1
|
He Z, Yang J, Liu L. Design of Supported Metal Catalysts and Systems for Propane Dehydrogenation. JACS AU 2024; 4:4084-4109. [PMID: 39610729 PMCID: PMC11600159 DOI: 10.1021/jacsau.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Propane dehydrogenation (PDH) is currently an approach for the production of propylene with high industrial importance, especially in the context of the shale gas revolution and the growing global demands for propylene and downstream commodity chemicals. In this Perspective article, we comprehensively summarize the recent advances in the design of advanced catalysts for PDH and the new understanding of the structure-performance relationship in supported metal catalysts. Furthermore, we discuss the gaps between fundamental research and practical industrial applications in the catalyst developments for the PDH process. In particular, we overview some critical issues regarding catalyst regeneration and the compatibility of the catalyst and reactor design. Finally, we make perspectives on the future directions of PDH research, including the efforts toward achieving a unified understanding of the structure-performance relationship, innovation in reactor engineering, and translation of the knowledge accumulated on PDH studies to other important alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingnan Yang
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Griffin A, Robertson M, Gunter Z, Coronado A, Xiang Y, Qiang Z. Design and Application of Joule Heating Processes for Decarbonized Chemical and Advanced Material Synthesis. Ind Eng Chem Res 2024; 63:19398-19417. [PMID: 39553915 PMCID: PMC11565571 DOI: 10.1021/acs.iecr.4c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Atmospheric CO2 concentrations keep increasing at intensifying rates due to rising energy and material demands. The chemical production industry is a large energy consumer, responsible for up to 935 Mt of CO2 emissions per year, and decarbonization is its major goal moving forward. One of the primary sources of energy consumption and CO2 emissions in the chemical sector is associated with the production and use of heat for material synthesis, which conventionally was generated through the combustion of fossil fuels. To address this grand challenge, Joule heating has emerged as an alternative heating method that greatly increases process efficiency, reducing both energy consumption and greenhouse gas emissions. In this Review, we discuss the key concepts that govern these Joule heating processes including material selection and reactor design, as well as the current state-of-the-art in the literature for employing these processes to synthesize commodity chemicals along with advanced materials such as graphene, metal species, and metal carbides. Finally, we provide a perspective on future research avenues within this field, which can facilitate the widespread adoption of Joule heating for decarbonizing industrial processes.
Collapse
Affiliation(s)
- Anthony Griffin
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Mark Robertson
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zoe Gunter
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Amy Coronado
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Yizhi Xiang
- Dave
C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Zhe Qiang
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
3
|
Li DY, Huang ZY, Kang LX, Wang BX, Fu JH, Wang Y, Xing GY, Zhao Y, Zhang XY, Liu PN. Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures. Nat Commun 2024; 15:9545. [PMID: 39500872 PMCID: PMC11538238 DOI: 10.1038/s41467-024-53927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Cyclodehydrogenation is an important ring-formation reaction that can directly produce planar-conjugated carbon-based nanomaterials from nonplanar molecules. However, inherently high C-H bond energy necessitates a high temperature during dehydrogenation, and the ubiquity of C - H bonds in molecules and small differences in their bond energies hinder the selectivity of dehydrogenation. Here, we report a room-temperature cyclodehydrogenation reaction on Au(111) via radical addition of open-shell resonance structures and demonstrate that radical addition significantly decreases cyclodehydrogenation temperature and further improves the chemoselectivity of dehydrogenation. Using scanning tunneling microscopy and non-contact atomic force microscopy, we visualize the cascade reaction process involved in cyclodehydrogenation and determine atomic structures and molecular orbitals of the planar acetylene-linked oxa-nanographene products. The nonplanar intermediates observed during progression annealing, combined with density functional theory calculations, suggest that room-temperature cyclodehydrogenation involves the formation of transient radicals, intramolecular radical addition, and hydrogen elimination; and that the high chemoselectivity of cyclodehydrogenation arises from the reversibility and different thermodynamics of radical addition step.
Collapse
Affiliation(s)
- Deng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
| | - Zheng-Yang Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Li-Xia Kang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Bing-Xin Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Jian-Hui Fu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Ying Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Guang-Yan Xing
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Yan Zhao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Xin-Yu Zhang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Pei-Nian Liu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China.
| |
Collapse
|
4
|
Sun J, Dong J, Gao L, Zhao YQ, Moon H, Scott SL. Catalytic Upcycling of Polyolefins. Chem Rev 2024; 124:9457-9579. [PMID: 39151127 PMCID: PMC11363024 DOI: 10.1021/acs.chemrev.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/18/2024]
Abstract
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
Collapse
Affiliation(s)
- Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Jinhu Dong
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lijun Gao
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Yu-Quan Zhao
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Hyunjin Moon
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| |
Collapse
|
5
|
Centeno-Vega I, Megías-Sayago C, Ivanova S. New insights for valorization of polyolefins/light alkanes: catalytic dehydrogenation of n-alkanes by immobilized pincer-iridium complexes. Dalton Trans 2024; 53:11216-11227. [PMID: 38887859 DOI: 10.1039/d4dt00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This scientific review delves into the innovative realm of polyolefins/light alkanes valorization through their catalytic dehydrogenation employing pincer-ligated iridium organometallic complexes. These widely studied catalysts exhibit outstanding properties, although the intrinsic characteristics of homogeneous catalysis (such as challenging product-catalyst separation, poor applicability to continuous-flow processes and low recyclability) limit their activity and industrial application, as well as their thermal stability. Through the immobilization of complexes on inorganic supports, these downsides have been bypassed, harnessing the true potential of these catalysts, affording more selective and stable catalysts in addition to facilitating their implementation in industrial processes. The findings described herein contribute to the advancement in the understanding of catalytic processes in hydrocarbon transformations, offering promising avenues for sustainable and selective production of valuable chemical intermediates from readily available feedstocks.
Collapse
Affiliation(s)
- Ignacio Centeno-Vega
- Departamento de Química Inorgánica, Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Cristina Megías-Sayago
- Departamento de Química Inorgánica, Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Svetlana Ivanova
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
6
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
7
|
DeMuth JC, Kim YL, Hall JN, Syed ZH, Deng K, Perras FA, Ferrandon MS, Kropf AJ, Liu C, Kaphan DM, Delferro M. Silicon Nitride Surface Enabled Propane Dehydrogenation Catalyzed by Supported Organozirconium. J Am Chem Soc 2024; 146:14404-14409. [PMID: 38754022 DOI: 10.1021/jacs.4c02776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Mesoporous silicon nitride (Si3N4) is a nontraditional support for the chemisorption of organometallic complexes with the potential for enhancing catalytic activity through features such as the increased Lewis basicity of nitrogen for heterolytic bond activation, increased ligand donor strength, and metal-ligand orbital overlap. Here, tetrabenzyl zirconium (ZrBn4) was chemisorbed on Si3N4, and the resulting supported organometallic species was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Dynamic Nuclear Polarization-enhanced Solid State Nuclear Magnetic Resonance (DNP-SSNMR), and X-ray Absorption Spectroscopy (XAS). Based on the hypothesis that the nitride might enable facile heterolytic C-H bond activation along the Zr-N bond, this material was found to be a highly active (1.53 molpropene molZr-1 h-1 at 450 °C) and selective (99% to propylene) catalyst for propane dehydrogenation. In contrast, the homologous silica supported complex exhibited negligible activity under these conditions.
