p orbitals (Be, B, C…). Herein, the significant achievements have been briefly summarized, along with predicting the future developments.
Collapse
Affiliation(s)
- Tong-Tong Liu
- Department of Chemistry, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.
| | - Dan-Dan Zhai
- Department of Chemistry, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.
| |
Collapse
|
49
|
Kuriyama S, Wei S, Kato T, Nishibayashi Y. Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation. Molecules 2022; 27:2373. [PMID: 35408764 PMCID: PMC9000597 DOI: 10.3390/molecules27072373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
A series of manganese complexes bearing an anionic pyrrole-based PNP-type pincer ligand and an anionic benzene-based PCP-type pincer ligand is synthesized and characterized. The reactivity of these complexes toward ammonia formation and silylamine formation from dinitrogen under mild conditions is evaluated to produce only stoichiometric amounts of ammonia and silylamine, probably because the manganese pincer complexes are unstable under reducing conditions.
Collapse
Affiliation(s)
| | | | | | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (S.K.); (S.W.); (T.K.)
| |
Collapse
|
50
|
Kuriyama S, Wei S, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Synthesis and Reactivity of Cobalt-Dinitrogen Complexes Bearing Anionic PCP-Type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen. Inorg Chem 2022; 61:5190-5195. [PMID: 35313105 DOI: 10.1021/acs.inorgchem.2c00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of cobalt(I)-dinitrogen complexes bearing anionic 4-substituted benzene-based PCP-type pincer ligands are synthesized and characterized. These complexes work as highly efficient catalysts for the formation of silylamine from dinitrogen under ambient reaction conditions to produce up to 371 equiv of silylamine based on the cobalt atom of the catalyst.
Collapse
Affiliation(s)
- Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shenglan Wei
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|