1
|
Ye C, Guo Z, Zhou Y, Shen Y. Nickel-based dual single atom electrocatalysts for the nitrate reduction reaction. J Colloid Interface Sci 2025; 677:933-941. [PMID: 39178672 DOI: 10.1016/j.jcis.2024.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Electrochemical nitrate (NO3-) reduction reaction (NO3-RR) to ammonium (NH4+) or nitrogen (N2) provides a green route for nitrate remediation. However, nitrite generation and hydrogen evolution reactions hinder the feasibility of the process. Herein, dual single atom catalysts were rationally designed by introducing Ag/Bi/Mo atoms to atomically dispersed NiNC moieties supported by nitrogen-doped carbon nanosheet (NCNS) for the NO3-RR. Ni single atoms loaded on NCNS (Ni/NCNS) tend to reduce NO3- to valuable NH4+ with a high selectivity of 77.8 %. In contrast, the main product of NO3-RR catalyzing by NiAg/NCNS, NiBi/NCNS, and NiMo/NCNS was changed to N2, giving rise to N2 selectivity of 48.4, 47.1 and 47.5 %, respectively. Encouragingly, Ni/NCNS, NiBi/NCNS, and NiAg/NCNS showed excellent durability in acidic electrolytes, leading to nitrate conversion rates of 70.3, 91.1, and 93.2 % after a 10-h reaction. Simulated wastewater experiments showed that NiAg/NCNS could remove NO3- up to 97.8 % at -0.62 V after 9-h electrolysis. This work afforded a new strategy to regulate the reaction pathway and improve the conversion efficiency of the NO3-RR via engineering the dual atomic sites of the catalysts.
Collapse
Affiliation(s)
- Cuizhu Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
| | - Ziyi Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongfang Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
2
|
Jain V, Tyagi S, Roy P, Pillai PP. Ammonia Synthesis with Visible Light and Quantum Dots. J Am Chem Soc 2024; 146:32356-32365. [PMID: 39552033 DOI: 10.1021/jacs.4c06713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Light-assisted synthesis of ammonia from nitrate and nitrite sources is a sustainable approach to reduce the burden of the energy-intensive Haber-Bosch process. However, poor selectivity and the need for UV-active photocatalysts are the current bottlenecks in the synthesis of ammonia from nitrate and nitrite sources. Herein, we introduce selective visible-light-driven ammonia production from nitrate and nitrite ions with indium phosphide quantum dots (InP QDs) as the photocatalyst. The presence of catalytic indium sites and microenvironment modulation through an interplay of catalyst-reactant interactions resulted in efficient and selective ammonia formation under visible light. Ammonia was produced in an attractive yield of ∼94% in both aqueous and gaseous phases within 2 h of visible-light irradiation at room temperature. A decent formation of ammonia was observed under sunlight as well, strengthening the translational prospects of InP QD photocatalysts. Mechanistic investigations ascertained a negligible role of competing hydrogen evolution in direct nitrate reduction, confirming the active participation of photoexcited charge carriers from InP QDs in the ammonia synthesis. Kinetic studies revealed the energetically challenging nitrate-to-nitrite conversion as the rate-determining step, with subsequent reactions proceeding with ∼100% conversion to yield ammonia. A series of experiments concluded that water is the proton source in the InP QD-photocatalyzed synthesis of ammonia. Our study shows the impact of the rationally designed core and surface of InP QD-based photocatalysts in developing sustainable routes to produce ammonia beyond the Haber-Bosch process.
Collapse
Affiliation(s)
- Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Shreya Tyagi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Pradyut Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
3
|
Li Y, Bai Y, Wang Y, Lu S, Fang L. Precise structural regulation of copper-based electrocatalysts for sustainable nitrate reduction to ammonia. ENVIRONMENTAL RESEARCH 2024; 266:120422. [PMID: 39581256 DOI: 10.1016/j.envres.2024.120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The electrocatalytic reduction of nitrate to ammonia (NRA) technology not only achieves the effective removal of nitrates in the environment but also produces value-added products-NH3. In recent years, copper-based materials have shown tremendous application prospects in this field due to their excellent conductivity, moderate cost, and their proximity of d orbital energy levels to the LUMO π∗ molecular orbitals of nitrate. This review starts with copper-based catalysts to elucidate the reaction mechanisms of NRA and its influencing factors, while summarizing and analyzing the principles and pros and cons of various modification strategies. Then, we will explore the impact of different modification strategies on improving NRA performance and the underlying theoretical mechanisms. Finally, this review proposes the current challenges and prospects of copper-based materials, aiming to provide a reference for the further development and industrial application of copper-based catalysts.
Collapse
Affiliation(s)
- Yaxuan Li
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Yuanjuan Bai
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Yanwei Wang
- Xuzhou College of Industrial Technology, NO. 1 Xiangwang Road, Gulou District, Xuzhou, 221140, Jiangsu Province, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China.