Collapse
Affiliation(s)
- Joshua C DeMuth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yu Lim Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jacklyn N Hall
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zoha H Syed
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaixi Deng
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Magali S Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - A Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Liu X, Zhu Z. Synthesis and Catalytic Applications of Advanced Sn- and Zr-Zeolites Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306533. [PMID: 38148424 PMCID: PMC10953593 DOI: 10.1002/advs.202306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Indexed: 12/28/2023]
Abstract
The incorporation of isolated Sn (IV) and Zr (IV) ions into silica frameworks is attracting widespread attention, which exhibits remarkable catalytic performance (conversion, selectivity, and stability) in a broad range of reactions, especially in the field of biomass catalytic conversion. As a representative example, the conversion route of carbohydrates into valuable platform and commodity chemicals such as lactic acid and alkyl lactates, has already been established. The zeotype materials also possess water-tolerant ability and are capable to be served as promising heterogeneous catalysts for aqueous reactions. Therefore, dozens of Sn- and Zr-containing silica materials with various channel systems have been prepared successfully in the past decades, containing 8 membered rings (MR) small pore CHA zeolite, 10-MR medium pore zeolites (FER, MCM-56, MEL, MFI, MWW), 12-MR large pore zeolites (Beta, BEC, FAU, MOR, MSE, MTW), and 14-MR extra-large pore UTL zeolite. This review about Sn- and Zr-containing metallosilicate materials focuses on their synthesis strategy, catalytic applications for diverse reactions, and the effect of zeolite characteristics on their catalytic performances.
Collapse
Affiliation(s)
- Xue Liu
- Department of ChemistryCollege of ScienceHebei Agricultural UniversityLingyusi Road 289Baoding071001P. R. China
| | - Zhiguo Zhu
- College of Chemistry and Chemical EngineeringYantai UniversityQingquan Road 30Yantai264005P. R. China
| |
Collapse
|
9
|
Li F, Zhou Y, Wang D, Ding Z, Chen L, Feng X. Oxygen Vacancy Engineering of FeO x toward Oxygen-Tolerant Hydrogen Peroxide Reduction for Reliable Bioassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3241-3247. [PMID: 38289291 DOI: 10.1021/acs.langmuir.3c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The accurate determination of hydrogen peroxide (H2O2), an important clinical disease relevant biomarker, is of great importance for the diagnosis and management of illnesses. By using the cathodic monitoring approach, H2O2 can be accurately detected because interfering signals from easily oxidizable endogenous and exogenous species in biofluids can be avoided. However, the simultaneous occurrence of the oxygen reduction reaction (ORR) restricts the practical use of this cathodic method. In this study, via oxygen vacancy modulation, we synthesized FeOx catalysts that can selectively reduce H2O2 over O2. The H2O2 detection system based on this catalyst exhibits an outstanding ORR inhibition ability. Furthermore, by integrating this catalyst with glucose oxidase, a model enzyme, a reliable bioassay system was developed that can selectively detect glucose over a wide variety of interferents in artificially simulated tissue fluids. The bioassay system employing this catalyst in conjunction with oxidases is generally applicable to accurate detect a wide range of biomarkers.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
10
|
Chai Y, Chen S, Chen Y, Wei F, Cao L, Lin J, Li L, Liu X, Lin S, Wang X, Zhang T. Dual-Atom Catalyst with N-Colligated Zn 1Co 1 Species as Dominant Active Sites for Propane Dehydrogenation. J Am Chem Soc 2024; 146:263-273. [PMID: 38109718 DOI: 10.1021/jacs.3c08616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Dual-atom catalysts (DACs) with paired active sites can provide unique intrinsic properties for heterogeneous catalysis, but the synergy of the active centers remains to be elucidated. Here, we develop a high-performance DAC with Zn1Co1 species anchored on nitrogen-doped carbon (Zn1Co1/NC) as the dominant active site for the propane dehydrogenation (PDH) reaction. It exhibits several times higher turnover frequency (TOF) of C3H8 conversion and enhanced C3H6 selectivity compared to Zn1/NC or Co1/NC with only a single-atom site. Various experimental and theoretical studies suggest that the enhanced PDH performance stems from the promoted activation of the C-H bond of C3H8 triggered by the electronic interaction between Zn1 and Co1 colligated by N species. Moreover, the dynamic sinking of the Zn1 site and rising of the Co1 site, together with the steric effect of the dissociated H species at the bridged N during the PDH reaction, provides a feasible channel for C3H6 desorption through the more exposed Co1 site, thereby boosting the selectivity. This work provides a promising strategy for designing robust hetero DACs to simultaneously increase activity and selectivity in the PDH reaction.
Collapse
Affiliation(s)
- Yicong Chai
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhua Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yang Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fenfei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liru Cao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Brack E, Plodinec M, Willinger MG, Copéret C. Implications of Ga promotion and metal-oxide interface from tailored PtGa propane dehydrogenation catalysts supported on carbon. Chem Sci 2023; 14:12739-12746. [PMID: 38020386 PMCID: PMC10646969 DOI: 10.1039/d3sc04711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Propane Dehydrogenation is a key technology, where Pt-based catalysts have widely been investigated in industry and academia, with development exploring the use of promoters (Sn, Zn, Ga, etc.) and additives (Na, K, Ca, Si, etc.) towards improved catalytic performances. Recent studies have focused on the role of Ga promotion: while computations suggest that Ga plays a key role in enhancing catalytic selectivity and stability of PtGa catalysts through Pt-site isolation as well as morphological changes, experimental evidence are lacking because of the use of oxide supports that prevent more detailed investigation. Here, we develop a methodology to generate Pt and PtGa nanoparticles with tailored interfaces on carbon supports by combining surface organometallic chemistry (SOMC) and specific thermolytic molecular precursors containing or not siloxide ligands. This approach enables the preparation of supported nanoparticles, exhibiting or not an oxide interface, suitable for state-of-the art electron microscopy and XANES characterization. We show that the introduction of Ga enables the formation of homogenously alloyed, amorphous PtGa nanoparticles, in sharp contrast to highly crystalline monometallic Pt nanoparticles. Furthermore, the presence of an oxide interface is shown to stabilize the formation of small particles, at the expense of propene selectivity loss (formation of cracking side-products, methane/ethene), explaining the use of additives such as Na, K and Ca in industrial catalysts.
Collapse
Affiliation(s)
- Enzo Brack
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir Prelog Weg 2/10 CH-8093 Zurich Switzerland
| | - Milivoj Plodinec
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir Prelog Weg 2/10 CH-8093 Zurich Switzerland
- Scientific Center for Optical and Electron Microscopy (ScopeM) ETH Zurich Otto-Stern-Weg 3 CH-8093 Zurich Switzerland
| | - Marc-Georg Willinger
- Scientific Center for Optical and Electron Microscopy (ScopeM) ETH Zurich Otto-Stern-Weg 3 CH-8093 Zurich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir Prelog Weg 2/10 CH-8093 Zurich Switzerland
| |
Collapse
|
12
|
Rajapaksha R, Samanta P, Quadrelli EA, Canivet J. Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal-organic frameworks. Chem Soc Rev 2023; 52:8059-8076. [PMID: 37902965 DOI: 10.1039/d3cs00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The last decade has seen a tremendous expansion of the field of heterogenized molecular catalysis, especially with the growing interest in metal-organic frameworks and related porous hybrid solids. With successful achievements in the transfer from molecular homogeneous catalysis to heterogenized processes come the necessary discussions on methodologies used and a critical assessment on the advantages of heterogenizing molecular catalysis. Here we use the example of nickel-catalyzed ethylene oligomerization, a reaction of both fundamental and applied interest, to review heterogenization methodologies of well-defined molecular catalysts within porous solids while addressing the biases in the comparison between original molecular systems and heterogenized counterparts.
Collapse
Affiliation(s)
- Rémy Rajapaksha
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Partha Samanta
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Elsje Alessandra Quadrelli
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
13
|
Wen C, Li T, Huang Z, Kang QK. Oxidative Dehydrogenation of Alkanes through Homogeneous Base Metal Catalysis. CHEM REC 2023; 23:e202300146. [PMID: 37283443 DOI: 10.1002/tcr.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Preparing valuable olefins from cheap and abundant alkane resources has long been a challenging task in organic synthesis, which mainly suffers from harsh reaction conditions and narrow scopes. Homogeneous transition metals catalyzed dehydrogenation of alkanes has attracted much attention for its excellent catalytic activities under relatively milder conditions. Among them, base metal catalyzed oxidative alkane dehydrogenation has emerged as a viable strategy for olefin synthesis for its usage of cheap catalysts, compatibility with various functional groups, and low reaction temperature. In this review, we discuss recent development of base metal catalyzed alkane dehydrogenation under oxidative conditions and their application in constructing complex molecules.
Collapse
Affiliation(s)
- Chenxi Wen
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ting Li
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zheng Huang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi-Kai Kang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
14
|
Chen Z, Zimmerli NK, Zubair M, Yakimov AV, Björgvinsdóttir S, Alaniva N, Willinger E, Barnes AB, Bedford NM, Copéret C, Florian P, Abdala PM, Fedorov A, Müller CR. Nature of GaO x Shells Grown on Silica by Atomic Layer Deposition. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7475-7490. [PMID: 37780414 PMCID: PMC10536998 DOI: 10.1021/acs.chemmater.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Indexed: 10/03/2023]
Abstract
Gallia-based shells with a thickness varying from a submonolayer to ca. 2.5 nm were prepared by atomic layer deposition (ALD) using trimethylgallium, ozone, and partially dehydroxylated silica, followed by calcination at 500 °C. Insight into the atomic-scale structure of these shells was obtained by high-field 71Ga solid-state nuclear magnetic resonance (NMR) experiments and the modeling of X-ray differential pair distribution function data, complemented by Ga K-edge X-ray absorption spectroscopy and 29Si dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) studies. When applying one ALD cycle, the grown submonolayer contains mostly tetracoordinate Ga sites with Si atoms in the second coordination sphere ([4]Ga(Si)) and, according to 15N DNP SENS using pyridine as the probe molecule, both strong Lewis acid sites (LAS) and strong Brønsted acid sites (BAS), consistent with the formation of gallosilicate Ga-O-Si and Ga-μ2-OH-Si species. The shells obtained using five and ten ALD cycles display characteristics of amorphous gallia (GaOx), i.e., an increased relative fraction of pentacoordinate sites ([5]Ga(Ga)), the presence of mild LAS, and a decreased relative abundance of strong BAS. The prepared Ga1-, Ga5-, and Ga10-SiO2-500 materials catalyze the dehydrogenation of isobutane to isobutene, and their catalytic performance correlates with the relative abundance and strength of LAS and BAS, viz., Ga1-SiO2-500, a material with a higher relative fraction of strong LAS, is more active and stable compared to Ga5- and Ga10-SiO2-500. In contrast, related ALD-derived Al1-, Al5-, and Al10-SiO2-500 materials do not catalyze the dehydrogenation of isobutane and this correlates with the lack of strong LAS in these materials that instead feature abundant strong BAS formed via the atomic-scale mixing of Al sites with silica, leading to Al-μ2-OH-Si sites. Our results suggest that [4]Ga(Si) sites provide strong Lewis acidity and drive the dehydrogenation activity, while the appearance of [5]Ga(Ga) sites with mild Lewis activity is associated with catalyst deactivation through coking. Overall, the atomic-level insights into the structure of the GaOx-based materials prepared in this work provide a guide to design active Ga-based catalysts by a rational tailoring of Lewis and Brønsted acidity (nature, strength, and abundance).
Collapse
Affiliation(s)
- Zixuan Chen
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Nora K. Zimmerli
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Muhammad Zubair
- School
of Chemical Engineering, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander V. Yakimov
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Nicholas Alaniva
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Elena Willinger
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Alexander B. Barnes
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Nicholas M. Bedford
- School
of Chemical Engineering, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Pierre Florian
- CNRS,
CEMHTI UPR3079, Université d’Orléans, F-45071 Orléans, France
| | - Paula M. Abdala
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Alexey Fedorov
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph R. Müller
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Ehinger C, Zhou X, Candrian M, Docherty SR, Pollitt S, Copéret C. Group 10 Metal Allyl Amidinates: A Family of Readily Accessible and Stable Molecular Precursors to Generate Supported Nanoparticles. JACS AU 2023; 3:2314-2322. [PMID: 37654588 PMCID: PMC10466329 DOI: 10.1021/jacsau.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
The synthesis of well-defined materials as model systems for catalysis and related fields is an important pillar in the understanding of catalytic processes at a molecular level. Various approaches employing organometallic precursors have been developed and established to make monodispersed supported nanoparticles, nanocrystals, and films. Using rational design principles, a new family of precursors based on group 10 metals suitable for the generation of small and monodispersed nanoparticles on metal oxides has been developed. Particle formation on SiO2 and Al2O3 supports is demonstrated, as well as the potential in the synthesis of bimetallic catalyst materials, exemplified by a PdGa/SiO2 system capable of hydrogenation of CO2 to methanol. In addition to surface organometallic chemistry (SOMC), it is envisioned that these precursors could also be employed in related applications, such as atomic layer deposition, due to their inherent volatility and relative thermal stability.
Collapse
Affiliation(s)
- Christian Ehinger
- D-CHAB, ETH Zürich, Vladimir−Prelog-Weg 1−5, 8093 Zürich, Switzerland
| | - Xiaoyu Zhou
- D-CHAB, ETH Zürich, Vladimir−Prelog-Weg 1−5, 8093 Zürich, Switzerland
| | - Max Candrian
- D-CHAB, ETH Zürich, Vladimir−Prelog-Weg 1−5, 8093 Zürich, Switzerland
| | - Scott R. Docherty
- D-CHAB, ETH Zürich, Vladimir−Prelog-Weg 1−5, 8093 Zürich, Switzerland
| | - Stephan Pollitt
- D-CHAB, ETH Zürich, Vladimir−Prelog-Weg 1−5, 8093 Zürich, Switzerland
- PSI, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | | |
Collapse
|
16
|
Liu Y, Agarwal A, Kratish Y, Marks TJ. Single-Site Carbon-Supported Metal-Oxo Complexes in Heterogeneous Catalysis: Structure, Reactivity, and Mechanism. Angew Chem Int Ed Engl 2023; 62:e202304221. [PMID: 37142561 DOI: 10.1002/anie.202304221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
When early transition metal complexes are molecularly grafted onto catalyst supports, well-defined, surface-bound species are created, which are highly active and selective single-site heterogeneous catalysts (SSHCs) for diverse chemical transformations. In this minireview, we analyze and summarize a less conventional type of SSHC in which molybdenum dioxo species are grafted onto unusual carbon-unsaturated scaffolds, such as activated carbon, reduced graphene oxide, and carbon nanohorns. The choice of earth-abundant, low-toxicity, versatile metal constituents, and various carbon supports illustrates "catalyst by design" principles and yields insights into new catalytic systems of both academic and technological interest. Here, we summarize experimental and computational investigations of the bonding, electronic structure, reaction scope, and mechanistic pathways of these unusual catalysts.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Amol Agarwal
- Department of Material Science and Engineering and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yosi Kratish
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Tobin J Marks
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
17
|
Farkas V, Nagyházi M, Anastas PT, Klankermayer J, Tuba R. Making Persistent Plastics Degradable. CHEMSUSCHEM 2023; 16:e202300553. [PMID: 37083068 DOI: 10.1002/cssc.202300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The vastness of the scale of the plastic waste problem will require a variety of strategies and technologies to move toward sustainable and circular materials. One of these strategies to address the challenge of persistent fossil-based plastics is new catalytic processes that are being developed to convert recalcitrant waste such as polyethylene to produce propylene, which can be an important precursor of high-performance polymers that can be designed to biodegrade or to degrade on demand. Remarkably, this process also enables the production of biodegradable polymers using renewable raw materials. In this Perspective, current catalyst systems and strategies that enable the catalytic degradation of polyethylene to propylene are presented. In addition, concepts for using "green" propylene as a raw material to produce compostable polymers is also discussed.