| |
Collapse
|
4
|
Messias I, Winkler MEG, Costa GF, Mariano T, Souza Junior JB, Neckel IT, Figueiredo MC, Singh N, Nagao R. Role of Structural and Compositional Changes of Cu 2O Nanocubes in Nitrate Electroreduction to Ammonia. ACS APPLIED ENERGY MATERIALS 2024; 7:9034-9044. [PMID: 39421273 PMCID: PMC11480975 DOI: 10.1021/acsaem.4c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Nitrate electroreduction reaction (NO3RR) to ammonia (NH3) still faces fundamental and technological challenges. While Cu-based catalysts have been widely explored, their activity and stability relationship are still not fully understood. Here, we systematically monitored the dynamic alterations in the chemical and morphological characteristics of Cu2O nanocubes (NCs) during NO3RR in an alkaline electrolyte. In 1 h of electrolysis from -0.10 to -0.60 V vs RHE, the electrocatalyst achieved the maximum NH3 faradaic efficiency (FE) and yield rate at -0.3 V (94% and 149 μmol h-1 cm-2, respectively). Similar efficiency could be found at a lower overpotential (-0.20 V vs RHE) in long-term electrolysis. At -0.20 V vs RHE, the catalyst FE increased from 73% in the first 2 h to ∼90% in 10 h of electrolysis. Electron microscopy revealed the loss of the cubic shape with the formation of sintered domains. In situ Raman, X-ray diffraction (XRD), and in situ Cu K-edge X-ray absorption near-edge spectroscopy (XANES) indicated the reduction of Cu2O to oxide-derived Cu0 (OD-Cu). Nevertheless, a remaining Cu2O phase was noticed after 1 h of electrolysis at -0.3 V vs RHE. This observation indicates that the activity and selectivity of the initially well-defined Cu2O NCs are not solely dependent on the initial structure. Instead, it underscores the emergence of an OD-Cu-rich surface, evolving from near-surface to underlying layers over time and playing a crucial role in the reaction pathways. By employing online differential electrochemical mass spectrometry (DEMS) and in situ Fourier transform infrared spectroscopy (FTIR), we experimentally probed the presence of key intermediates (NO and NH2OH) and byproducts of NO3RR (N2 and N2H x ) for NH3 formation. These results show a complex relationship between activity and stability of the nanostructured Cu2O oxide catalyst for NO3RR.
Collapse
Affiliation(s)
- Igor Messias
- Institute
of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Manuel E. G. Winkler
- Institute
of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil
- Center
for Innovation on New Energies, University
of Campinas, Campinas, SP 13083-084, Brazil
| | - Gabriel F. Costa
- Institute
of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United
States
| | - Thiago Mariano
- Institute
of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil
- Center
for Innovation on New Energies, University
of Campinas, Campinas, SP 13083-084, Brazil
| | - João Batista Souza Junior
- Institute
of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-100, Brazil
| | - Itamar Tomio Neckel
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian
Center for Research in Energy and Materials, Campinas, SP 13083-100, Brazil
| | - Marta C. Figueiredo
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, Eindhoven, MB 5600, The Netherlands
- Eindhoven
Institute of Renewable Energy Systems, Eindhoven
University of Technology, Eindhoven, MB 5600, The Netherlands
| | - Nirala Singh
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United
States
| | - Raphael Nagao
- Institute
of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil
- Center
for Innovation on New Energies, University
of Campinas, Campinas, SP 13083-084, Brazil
| |
Collapse
|
5
|
Zheng S, Yang X, Shi ZZ, Ding H, Pan F, Li JF. The Loss of Interfacial Water-Adsorbate Hydrogen Bond Connectivity Position Surface-Active Hydrogen as a Crucial Intermediate to Enhance Nitrate Reduction Reaction. J Am Chem Soc 2024; 146:26965-26974. [PMID: 39303080 DOI: 10.1021/jacs.4c08256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) offers a promising solution for remediating nitrate-polluted wastewater while enabling the sustainable production of ammonia. The control strategy of surface-active hydrogen (*H) is extensively employed to enhance the kinetics of the NO3RR, but atomic understanding lags far behind the experimental observations. Here, we decipher the cation-water-adsorbate interactions in regulating the NO3RR kinetics at the Cu (111) electrode/electrolyte interface using AIMD simulations with a slow-growth approach. We demonstrate that the key oxygen-containing intermediates of the NO3RR (e.g., *NO, *NO2, and *NO3) will stably coordinate with the cations, impeding their integration with the hydrogen bond network and further their hydrogenation by interfacial water molecules due to steric hindrance. The *H can migrate across the interface with a low energy barrier, and its hydrogenation barrier with oxygen-containing species remains unaffected by cations, offering a potent supplement to the hydrogenation process, playing the predominant factor by which the *H facilitates NO3RR reaction kinetic. This study provides valuable insights for understanding the reaction mechanism of NO3RR by fully considering the cation-water-adsorbate interactions, which can aid in the further development of the electrolyte and electrocatalysts for efficient NO3RR.
Collapse
Affiliation(s)
- Shisheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
| | - Xinzhe Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Zhong-Zhang Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
| | - Haowen Ding
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361000, China
| |
Collapse
|
6
|
Lin P, Zhao F, Ren X, Lu Y, Dong X, Gao L, Ma T, Bao J, Liu A. Recent progress on Ti-based catalysts in the electrochemical synthesis of ammonia. NANOSCALE 2024; 16:17300-17323. [PMID: 39240163 DOI: 10.1039/d4nr02852j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Electrochemical ammonia synthesis presents a sustainable alternative, offering the potential for enhanced energy efficiency and environmental benefits compared to the conventional Haber-Bosch process. In recent years, the electrocatalytic reduction of nitrate to ammonia (NO3-RR) has emerged as a crucial approach for achieving sustainable NH3 production. To enhance energy efficiency and successfully convert NO3- to NH3, it is essential to investigate cost-effective electrocatalysts that provide high Faraday efficiency and demonstrate adequate stability. Ti-based materials are considered ideal candidates as catalysts due to their environmental friendliness and robust stability. This review initially summarizes the nitrate reduction reaction pathway and concisely discusses the impact of the potential intermediates and reaction steps on the overall reaction efficiency and product selectivity. Subsequently, an overview of the fundamental characteristics of Ti and TiO2 is presented. Additionally, the research process on Ti-based electrocatalysts in the electrochemical reduction of nitrate for ammonia synthesis is summarized. Finally, the design strategies, such as heteroatom doping and the introduction of oxygen vacancies, to enhance catalytic efficiency and selectivity are presented. Through this comprehensive review, we endeavor to furnish researchers with the most recent insights into the application of titanium-based electrocatalysts in nitrate reduction reactions and to stimulate innovative thought processes on the electrocatalytic synthesis of ammonia.