Collapse
Affiliation(s)
- Vajk Farkas
- Yale Center for Green Chemistry and Engineering, Yale University, New Haven, Connecticut, 06511, USA
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, P.O. Box 286., Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., 1111, Budapest, Hungary
| | - Márton Nagyházi
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, P.O. Box 286., Budapest, Hungary
| | - Paul T Anastas
- Yale Center for Green Chemistry and Engineering, Yale University, New Haven, Connecticut, 06511, USA
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg, 252074, Aachen, Germany
| | - Róbert Tuba
- Yale Center for Green Chemistry and Engineering, Yale University, New Haven, Connecticut, 06511, USA
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, P.O. Box 286., Budapest, Hungary
- Faculty of Engineering, Research Centre of Biochemical, Environmental and Chemical Engineering, MOL Department of Hydrocarbon & Coal Processing, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary
| |
Collapse
|
18
|
Rochlitz L, Fischer JWA, Pessemesse Q, Clark AH, Ashuiev A, Klose D, Payard PA, Jeschke G, Copéret C. Ti-Doping in Silica-Supported PtZn Propane Dehydrogenation Catalysts: From Improved Stability to the Nature of the Pt-Ti Interaction. JACS AU 2023; 3:1939-1951. [PMID: 37502165 PMCID: PMC10369412 DOI: 10.1021/jacsau.3c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
Propane dehydrogenation is an important industrial reaction to access propene, the world's second most used polymer precursor. Catalysts for this transformation are required to be long living at high temperature and robust toward harsh oxidative regeneration conditions. In this work, combining surface organometallic chemistry and thermolytic molecular precursor approach, we prepared well-defined silica-supported Pt and alloyed PtZn materials to investigate the effect of Ti-doping on catalytic performances. Chemisorption experiments and density functional calculations reveal a significant change in the electronic structure of the nanoparticles (NPs) due to the Ti-doping. Evaluation of the resulting materials PtZn/SiO2 and PtZnTi/SiO2 during long deactivation phases reveal a stabilizing effect of Ti in PtZnTi/SiO2 with a kd of 0.015 h-1 compared to PtZn/SiO2 with a kd of 0.022 h-1 over 108 h on stream. Such a stabilizing effect is also present during a second deactivation phase after applying a regeneration protocol to the materials under O2 and H2 at high temperatures. A combined scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory study reveals that this effect is related to a sintering prevention of the alloyed PtZn NPs in PtZnTi/SiO2 due to a strong interaction of the NPs with Ti sites. However, in contrast to classical strong metal-support interaction, we show that the coverage of the Pt NPs with TiOx species is not needed to explain the changes in adsorption and reactivity properties. Indeed, the interaction of the Pt NPs with TiIII sites is enough to decrease CO adsorption and to induce a red-shift of the CO band because of electron transfer from the TiIII sites to Pt0.
Collapse
Affiliation(s)
- Lukas Rochlitz
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Jörg W. A. Fischer
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Quentin Pessemesse
- Université
de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE,
UMR 5246, ICBMS, Rue
Victor Grignard, Villeurbanne Cedex F-69622, France
| | - Adam H. Clark
- Paul
Scherrer Institut, Villigen CH-5232, Switzerland
| | - Anton Ashuiev
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Daniel Klose
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Pierre-Adrien Payard
- Université
de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE,
UMR 5246, ICBMS, Rue
Victor Grignard, Villeurbanne Cedex F-69622, France
| | - Gunnar Jeschke
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| |
Collapse
|
19
|
Docherty SR, Safonova OV, Copéret C. Surface Redox Dynamics in Gold-Zinc CO 2 Hydrogenation Catalysts. J Am Chem Soc 2023. [PMID: 37318330 DOI: 10.1021/jacs.3c03522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Au-Zn catalysts have previously been shown to promote the hydrogenation of CO2 to methanol, but their active state is poorly understood. Here, silica-supported bimetallic Au-Zn alloys, prepared by surface organometallic chemistry (SOMC), are shown to be proficient catalysts for hydrogenation of CO2 to methanol. In situ X-ray absorption spectroscopy (XAS), in conjunction with gas-switching experiments, is used to amplify subtle changes occurring at the surface of this tailored catalyst during reaction. Consequently, an Au-Zn alloy is identified and is shown to undergo subsequent reversible redox changes under reaction conditions according to multivariate curve resolution alternating least-squares (MCR-ALS) analysis. These results highlight the role of alloying and dealloying in Au-based CO2 hydrogenation catalysts and illustrate the role of these reversible processes in driving reactivity.
Collapse
Affiliation(s)
- Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
| | | | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
| |
Collapse
|
20
|
Zhou W, Docherty SR, Ehinger C, Zhou X, Copéret C. The promotional role of Mn in CO 2 hydrogenation over Rh-based catalysts from a surface organometallic chemistry approach. Chem Sci 2023; 14:5379-5385. [PMID: 37234901 PMCID: PMC10207883 DOI: 10.1039/d3sc01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Rh-based catalysts modified by transition metals have been intensively studied for CO2 hydrogenation due to their high activity. However, understanding the role of promoters at the molecular level remains challenging due to the ill-defined structure of heterogeneous catalysts. Here, we constructed well-defined RhMn@SiO2 and Rh@SiO2 model catalysts via surface organometallic chemistry combined with thermolytic molecular precursor (SOMC/TMP) approach to rationalize the promotional effect of Mn in CO2 hydrogenation. We show that the addition of Mn shifts the products from almost pure CH4 to a mixture of methane and oxygenates (CO, CH3OH, and CH3CH2OH) upon going from Rh@SiO2 to RhMn@SiO2. In situ X-ray absorption spectroscopy (XAS) confirms that the MnII is atomically dispersed in the vicinity of metallic Rh nanoparticles and enables to induce the oxidation of Rh to form the Mn-O-Rh interface under reaction conditions. The formed interface is proposed to be key to maintaining Rh+ sites, which is related to suppressing the methanation reaction and stabilizing the formate species as evidenced by in situ DRIFTS to promote the formation of CO and alcohols.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry and Applied Bioscience, ETH Zürich Vladimir Prelog Weg2 CH-8093 Zürich Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Bioscience, ETH Zürich Vladimir Prelog Weg2 CH-8093 Zürich Switzerland
| | - Christian Ehinger
- Department of Chemistry and Applied Bioscience, ETH Zürich Vladimir Prelog Weg2 CH-8093 Zürich Switzerland
| | - Xiaoyu Zhou
- Department of Chemistry and Applied Bioscience, ETH Zürich Vladimir Prelog Weg2 CH-8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Bioscience, ETH Zürich Vladimir Prelog Weg2 CH-8093 Zürich Switzerland
| |
Collapse
|
21
|
Computational study of propene selectivity and yield in the dehydrogenation of propane via process simulation approach. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Propene is a vital feedstock in the petrochemical industry with a vast range of applications. And there is a continuous rise in propene demand. To gain insight into how the on-purpose method could help meet the demand in the propene market, we investigated the impact of temperature (T) and pressure (P) on product distribution in terms of product yield and selectivity using the process simulation approach. Existing related studies were deployed to identify possible products that could be evaluated in the simulation. In the study, we used Gibbs minimization (with Gibb’s reactor) to predict the likely products obtained at different T and P. The impact of feed purity on product distribution was also evaluated. The study was aided by using the Aspen HYSYS process simulator, while Design Expert was used to search for the optimum conditions for higher conversion, yield, and selectivity. Results obtained for the modeling and simulation of the process show that operating the production process at a lower pressure would favor higher selectivity within the temperature range of 500–600 °C. In comparison, the one run at a higher pressure was predicted to be only promising, showing better selectivity within the range of 550–650 °C. The feed purity significantly impacts the propene amount, especially for one with sulfur impurity, leading to the formation of smaller olefins and sulfide compounds. Our study reveals the importance of reviewing feed purity before charging them into the dehydrogenation reactor to prevent poisoning, coking, and other activities, which do lead to undesired products like methane and ethylene. A catalyst can also be designed to efficiently dehydrogenate the propane to propene at a lower temperature to prevent side reactions.
Collapse
|
22
|
Effects of Synthesis Procedures on Pt–Sn Alloy Formation and Their Catalytic Activity for Propane Dehydrogenation. Catal Letters 2023. [DOI: 10.1007/s10562-022-04263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Wang Y, Tian Z, Yang Q, Tong K, Tang X, Zhang N, Zhou J, Zhang L, Zhang Q, Dai S, Lin Y, Lu Z, Chen L. Atomically Dispersed Dual Metal Sites Boost the Efficiency of Olefins Epoxidation in Tandem with CO 2 Cycloaddition. NANO LETTERS 2022; 22:8381-8388. [PMID: 36125371 DOI: 10.1021/acs.nanolett.2c03087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tandem catalysis provides an economical and energy-efficient process for the production of fine chemicals. In this work, we demonstrate that a rationally synthesized carbon-based catalyst with atomically dispersed dual Fe-Al sites (ADD-Fe-Al) achieves superior catalytic activity for the one-pot oxidative carboxylation of olefins (conversion ∼97%, selectivity ∼91%), where the yield of target product over ADD-Fe-Al is at least 62% higher than that of monometallic counterparts. The kinetic results reveal that the excellent catalytic performance arises from the synergistic effect between Fe (oxidation site) and Al sites (cycloaddition site), where the efficient CO2 cycloaddition with epoxides in the presence of Al sites (3.91 wt %) positively shifts the oxidation equilibrium to olefin epoxidation over Fe sites (0.89 wt %). This work not only offers an advanced catalyst for oxidative carboxylation of olefins but also opens up an avenue for the rational design of multifunctional catalysts for tandem catalytic reactions in the future.
Collapse
Affiliation(s)
- Yinming Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology and Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology and Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Qihao Yang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology and Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Kaicheng Tong
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology and Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Nian Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Jing Zhou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology and Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology and Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology and Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology and Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
24
|
15-Membered Macrocyclic Schiff-Base-Pd(0) Complex Immobilized on Fe3O4 MNPs: An Novel Nanomagnetic Catalyst for the One-Pot Three-Component C–H Chalcogenation of Azoles by S8 and Aryl Iodides. Catal Letters 2022. [DOI: 10.1007/s10562-022-04194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Wan H, Gong N, Liu L. Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
27
|
Syed ZH, Mian MR, Patel R, Xie H, Pengmei Z, Chen Z, Son FA, Goetjen TA, Chapovetsky A, Fahy KM, Sha F, Wang X, Alayoglu S, Kaphan DM, Chapman KW, Neurock M, Gagliardi L, Delferro M, Farha OK. Sulfated Zirconium Metal–Organic Frameworks as Well-Defined Supports for Enhancing Organometallic Catalysis. J Am Chem Soc 2022; 144:16883-16897. [DOI: 10.1021/jacs.2c05290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoha H. Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Roshan Patel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zihan Pengmei
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Florencia A. Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy A. Goetjen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alon Chapovetsky
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kira M. Fahy
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karena W. Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
29
|
Liu XH, Yu HY, Huang JY, Su JH, Xue C, Zhou XT, He YR, He Q, Xu DJ, Xiong C, Ji HB. Biomimetic catalytic aerobic oxidation of C-sp(3)-H bonds under mild conditions using galactose oxidase model compound Cu IIL. Chem Sci 2022; 13:9560-9568. [PMID: 36091900 PMCID: PMC9400635 DOI: 10.1039/d2sc02606f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Jia-Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China Hefei 230026 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Yao-Rong He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - De-Jing Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
30
|
Matveyeva AN, Omarov SO, Nashchekin AV, Popkov VI, Murzin DY. Catalyst supports based on ZnO-ZnAl 2O 4 nanocomposites with enhanced selectivity and coking resistance in isobutane dehydrogenation. Dalton Trans 2022; 51:12213-12224. [PMID: 35894679 DOI: 10.1039/d2dt02088b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Development of coking resistant supports and catalysts for hydrocarbons conversion is challenging, especially when using such acidic materials as alumina. Apparently, this problem can be mitigated by using spinels that are less acidic, being, however, thermally stable. In this study, a series of ZnO-ZnAl2O4 nanocomposites with different ZnO loading were prepared by urotropine-nitrate combustion synthesis to be used as supports for isobutane dehydrogenation catalysts. The nanocomposites were characterized by XRD, SEM, N2-physisorption analysis, EDS, H2-TPR, TPD of NH3 and tested in isobutane dehydrogenation. Spinels with small amounts of ZnO displayed higher acidity and specific surface areas than samples with a higher ZnO content (30-40 mol%). At the same time, the maximum activity and the lowest selectivity to by-products (CH4 and C3H6) after 10 min of the reaction were observed for the nanocomposite containing 20 mol% of ZnO. The obtained nanocomposites have demonstrated better resistance to coking compared to commercial alumina.