Collapse
Affiliation(s)
- Peiyan Lin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yumeng Lu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Xiaoying Dong
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China.
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Tingli Ma
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan
| | - Junjiang Bao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
7
|
Yang W, Chang Z, Yu X, Shen R, Wang L, Cui X, Shi J. Triple Regulations via Fe Redox Boosting Nitrate Reduction to Ammonia at Industrial Current Densities. Angew Chem Int Ed Engl 2024:e202415300. [PMID: 39285259 DOI: 10.1002/anie.202415300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Indexed: 11/01/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3 -RR) has promising prospects for green synthesis of ammonia and environmental remediation. However, the performance of catalysts at high current density usually suffers from the high energy barrier for the nitrate (NO3 -) to nitrite (NO2 -) and the competitive hydrogen evolution. Herein, we proposed a two-step relay mechanism through spontaneous redox reaction followed electrochemical reaction by introducing low-valence Fe species into Ni2P nanosheets to significantly enhance the NO3 -RR performance at industrial current density. The existence of low-valence Fe species bypasses the NO3 - to NO2 - step through the spontaneous redox with NO3 - to produce NO2 - and Fe2O3, regulates the electronic structure of Ni2P to reduce the barrier of NO2 - to NH3, thirdly prohibits the hydrogen evolution by consuming the excess active hydrogen through reduction of Fe2O3 to recover low-valence Fe species. The triple regulations via Fe redox during the two-step relay reactions guarantee the Fe-Ni2P@NF high ammonia yield of 120.1 mg h-1 cm-2 with Faraday efficiency of more than 90% over a wide potential window and a long-term stability of more than 130 h at ~1000 mA cm-2. This work provides a new strategy to realize the design and synthesis of nitrate reduction electrocatalysts at high current densities.
Collapse
Affiliation(s)
- Wenhao Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ziwei Chang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P.R. China
| | - Xu Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ruxiang Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD-4072, Australia
| | - Xiangzhi Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P.R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
8
|
Lu J, Lv S, Park HS, Chen Q. Electrocatalytically active and charged natural chalcopyrite for nitrate-contaminated wastewater purification extended to energy storage Zn-NO 3- battery. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135287. [PMID: 39053059 DOI: 10.1016/j.jhazmat.2024.135287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Charged natural chalcopyrite (CuFeS2, Ncpy) was developed for a three-dimensional electrochemical nitrate reduction (3D ENO3-RR) system with carbon fiber cloth cathode and Ti/IrO2 anode and Zn-NO3- battery. The 3D ENO3-RR system with Ncpy particle electrodes (PEs) possessed superior nitrate removal of 95.6 % and N2 selectivity of 76 % with excellent reusability under a broad pH range of 2-13 involving heterogeneous and homogeneous radical mechanisms. The Zn-NO3- battery with Ncpy cathode delivered an open-circuit voltage of 1.03 V and a cycling stability over 210 h. It was found that Ncpy PEs functioned through self-oxidation, surface dynamic reconstruction (Cu1.02Fe1.0S1.72O1.66 to Cu0.61Fe1.0S0.27O2.98), intrinsic micro-electric field (CuI, S2- anodic and FeIII cathodic poles), and reactive species (•OH, SO4•-, 1O2, •O2- and •H) generation. Computational analyses reveal that CuFeS2(112) surface with the lowest surface energy preferentially exposes Fe and Cu atoms. Cu site is beneficial for reducing NO3- to NO2-, Fe and Fe-Cu dual sites are conducive to N2 selectivity, lowering the overall reaction barriers. It paves the way for selective NO3- reduction in wastewater treatment and can be further extended to energy storage devices by utilizing low-cost Ncpy.
Collapse
Affiliation(s)
- Jun Lu
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea.
| | - Shaoyan Lv
- School of Environment Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ho Seok Park
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea; SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Suwon, the Republic of Korea.
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
9
|
Bai C, Fan S, Li X, Wang J, Duan J, Shi J, Mao Y, Chen G. Role of Interfacial Water Structure in the Electroreduction of NO over Cu 2O. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46384-46391. [PMID: 39179524 DOI: 10.1021/acsami.4c10027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The electrochemical nitric oxide reduction reaction (NORR), which utilizes water as the sole hydrogen source, has the potential to facilitate ammonia production while concurrently mitigating pollutants. However, limited research has been dedicated to characterizing the structure of interfacial water due to the challenges associated with probing this intricate system, impeding the development of more efficient catalysts for the NORR process. Herein, the Cu2O microcrystals with distinct exposed facets, including {100}, {110}, and {111}, are employed for the model catalysts to investigate interfacial water structure and intermediate species in the NORR process. The results from shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) indicated that the NORR performance in 0.1 M Na2SO4 (with heavy water as the solvent) was positively correlated to the proportion of hydrated Na+ ion water. In addition, a sequence of intermediates from the NORR, including *NOH, *NH, *NH2, and *NH3, was detected by employing a combination of multiple in situ characterization methods. Furthermore, in conjunction with experimental results and theoretical calculations, we revealed the potential reaction pathway of NORR. This study offers novel insights into the NORR mechanism and valuable guidance for the design of high-performance catalysts for ammonia production.