Collapse
Affiliation(s)
- Anna N Matveyeva
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Shamil O Omarov
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Alexey V Nashchekin
- Federal Joint Research Center "Material science and characterization in advanced technology", Ioffe Institute, Politekhnicheskaya ul. 26, St Petersburg 194021, Russia
| | - Vadim I Popkov
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Dmitry Yu Murzin
- Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Henriksgatan 2, Turku/Åbo 20500, Finland.
| |
Collapse
|
31
|
Royle CG, Sotorrios L, Gyton MR, Brodie CN, Burnage AL, Furfari SK, Marini A, Warren MR, Macgregor SA, Weller AS. Single-Crystal to Single-Crystal Addition of H 2 to [Ir( iPr-PONOP)(propene)][BAr F4] and Comparison Between Solid-State and Solution Reactivity. Organometallics 2022; 41:3270-3280. [DOI: 10.1021/acs.organomet.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Cameron G. Royle
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Lia Sotorrios
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Matthew R. Gyton
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| | - Claire N. Brodie
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| | - Arron L. Burnage
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | | | - Anna Marini
- Diamond Light Source Ltd, Didcot OX11 0DE, U.K
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Andrew S. Weller
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| |
Collapse
|
32
|
Rochlitz L, Pessemesse Q, Fischer JWA, Klose D, Clark AH, Plodinec M, Jeschke G, Payard PA, Copéret C. A Robust and Efficient Propane Dehydrogenation Catalyst from Unexpectedly Segregated Pt 2Mn Nanoparticles. J Am Chem Soc 2022; 144:13384-13393. [PMID: 35834364 DOI: 10.1021/jacs.2c05618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The increasing demand for short chain olefins like propene for plastics production and the availability of shale gas make the development of highly performing propane dehydrogenation (PDH) catalysts, robust toward industrially applied harsh regeneration conditions, a highly important field of research. A combination of surface organometallic chemistry and thermolytic molecular precursor approach was used to prepare a nanometric, bimetallic Pt-Mn material (3 wt % Pt, 1.3 wt % Mn) supported on silica via consecutive grafting of a Mn and Pt precursor on surface OH groups present on the support surface, followed by a treatment under a H2 flow at high temperature. The material exhibits a 70% fraction of the overall Mn as MnII single sites on the support surface; the remaining Mn is incorporated in segregated Pt2Mn nanoparticles. The material shows great performance in PDH reaction with a low deactivation rate. In particular, it shows outstanding robustness during repeated regeneration cycles, with conversion and selectivity stabilizing at ca. 37 and 98%, respectively. Notably, a material with a lower Pt loading of only 0.05 wt % shows an outstanding catalytic performance─initial productivity of 4523 gC3H6/gPt h and an extremely low kd of 0.003 h-1 under a partial pressure of H2, which are among the highest reported productivities. A combined in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, electron paramagnetic resonance, and metadynamics at the density functional theory level study could show that the strong interaction between the MnII-decorated support and the unexpectedly segregated Pt2Mn particles is most likely responsible for the outstanding performance of the investigated materials.
Collapse
Affiliation(s)
- Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Quentin Pessemesse
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.,Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, rue Victor Grignard, F-69622 Villeurbanne Cedex, France
| | - Jörg W A Fischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Adam H Clark
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Milivoj Plodinec
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Pierre-Adrien Payard
- Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, rue Victor Grignard, F-69622 Villeurbanne Cedex, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
33
|
Vottero E, Carosso M, Ricchebuono A, Jiménez-Ruiz M, Pellegrini R, Chizallet C, Raybaud P, Groppo E, Piovano A. Evidence for H 2-Induced Ductility in a Pt/Al 2O 3 Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eleonora Vottero
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Quarello 15, I-10135 Torino, Italy
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Michele Carosso
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | - Alberto Ricchebuono
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | - Riccardo Pellegrini
- Chimet SpA - Catalyst Division, Via di Pescaiola 74, I-52041 Viciomaggio Arezzo, Italy
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-point de L’Échangeur de Solaize, BP3-69360 Solaize, France
| | - Pascal Raybaud
- IFP Energies nouvelles, Rond-point de L’Échangeur de Solaize, BP3-69360 Solaize, France
| | - Elena Groppo
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | - Andrea Piovano
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
34
|
Willauer AR, Fadaei-Tirani F, Zivkovic I, Sienkiewicz A, Mazzanti M. Structure and Reactivity of Polynuclear Divalent Lanthanide Disiloxanediolate Complexes. Inorg Chem 2022; 61:7436-7447. [PMID: 35505299 DOI: 10.1021/acs.inorgchem.2c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinuclear molecular complexes of europium (II) and ytterbium(II) [Ln3{(Ph2SiO)2O}3(THF)6], 1-Ln3L3 (Ln = Eu and Yb), supported by the dianionic tetraphenyl disiloxanediolate ligand, were synthesized via protonolysis of the [Ln{N(SiMe3)2}2(THF)2] complexes. In contrast, the reaction of [Sm{N(SiMe3)2}2(THF)2] with the (Ph2SiOH)2O ligand led to the isolation of the mixed-valent Sm(II)/Sm(III) complex [Sm3{(Ph2SiO)2O}3{N(SiMe3)2}(THF)4], 2-Sm3L3, which was crystallographically characterized. The Eu(II) complex 1-Eu3L3 displays weak ferromagnetic coupling between the Eu(II) metal centers (J = 0.1035 cm-1). The addition of 3 equiv of (Ph2SiOK)2O to 1-Eu3L3 resulted in the formation of the polynuclear Eu(II) dimer of dimers [K4Eu2{(Ph2SiO)2O}4(Et2O)2]2, 3-Eu2L4. Complexes 1-Ln3L3 (Ln = Eu and Yb) are stable in solution at room temperature, while 3-Eu2L4 shows higher reactivity and rapidly decomposes to give the mixed-valent Eu(II)/Eu(III) species [K3Eu2{(Ph2SiO)2O}4], 4-Eu2L4. Complex 1-Yb3L3 affects the slow reductive disproportionation of carbon dioxide, but 1-Eu3L3 does not display any reactivity toward CO2. However, the presence of one additional (Ph2SiO-)2O per Eu(II) metal center in 3-Eu2L4 increases dramatically the reductive ability of the Eu(II) metal centers, affording the first example of carbon dioxide activation by an isolated divalent europium complex. The reduction of CO2 by 3-Eu2L4 is immediate, and carbonate is formed selectively after the addition of a stoichiometric amount of CO2.