Collapse
Affiliation(s)
- Chunpeng Bai
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jun Duan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jugong Shi
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan Mao
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guohua Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, P. R China
| |
Collapse
|
10
|
Nishiwaki E, Rice PS, Kuo DY, Dou FY, Pyka A, Reid B, Nguyen HA, Stuve EM, Raugei S, Cossairt BM. Ni 2P active site ensembles tune electrocatalytic nitrate reduction selectivity. Chem Commun (Camb) 2024; 60:6941-6944. [PMID: 38885011 DOI: 10.1039/d4cc01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
We demonstrate that active site ensembles on transition metal phosphides tune the selectivity of the nitrate reduction reaction. Using Ni2P nanocrystals as a case study, we report a mechanism involving competitive co-adsorption of H* and NOx* intermediates. A near 100% faradaic efficiency for nitrate reduction over hydrogen evolution is observed at -0.4 V, while NH3 selectivity is maximized at -0.2 V vs. RHE.
Collapse
Affiliation(s)
- Emily Nishiwaki
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Peter S Rice
- Pacific Northwest National Laboratory, Richland, Washington, WA 99352, USA
| | - Ding-Yuan Kuo
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Anthony Pyka
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bryce Reid
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Eric M Stuve
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Simone Raugei
- Pacific Northwest National Laboratory, Richland, Washington, WA 99352, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Wei J, Li Y, Lin H, Lu X, Zhou C, Li YY. Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100383. [PMID: 38304117 PMCID: PMC10830547 DOI: 10.1016/j.ese.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Chucheng Zhou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ya-yun Li
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
12
|
Murphy E, Sun B, Rüscher M, Liu Y, Zang W, Guo S, Chen YH, Hejral U, Huang Y, Ly A, Zenyuk IV, Pan X, Timoshenko J, Cuenya BR, Spoerke ED, Atanassov P. Synergizing Fe 2O 3 Nanoparticles on Single Atom Fe-N-C for Nitrate Reduction to Ammonia at Industrial Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401133. [PMID: 38619914 DOI: 10.1002/adma.202401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The electrochemical reduction of nitrates (NO3 -) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3 synthesis cost-competitive with current technologies, high NH3 partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe-based materials is leveraged to synthesize a novel active particle-active support system with Fe2O3 nanoparticles supported on atomically dispersed Fe-N-C. The optimized 3×Fe2O3/Fe-N-C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3 of 1.95 A cm-2 at a Faradaic efficiency (FE) for NH3 of 100% and an NH3 yield rate over 9 mmol hr-1 cm-2. Operando XANES and post-mortem XPS reveal the importance of a pre-reduction activation step, reducing the surface Fe2O3 (Fe3+) to highly active Fe0 sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3 particles and Fe-Nx sites at highly cathodic potentials, maintaining a current of -1.3 A cm-2 over 24 hours. This work exhibits an effective and durable active particle-active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity.
Collapse
Affiliation(s)
- Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Baiyu Sun
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Yuanchao Liu
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Yu-Han Chen
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Ying Huang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Alvin Ly
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Erik D Spoerke
- Sandia National Laboratories, Energy Storage Technologies & Systems, Albuquerque, NM, 87185, USA
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
13
|
Li H, Wang Y, Chen S, Peng F, Gao F. Boosting Electrochemical Reduction of Nitrate to Ammonia by Constructing Nitrate-Favored Active Cu-B Sites on SnS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308182. [PMID: 38308386 DOI: 10.1002/smll.202308182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x. DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2, the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1 mg-1 cat (9350 µg h-1 mg-1 cat) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| | - Shuheng Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| |
Collapse
|
14
|
Troutman JP, Mantha JSP, Li H, Henkelman G, Humphrey SM, Werth CJ. Tuning the Selectivity of Nitrate Reduction via Fine Composition Control of RuPdNP Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308593. [PMID: 38326100 DOI: 10.1002/smll.202308593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Indexed: 02/09/2024]
Abstract
Herein, aqueous nitrate (NO3 -) reduction is used to explore composition-selectivity relationships of randomly alloyed ruthenium-palladium nanoparticle catalysts to provide insights into the factors affecting selectivity during this and other industrially relevant catalytic reactions. NO3 - reduction proceeds through nitrite (NO2 -) and then nitric oxide (NO), before diverging to form either dinitrogen (N2) or ammonium (NH4 +) as final products, with N2 preferred in potable water treatment but NH4 + preferred for nitrogen recovery. It is shown that the NO3 - and NO starting feedstocks favor NH4 + formation using Ru-rich catalysts, while Pd-rich catalysts favor N2 formation. Conversely, a NO2 - starting feedstock favors NH4 + at ≈50 atomic-% Ru and selectivity decreases with higher Ru content. Mechanistic differences have been probed using density functional theory (DFT). Results show that, for NO3 - and NO feedstocks, the thermodynamics of the competing pathways for N-H and N-N formation lead to preferential NH4 + or N2 production, respectively, while Ru-rich surfaces are susceptible to poisoning by NO2 - feedstock, which displaces H atoms. This leads to a decrease in overall reduction activity and an increase in selectivity toward N2 production. Together, these results demonstrate the importance of tailoring both the reaction pathway thermodynamics and initial reactant binding energies to control overall reaction selectivity.
Collapse
Affiliation(s)
- Jacob P Troutman
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street Stop C1700, Austin, TX, 78712, USA
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX, 78712, USA
| | - Jagannath Sai Pavan Mantha
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX, 78712, USA
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX, 78712, USA
| | - Simon M Humphrey
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX, 78712, USA
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street Stop C1700, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Zhang W, Yao Y, Chen Z, Zhao S, Guo F, Zhang L. Fluorine Modification Promoted Water Dissociation into Atomic Hydrogen on a Copper Electrode for Efficient Neutral Nitrate Reduction and Ammonia Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7208-7216. [PMID: 38615328 DOI: 10.1021/acs.est.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Electrocatalytic nitrate reduction to ammonia (NITRR) offers an attractive solution for alleviating environmental concerns, yet in neutral media, it is challenging as a result of the reliance on the atomic hydrogen (H*) supply by breaking the stubborn HO-H bond (∼492 kJ/mol) of H2O. Herein, we demonstrate that fluorine modification on a Cu electrode (F-NFs/CF) favors the formation of an O-H···F hydrogen bond at the Cu-H2O interface, remarkably stretching the O-H bond of H2O from 0.98 to 1.01 Å and lowering the energy barrier of water dissociation into H* from 0.64 to 0.35 eV at neutral pH. As a benefit from these advantages, F-NFs/CF could rapidly reduce NO3- to NH3 with a rate constant of 0.055 min-1 and a NH3 selectivity of ∼100%, far higher than those (0.004 min-1 and 9.2%) of the Cu counterpart. More importantly, we constructed a flow-through coupled device consisting of a NITRR electrolyzer and a NH3 recovery unit, realizing 98.1% of total nitrogen removal with 99.3% of NH3 recovery and reducing the denitrification cost to $5.1/kg of N. This study offers an effective strategy to manipulate the generation of H* from water dissociation for efficient NO3--to-NH3 conversion and sheds light on the importance of surface modification on a Cu electrode toward electrochemical reactions.
Collapse
Affiliation(s)
- Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
16
|
Bai L, Franco F, Timoshenko J, Rettenmaier C, Scholten F, Jeon HS, Yoon A, Rüscher M, Herzog A, Haase FT, Kühl S, Chee SW, Bergmann A, Beatriz RC. Electrocatalytic Nitrate and Nitrite Reduction toward Ammonia Using Cu 2O Nanocubes: Active Species and Reaction Mechanisms. J Am Chem Soc 2024; 146:9665-9678. [PMID: 38557016 PMCID: PMC11009949 DOI: 10.1021/jacs.3c13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of nitrate (NO3-) and nitrite (NO2-) enables sustainable, carbon-neutral, and decentralized routes to produce ammonia (NH3). Copper-based materials are promising electrocatalysts for NOx- conversion to NH3. However, the underlying reaction mechanisms and the role of different Cu species during the catalytic process are still poorly understood. Herein, by combining quasi in situ X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption spectroscopy (XAS), we unveiled that Cu is mostly in metallic form during the highly selective reduction of NO3-/NO2- to NH3. On the contrary, Cu(I) species are predominant in a potential region where the two-electron reduction of NO3- to NO2- is the major reaction. Electrokinetic analysis and in situ Raman spectroscopy was also used to propose possible steps and intermediates leading to NO2- and NH3, respectively. This work establishes a correlation between the catalytic performance and the dynamic changes of the chemical state of Cu, and provides crucial mechanistic insights into the pathways for NO3-/NO2- electrocatalytic reduction.
Collapse
Affiliation(s)
| | | | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Fabian Scholten
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Aram Yoon
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Felix T. Haase
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Stefanie Kühl
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Roldan Cuenya Beatriz
- Department of Interface Science, Fritz-Haber-Institute of Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
17
|
Fang L, Lu S, Wang S, Yang X, Song C, Yin F, Liu H. Defect engineering on electrocatalysts for sustainable nitrate reduction to ammonia: Fundamentals and regulations. Chemistry 2024; 30:e202303249. [PMID: 37997008 DOI: 10.1002/chem.202303249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) is a "two birds-one stone" method that targets remediation of NO3 --containing sewage and production of valuable NH3. The exploitation of advanced catalysts with high activity, selectivity, and durability is a key issue for the efficient catalytic performance. Among various strategies for catalyst design, defect engineering has gained increasing attention due to its ability to modulate the electronic properties of electrocatalysts and optimize the adsorption energy of reactive species, thereby enhancing the catalytic performance. Despite previous progress, there remains a lack of mechanistic insights into the regulation of catalyst defects for NO3 - reduction. Herein, this review presents insightful understanding of defect engineering for NO3 - reduction, covering its background, definition, classification, construction, and underlying mechanisms. Moreover, the relationships between regulation of catalyst defects and their catalytic activities are illustrated by investigating the properties of electrocatalysts through the analysis of electronic band structure, charge density distribution, and controllable adsorption energy. Furthermore, challenges and perspectives for future development of defects in NO3RR are also discussed, which can help researchers to better understand the defect engineering in catalysts, and also inspire scientists entering into this promising field.