Collapse
Affiliation(s)
- Aurélien R Willauer
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,ADSresonances Sàrl; Route de Genève 60B, 1028 Préverenges, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Zhang B, Song M, Liu H, Li G, Liu S, Wang L, Zhang X, Liu G. Role of Ni species in ZnO Supported on Silicalite-1 for Efficient Propane Dehydrogenation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Nakaya Y, Furukawa S. Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation. Chempluschem 2022; 87:e202100560. [PMID: 35194957 DOI: 10.1002/cplu.202100560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Propane dehydrogenation has been a promising method for producing propylene that has the potentials to meet the increasing global demand for propylene. However, owing to the restricted equilibrium conversion caused by the high endothermicity, even the Pt-based catalysts, which exhibit high activity and selectivity, severely suffer significantly from coke formation and/or nanoparticle sintering at realistic reaction temperatures, resulting in a short catalyst lifetime. As a result, few innovative catalysts in terms of catalytic activity, selectivity, and stability, have been produced. In this Review, we focus on the characteristics of single-atom-like Pt sites for PDH and attempt to provide suggestions for developing highly efficient catalysts. First, we briefly describe the fundamental strategies. Following that, the remarkable catalysis is addressed by three different distinct sorts of state-of-the-art single-atom-like Pt catalysts are discussed. Additionally, we present other promising catalyst design approaches that are not based on single-atom-like Pt catalysts, as well as future research challenges in this field.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Kita-ku, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Kita-ku, 001-0021, Japan
- Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
37
|
Castro-Fernández P, Serykh AI, Yakimov AV, Prosvirin IP, Bukhtiyarov AV, Abdala PM, Copéret C, Fedorov A, Müller CR. Atomic-scale changes of silica-supported catalysts with nanocrystalline or amorphous gallia phases: implications of hydrogen pretreatment on their selectivity for propane dehydrogenation. Catal Sci Technol 2022; 12:3957-3968. [PMID: 35814525 PMCID: PMC9208381 DOI: 10.1039/d2cy00074a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/01/2022] [Indexed: 12/22/2022]
Abstract
This work explores how H2 pretreatment at 550 °C induces structural transformation of two gallia-based propane dehydrogenation (PDH) catalysts, viz. nanocrystalline γ/β-Ga2O3 and amorphous Ga2O3 (GaOx) supported on silica (γ-Ga2O3/SiO2 and Ga/SiO2, respectively) and how it affects their activity, propene selectivity and stability with time on stream (TOS). Ga/SiO2–H2 shows poor activity and propene selectivity, no coking and no deactivation with TOS, similar to Ga/SiO2. In contrast, the high initial activity and propene selectivity of γ-Ga2O3/SiO2–H2 decline with TOS but to a lesser extent than in calcined γ-Ga2O3/SiO2. In addition, γ-Ga2O3/SiO2–H2 cokes less than γ-Ga2O3/SiO2. Ga K-edge X-ray absorption spectroscopy suggests an increased disorder of the nanocrystalline γ/β-Ga2O3 phases in γ-Ga2O3/SiO2–H2 and the emergence of additional tetrahedral Ga sites (GaIV). Such GaIV sites are strong Lewis acid sites (LAS) according to studies using adsorbed pyridine and CO probe molecules, i.e., the abundance of strong LAS is higher in γ-Ga2O3/SiO2–H2 compared to γ-Ga2O3/SiO2 but lower than in Ga/SiO2 and Ga/SiO2–H2. Dissociation of H2 on the Ga–O linkages in γ-Ga2O3/SiO2–H2 yields high-frequency Ga–H bands that are observed in Ga/SiO2 and Ga/SiO2–H2 but not detected in γ-Ga2O3/SiO2. We attribute the increased amount of GaIV sites in γ-Ga2O3/SiO2–H2 mostly to an increased disorder in γ/β-Ga2O3. X-ray photoelectron spectroscopy detects the formation of Ga+ and Ga0 species in both Ga/SiO2–H2 and γ-Ga2O3/SiO2–H2. Therefore, it is likely that a minor amount of GaIV sites also forms through the interaction of Ga+ (such as Ga2O) and/or Ga0 with silanol groups of SiO2. We explore how H2 pretreatment changes the structure of two gallia-based propane dehydrogenation catalysts, viz. crystalline γ/β-Ga2O3 and amorphous Ga2O3 supported on silica, and how it affects their activity, selectivity and stability on stream.![]()
Collapse
Affiliation(s)
- Pedro Castro-Fernández
- Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| | | | - Alexander V. Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | | | | | - Paula M. Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Christoph R. Müller
- Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| |
Collapse
|
38
|
Chen Z, Docherty SR, Florian P, Kierzkowska A, Moroz IB, Abdala PM, Copéret C, Müller CR, Fedorov A. From ethene to propene (ETP) on tailored silica–alumina supports with isolated Ni( ii) sites: uncovering the importance of surface nickel aluminate sites and the carbon-pool mechanism. Catal Sci Technol 2022; 12:5861-5868. [PMID: 36324825 PMCID: PMC9528926 DOI: 10.1039/d2cy01272c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
Catalysts with well-defined isolated Ni(ii) surface sites have been prepared on three silica-based supports. The outer shells of the support were comprised either of an amorphous aluminosilicate or amorphous alumina (AlOx) layer – associated with a high and low density of strong Brønsted acid sites (BAS), respectively. When tested for ethene-to-propene conversion, Ni catalysts with a higher density of strong BAS demonstrate a higher initial activity and productivity to propene. On all three catalysts, the propene productivity correlates closely with the concentration of C8 aromatics, suggesting that propene may form via a carbon-pool mechanism. While all three catalysts deactivate with time on stream, the deactivation of catalysts with Ni(ii) sites on AlOx, i.e., containing surface Ni aluminate sites, is shown to be reversible by calcination (coke removal), in contrast to the deactivation of surface Ni silicate or aluminosilicate sites, which deactivate irreversibly by forming Ni nanoparticles. The ethene-to-propene reaction on Ni catalysts correlates with the formation of alkylated aromatic species. The deactivation of surface Ni aluminate sites can be reversed by calcination, while the deactivation of Ni silicate sites is irreversible.![]()
Collapse
Affiliation(s)
- Zixuan Chen
- Laboratory of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Scott R. Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Pierre Florian
- CNRS, CEMHTI UPR3079, University of Orléans, F-45071 Orléans, France
| | | | - Ilia B. Moroz
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Paula M. Abdala
- Laboratory of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Christoph R. Müller
- Laboratory of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Alexey Fedorov
- Laboratory of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
39
|
Castro-Fernández P, Kaushik M, Wang Z, Mance D, Kountoupi E, Willinger E, Abdala PM, Copéret C, Lesage A, Fedorov A, Müller CR. Uncovering selective and active Ga surface sites in gallia-alumina mixed-oxide propane dehydrogenation catalysts by dynamic nuclear polarization surface enhanced NMR spectroscopy. Chem Sci 2021; 12:15273-15283. [PMID: 34976347 PMCID: PMC8635172 DOI: 10.1039/d1sc05381g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Gallia–alumina (Ga,Al)2O3(x : y) spinel-type solid solution nanoparticle catalysts for propane dehydrogenation (PDH) were prepared with four nominal Ga : Al atomic ratios (1 : 6, 1 : 3, 3 : 1, 1 : 0) using a colloidal synthesis approach. The structure, coordination environment and distribution of Ga and Al sites in these materials were investigated by X-ray diffraction, X-ray absorption spectroscopy (Ga K-edge) as well as 27Al and 71Ga solid state nuclear magnetic resonance. The surface acidity (Lewis or Brønsted) was probed using infrared spectroscopy with pyridine and 2,6-dimethylpyridine probe molecules, complemented by element-specific insights (Ga or Al) from dynamic nuclear polarization surface enhanced cross-polarization magic angle spinning 15N{27Al} and 15N{71Ga} J coupling mediated heteronuclear multiple quantum correlation NMR experiments using 15N-labelled pyridine as a probe molecule. The latter approach provides unique insights into the nature and relative strength of the surface acid sites as it allows to distinguish contributions from Al and Ga sites to the overall surface acidity of mixed (Ga,Al)2O3 oxides. Notably, we demonstrate that (Ga,Al)2O3 catalysts with a high Al content show a greater relative abundance of four-coordinated Ga sites and a greater relative fraction of weak/medium Ga-based surface Lewis acid sites, which correlates with superior propene selectivity, Ga-based activity, and stability in PDH (due to lower coking). In contrast, (Ga,Al)2O3 catalysts with a lower Al content feature a higher fraction of six-coordinated Ga sites, as well as more abundant Ga-based strong surface Lewis acid sites, which deactivate through coking. Overall, the results show that the relative abundance and strength of Ga-based surface Lewis acid sites can be tuned by optimizing the bulk Ga : Al atomic ratio, thus providing an effective measure for a rational control of the catalyst performance. Coordination geometry and Lewis acidity of Ga and Al (bulk and surface) sites in mixed oxide gallia–alumina nanoparticles is correlated with the performance in propane dehydrogenation.![]()
Collapse
Affiliation(s)
| | - Monu Kaushik
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Zhuoran Wang
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Deni Mance
- Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Evgenia Kountoupi
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Anne Lesage
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| |
Collapse
|
40
|
Praveen CS, Comas-Vives A. Activity Trends in the Propane Dehydrogenation Reaction Catalyzed by MIII Sites on an Amorphous SiO2 Model: A Theoretical Perspective. Top Catal 2021. [DOI: 10.1007/s11244-021-01535-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractOne class of particularly active catalysts for the Propane Dehydrogenation (PDH) reaction are well-defined M(III) sites on amorphous SiO2. In the present work, we focus on evaluating the catalytic trends of the PDH for four M(III) single-sites (Cr, Mo, Ga and In) on a realistic amorphous model of SiO2 using density functional theory-based calculations and the energetic span model. We considered a catalytic pathway spanned by three reaction steps taking place on selected MIII–O pair of the SiO2 model: σ-bond metathesis of propane on a MIII–O bond to form M-propyl and O–H group, a β-H transfer step forming M–H and propene, and the H–H coupling step producing H2 and regenerating the initial M–O bond. With the application of the energetic span model, we found that the calculated catalytic activity for Ga and Cr is comparable to the ones reported at the experimental level, enabling us to benchmark the model and the methodology used. Furthermore, results suggest that both In(III) and Mo(III) on SiO2 are potential active catalysts for PDH, provided they can be synthesized and are stable under PDH reaction conditions.