Collapse
Affiliation(s)
- Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| |
Collapse
|
18
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
19
|
Yan J, Liu P, Li J, Huang H, Song W. Structure and Electron Engineering for Nitrate Electrocatalysis to Ammonia: Identification and Modification of Active Sites in Spinel Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308617. [PMID: 37985367 DOI: 10.1002/smll.202308617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Cobalt spinel oxides, which consist of tetrahedral site (AO4) and octahedral site (BO6), are a potential group of transition metal oxides (TMO) for electrocatalytic nitrate reduction reactions to ammonia (NRA). Identifying the true active site in spinel oxides is crucial to designing advanced catalysts. This work reveals that the CoO6 site is the dominant site for NRA through the site substitution strategy. The suitable electronic configuration of Co at the octahedral site leads to a stronger interaction between the Co d-orbital and the O p-orbital in O-containing intermediates, resulting in a high-efficiency nitrate-to-ammonia reduction. Furthermore, the substitution of metallic elements at the AO4 site can affect the charge density at the BO6 site via the structure of A-O-B. Thereafter, Ni and Cu are introduced to replace the tetrahedral site in spinel oxides and optimize the electronic structure of CoO6. As a result, NiCo2O4 exhibits the best activity for NRA with an outstanding yield of NH3 (15.49 mg cm-2 h-1) and FE (99.89%). This study introduces a novel paradigm for identifying the active site and proposes an approach for constructing high-efficiency electrocatalysts for NRA.
Collapse
Affiliation(s)
- Jianyue Yan
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Peng Liu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiawen Li
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hao Huang
- Department of Microsystems, University of South-Eastern Norway, Borre, 3184, Norway
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
20
|
Zhou J, Zhu Y, Wen K, Pan F, Ma H, Niu J, Wang C, Zhao J. Efficient and Selective Electrochemical Nitrate Reduction to N 2 Using a Flow-Through Zero-Gap Electrochemical Reactor with a Reconstructed Cu(OH) 2 Cathode: Insights into the Importance of Inter-Electrode Distance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4824-4836. [PMID: 38408018 DOI: 10.1021/acs.est.3c10936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Electrochemically converting nitrate, a widely distributed nitrogen contaminant, into harmless N2 is a feasible and environmentally friendly route to close the anthropogenic nitrogen-based cycle. However, it is currently hindered by sluggish kinetics and low N2 selectivity, as well as scarce attention to reactor configuration. Here, we report a flow-through zero-gap electrochemical reactor that shows a high performance of nitrate reduction with 100% conversion and 80.36% selectivity of desired N2 in the chlorine-free system at 100 mg-N·L-1 NO3- while maintaining a rapid reduction kinetics of 0.07676 min-1. More importantly, the mass transport and current utilization efficiency are significantly improved by shortening the inter-electrode distance, especially in the zero-gap electrocatalytic system where the current efficiency reached 50.15% at 5 mA·cm-2. Detailed characterizations demonstrated that during the electroreduction process, partial Cu(OH)2 on the cathode surface was reconstructed into stable Cu/Cu2O as the active phase for efficient nitrate reduction. In situ characterizations revealed that the highly selective *NO to *N conversion and the N-N coupling step played crucial roles during the selective reduction of NO3- to N2 in the zero-gap electrochemical system. In addition, theoretical calculations demonstrated that improving the key intermediate *N coverage could effectively facilitate the N-N coupling step, thereby promoting N2 selectivity. Moreover, the environmental and economic benefits and long-term stability shown by the treatment of real nitrate-containing wastewater make our proposed electrocatalytic system more attractive for practical applications.
Collapse
Affiliation(s)
- Jianjun Zhou
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Kaiyue Wen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Fan Pan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Kim Y, Ko J, Shim M, Park J, Shin HH, Kim ZH, Jung Y, Byon HR. Identifying the active sites and intermediates on copper surfaces for electrochemical nitrate reduction to ammonia. Chem Sci 2024; 15:2578-2585. [PMID: 38362436 PMCID: PMC10866343 DOI: 10.1039/d3sc05793c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Copper (Cu) is a widely used catalyst for the nitrate reduction reaction (NO3RR), but its susceptibility to surface oxidation and complex electrochemical conditions hinders the identification of active sites. Here, we employed electropolished metallic Cu with a predominant (100) surface and compared it to native oxide-covered Cu. The electropolished Cu surface rapidly oxidized after exposure to either air or electrolyte solutions. However, this oxide was reduced below 0.1 V vs. RHE, thus returning to the metallic Cu before NO3RR. It was distinguished from the native oxide on Cu, which remained during NO3RR. Fast NO3- and NO reduction on the metallic Cu delivered 91.5 ± 3.7% faradaic efficiency for NH3 at -0.4 V vs. RHE. In contrast, the native oxide on Cu formed undesired products and low NH3 yield. Operando shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) analysis revealed the adsorbed NO3-, NO2, and NO species on the electropolished Cu as the intermediates of NH3. Low overpotential NO3- and NO adsorptions and favorable NO reduction are key to increased NH3 productivity over Cu samples, which was consistent with the DFT calculation on Cu(100).
Collapse
Affiliation(s)
- Yohan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jinyoung Ko
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Minyoung Shim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jiwon Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Yousung Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
22
|
Teng M, Yuan J, Li Y, Shi C, Xu Z, Ma C, Yang L, Zhang C, Gao J, Li Y. Bimetallic atom synergistic covalent organic framework for efficient electrochemical nitrate reduction. J Colloid Interface Sci 2024; 654:348-355. [PMID: 37844506 DOI: 10.1016/j.jcis.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical reduction has emerged as an effective method to remove nitrate from industrial wastewater. Nevertheless, this method has been largely restricted by the lack of low-cost and efficient electrocatalysts. Here, we demonstrate a porous two-dimensional covalent organic framework (2D COF) material as a promising electrocatalyst, which is obtained via a Schiff base reaction by combining copper phthalocyanine with bipyridine sites for precise copper coordination. The bidentate coordinated COF material has a robust framework and stable chemical property, allowing the isolated Cu sites to be embedded into the regular pores with controlled and uniformly dispersed active centers. The well-defined design of the reaction monomers makes the COF material to trap nitrate ions more easily from aqueous solution. By rationally combining the synergistic effect of 2D COF and Cu active sites, the CuTAPc-CuBPy-COF electrocatalyst shows much higher nitrate reduction efficiency than CuTAPc-BPy-COF under low superpotential and different nitrate concentrations. The high NO3- conversion (90.3 %) and NH3 selectivity (69.6 %) are achieved. To our best acknowledge, this is the first demonstration of bi-copper-based COF material for NO3-RR electrocatalysis, which provides a new direction for the rational design of COFs as significant electrocatalysts for nitrate reduction.