Collapse
|
41
|
Kou J, Zhu Chen J, Gao J, Zhang X, Zhu J, Ghosh A, Liu W, Kropf AJ, Zemlyanov D, Ma R, Guo X, Datye AK, Zhang G, Guo L, Miller JT. Structural and Catalytic Properties of Isolated Pt 2+ Sites in Platinum Phosphide (PtP 2). ACS Catal 2021. [DOI: 10.1021/acscatal.1c03970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiajing Kou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, China
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Johnny Zhu Chen
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Junxian Gao
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Arnab Ghosh
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - A. Jeremy Kropf
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 W State Street, West Lafayette, Indiana 47907, United States
| | - Rui Ma
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
42
|
Monai M, Gambino M, Wannakao S, Weckhuysen BM. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem Soc Rev 2021; 50:11503-11529. [PMID: 34661210 DOI: 10.1039/d1cs00357g] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
On-purpose synthetic routes for propylene production have emerged in the last couple of decades in response to the increasing demand for plastics and a shift to shale gas feedstocks for ethylene production. Propane dehydrogenation (PDH), an efficient and selective route to produce propylene, saw booming investments to fill the so-called propylene gap. In the coming years, however, a fluctuating light olefins market will call for flexibility in end-product of PDH plants. This can be achieved by combining PDH with propylene metathesis in a single step, propane to olefins (PTO), which allows production of mixtures of propylene, ethylene and butenes, which are important chemical building blocks for a.o. thermoplastics. The metathesis technology introduced by Phillips in the 1960s and mostly operated in reverse to produce propylene, is thus undergoing a renaissance of scientific and technological interest in the context of the PTO reaction. In this review, we will describe the state-of-the-art of PDH, propylene metathesis and PTO reactions, highlighting the open challenges and opportunities in the field. While the separate PDH and metathesis reactions have been extensively studied in the literature, understanding the whole PTO tandem-catalysis system will require new efforts in theoretical modelling and operando spectroscopy experiments, to gain mechanistic insights into the combined reactions and finally improve catalytic selectivity and stability for on-purpose olefins production.
Collapse
Affiliation(s)
- Matteo Monai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Marianna Gambino
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Sippakorn Wannakao
- SCG Chemicals Co., Ltd, 1 Siam-Cement Rd, Bang sue, Bangkok 1080, Thailand
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
43
|
Payard PA, Rochlitz L, Searles K, Foppa L, Leuthold B, Safonova OV, Comas-Vives A, Copéret C. Dynamics and Site Isolation: Keys to High Propane Dehydrogenation Performance of Silica-Supported PtGa Nanoparticles. JACS AU 2021; 1:1445-1458. [PMID: 34604854 PMCID: PMC8479774 DOI: 10.1021/jacsau.1c00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Nonoxidative dehydrogenation of light alkanes has seen a renewed interest in recent years. While PtGa systems appear among the most efficient catalyst for this reaction and are now implemented in production plants, the origin of the high catalytic performance in terms of activity, selectivity, and stability in PtGa-based catalysts is largely unknown. Here we use molecular modeling at the DFT level on three different models: (i) periodic surfaces, (ii) clusters using static calculations, and (iii) realistic size silica-supported nanoparticles (1 nm) using molecular dynamics and metadynamics. The combination of the models with experimental data (XAS, TEM) allowed the refinement of the structure of silica-supported PtGa nanoparticles synthesized via surface organometallic chemistry and provided a structure-activity relationship at the molecular level. Using this approach, the key interaction between Pt and Ga was evidenced and analyzed: the presence of Ga increases (i) the interaction between the oxide surface and the nanoparticles, which reduces sintering, (ii) the Pt site isolation, and (iii) the mobility of surface atoms which promotes the high activity, selectivity, and stability of this catalyst. Considering the complete system for modeling that includes the silica support as well as the dynamics of the PtGa nanoparticle is essential to understand the catalytic performances.
Collapse
Affiliation(s)
- P.-A. Payard
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - L. Rochlitz
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - K. Searles
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - L. Foppa
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - B. Leuthold
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | | | - A. Comas-Vives
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - C. Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
44
|
Motokura K, Ding S, Usui K, Kong Y. Enhanced Catalysis Based on the Surface Environment of the Silica-Supported Metal Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ken Motokura
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Siming Ding
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kei Usui
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuanyuan Kong
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
45
|
Propylene Synthesis: Recent Advances in the Use of Pt-Based Catalysts for Propane Dehydrogenation Reaction. Catalysts 2021. [DOI: 10.3390/catal11091070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Propylene is one of the most important feedstocks in the chemical industry, as it is used in the production of widely diffused materials such as polypropylene. Conventionally, propylene is obtained by cracking petroleum-derived naphtha and is a by-product of ethylene production. To ensure adequate propylene production, an alternative is needed, and propane dehydrogenation is considered the most interesting process. In literature, the catalysts that have shown the best performance in the dehydrogenation reaction are Cr-based and Pt-based. Chromium has the non-negligible disadvantage of toxicity; on the other hand, platinum shows several advantages, such as a higher reaction rate and stability. This review article summarizes the latest published results on the use of platinum-based catalysts for the propane dehydrogenation reaction. The manuscript is based on relevant articles from the past three years and mainly focuses on how both promoters and supports may affect the catalytic activity. The published results clearly show the crucial importance of the choice of the support, as not only the use of promoters but also the use of supports with tuned acid/base properties and particular shape can suppress the formation of coke and prevent the deep dehydrogenation of propylene.
Collapse
|
46
|
Rochlitz L, Searles K, Nater DF, Docherty SR, Gioffrè D, Copéret C. A Molecular Analogue of the C−H Activation Intermediate of the Silica‐Supported Ga(III) Single‐Site Propane Dehydrogenation Catalyst: Structure and XANES Signature. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Rochlitz
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Keith Searles
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Darryl F. Nater
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Scott R. Docherty
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Domenico Gioffrè
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Christophe Copéret
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| |
Collapse
|
47
|
Docherty SR, Copéret C. Deciphering Metal–Oxide and Metal–Metal Interplay via Surface Organometallic Chemistry: A Case Study with CO2 Hydrogenation to Methanol. J Am Chem Soc 2021; 143:6767-6780. [DOI: 10.1021/jacs.1c02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Scott R. Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
| |
Collapse
|