Collapse
Affiliation(s)
- Min Teng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Junwei Yuan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yixiang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunyan Shi
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Zheng Xu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Liujun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Ju Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Hu Q, Yang K, Peng O, Li M, Ma L, Huang S, Du Y, Xu ZX, Wang Q, Chen Z, Yang M, Loh KP. Ammonia Electrosynthesis from Nitrate Using a Ruthenium-Copper Cocatalyst System: A Full Concentration Range Study. J Am Chem Soc 2024; 146:668-676. [PMID: 38154089 DOI: 10.1021/jacs.3c10516] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Electrochemical synthesis of ammonia via the nitrate reduction reaction (NO3RR) has been intensively researched as an alternative to the traditional Haber-Bosch process. Most research focuses on the low concentration range representative of the nitrate level in wastewater, leaving the high concentration range, which exists in nuclear and fertilizer wastes, unexplored. The use of a concentrated electrolyte (≥1 M) for higher rate production is hampered by poor hydrogen transfer kinetics. Herein, we demonstrate that a cocatalytic system of Ru/Cu2O catalyst enables NO3RR at 10.0 A in 1 M nitrate electrolyte in a 16 cm2 flow electrolyzer, with 100% faradaic efficiency toward ammonia. Detailed mechanistic studies by deuterium labeling and operando Fourier transform infrared (FTIR) spectroscopy allow us to probe the hydrogen transfer rate and intermediate species on Ru/Cu2O. Ab initio molecular dynamics (AIMD) simulations reveal that adsorbed hydroxide on Ru nanoparticles increases the density of the hydrogen-bonded water network near the Cu2O surface, which promotes the hydrogen transfer rate. Our work highlights the importance of engineering synergistic interactions in cocatalysts for addressing the kinetic bottleneck in electrosynthesis.
Collapse
Affiliation(s)
- Qikun Hu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ke Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Ouwen Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Minzhang Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, New York 11973, United States
| | - Songpeng Huang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, New York 11973, United States
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Qing Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Zhongxin Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
24
|
Zheng X, Tian Z, Bouchal R, Antonietti M, López-Salas N, Odziomek M. Tin (II) Chloride Salt Melts as Non-Innocent Solvents for the Synthesis of Low-Temperature Nanoporous Oxo-Carbons for Nitrate Electrochemical Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311575. [PMID: 38152896 DOI: 10.1002/adma.202311575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Carbonaceous electrocatalysts offer advantages over metal-based counterparts, being cost-effective, sustainable, and electrochemically stable. Their high surface area increases reaction kinetics, making them valuable for environmental applications involving contaminant removal. However, their rational synthesis is challenging due to the applied high temperatures and activation steps, leading to disordered materials with limited control over doping. Here, a new synthetic pathway using carbon oxide precursors and tin chloride as a p-block metal salt melt is presented. As a result, highly porous oxygen-rich carbon sheets (with a surface area of 1600 m2 g-1 ) are obtained at relatively low temperatures (400 °C). Mechanistic studies reveal that Sn(II) triggers reductive deoxygenation and concomitant condensation/cross-linking, facilitated by the Sn(II) → Sn(IV) transition. Due to their significant surface area and oxygen doping, these materials demonstrate exceptional electrocatalytic activity in the nitrate-to-ammonia conversion, with an ammonia yield rate of 221 mmol g-1 h-1 and a Faradic efficiency of 93%. These results surpass those of other carbon-based electrocatalysts. In situ Raman studies reveal that the reaction occurs through electrochemical hydrogenation, where active hydrogen is provided by water reduction. This work contributes to the development of carbonaceous electrocatalysts with enhanced performance for sustainable environmental applications.
Collapse
Affiliation(s)
- Xinyue Zheng
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Roza Bouchal
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nieves López-Salas
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Sustainable Materials Chemistry, Paderborn University, Warburger Strasse 100, 30098, Paderborn, Germany
| | - Mateusz Odziomek
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
25
|
Wang W, Chen J, Tse ECM. Synergy between Cu and Co in a Layered Double Hydroxide Enables Close to 100% Nitrate-to-Ammonia Selectivity. J Am Chem Soc 2023; 145:26678-26687. [PMID: 38051561 PMCID: PMC10723069 DOI: 10.1021/jacs.3c08084] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Nitrate electroreduction (NO3RR) holds promise as an energy-efficient strategy for the removal of toxic nitrate to restore the natural nitrogen cycle and mitigate the adverse impacts caused by overfertilization from suboptimal agricultural practices. However, existing catalysts suffer from limited electrocatalytic activity, poor selectivity, inadequate durability, and low scalability. To address this quadrilemma, in this study, we developed a cost-effective layered double hydroxide (LDH) electrocatalyst with a lamellar structure that presents trimetallic CuCoAl active sites on the nanomaterial surface. This codoping design enabled electrochemical upcycling of nitrate into ammonia exclusively and efficiently with an onset potential at 0 V vs RHE, where the electrocatalytic process is less energy intensive and has a lower carbon footprint than conventional practices. The synergistic interaction among Cu, Co, and Al further afforded a 99.5% Faradic efficiency (FE) and a yield rate of 0.22 mol h-1 g-1 for nitrate-to-ammonia electroreduction, surpassing the performance of state-of-the-art nonprecious metal NO3RR electrocatalysts over an extended operation period. To gain insights into the origin of the catalytic performance observed on LDH, control materials were employed to elucidate the roles of Cu and Co. Cu was found to improve the NO3RR onset potential despite displaying limited FE for ammonia synthesis, while Co was discovered to suppress the formation of nitrite byproduct though requiring large overpotential. Simulated wastewater containing phosphate and sulfate, which are typically present in industrial effluents, was used to further investigate the effect of electrolytes on NO3RR. Intriguingly, the use of phosphate buffer resulted in a superior yield rate and FE for ammonia production while simultaneously inhibiting nitrite byproduct formation compared with the sulfate case. These experimental findings were supported by density functional theory (DFT) calculations, which explored the adsorption strength of nitrate adducts adjacent to coadsorbed electrolytes on the LDH surface. Additionally, the relative free energies of NO3RR species were also computed to examine the proton-coupled electron transfer (PCET) mechanism on CuCoAl LDH, shedding light on the potential-dependent step (PDS) and the exclusive selectivity for nitrate-to-ammonia conversion. The CuCoAl LDH developed here offers scalability by eliminating the need for precious metals, rendering this earth-abundant catalyst particularly appealing for sustainable nitrate electrovalorization technology.
Collapse
Affiliation(s)
- Wanying Wang
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| | - Jiu Chen
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| | - Edmund C. M. Tse
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| |
Collapse
|
26
|
Qu Y, Dai T, Cui Y, Ding G, Zhu Y, Wang Z, Jiang Q. Heterostructured Co-Doped-Cu 2 O/Cu Synergistically Promotes Water Dissociation for Improved Electrochemical Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308246. [PMID: 37967357 DOI: 10.1002/smll.202308246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Indexed: 11/17/2023]
Abstract
Electrochemical nitrate reduction reaction (NO3 RR) has recently emerged as a promising approach for sustainable ammonia synthesis and wastewater treatment, while the activity and selectivity for ammonia production have remained low. Herein, rational design and controllable synthesis of heterostructured Co-doped Cu2 O/Cu nanoparticles embedded in carbon framework (Co-Cu2 O/Cu@C) is reported for NO3 RR. The Co-Cu2 O/Cu@C exhibits a high ammonia yield rate of 37.86 mg h-1 mg-1 cat. with 98.1% Faraday efficiency, which is higher than those obtained for most of the Cu-based catalysts under similar conditions. Density functional theory calculations indicated that the strong electronic interactions at Cu/Co-Cu2 O interface facilitate the N species deoxygenation process and doping of Co promotes water dissociation to generate * H for the N species hydrogenation process, leading to enhanced NO3 RR performance. This work provides a new design strategy toward high-performance catalysts toward NO3 RR for ammonia generation.
Collapse
Affiliation(s)
- Yanbin Qu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tianyi Dai
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yuhuan Cui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Guopeng Ding
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yongfu Zhu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zhili Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
27
|
Li X, Deng P, Xu M, Peng Z, Zhou Y, Jia G, Ye W, Gao P, Wang W. Multi-layer core-shell metal oxide/nitride/carbon and its high-rate electroreduction of nitrate to ammonia. NANOSCALE 2023; 15:14439-14447. [PMID: 37642315 DOI: 10.1039/d3nr02972g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The electroreduction of nitrate to ammonia is both an alternative strategy to industrial Haber-Bosch ammonia synthesis and a prospective idea for changing waste (nitrate pollution of groundwater around the world) into valuable chemicals, but still hindered by its in-process strongly competitive hydrogen evolution reaction (HER), low ammonia conversion efficiency, and the absence of stability and sustainability. Considering the unique electronic structure of anti-perovskite structured Fe4N, a tandem disproportionation reaction and nitridation-carbonation route for building a multi-layer core-shell oxide/nitride/C catalyst, such as MoO2/Fe4N/C, is designed and executed, in which abundant Fe-N active sites and rich phase interfaces are in situ formed for both suppressing HER and fast transport of electrons and reaction intermediates. As a result, the sample's NO3RR conversion displays a very high NH3 yield rate of up to 11.10 molNH3 gcat.-1 h-1 (1.67 mmol cm-2 h-1) with a superior 99.3% faradaic efficiency and the highest half-cell energy efficiency of 30%, surpassing that of most previous reports. In addition, it is proved that the NO3RR assisted by the MoO2/Fe4N/C electrocatalyst can be carried out in 0.50-1.00 M KNO3 electrolyte at a pH value of 6-14 for a long time. These results guide the rational design of highly active, selective, and durable electrocatalysts based on anti-perovskite Fe4N for the NO3RR.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ping Deng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Zhenbo Peng
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
| | - Yuhu Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Gan Jia
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Wei Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
28
|
Miller DM, Abels K, Guo J, Williams KS, Liu MJ, Tarpeh WA. Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. J Am Chem Soc 2023; 145:19422-19439. [PMID: 37642501 DOI: 10.1021/jacs.3c01142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining─the use of electrochemical processes to tune and recover specific products from wastewaters─as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.
Collapse
Affiliation(s)
- Dean M Miller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kristen Abels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinyu Guo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kindle S Williams
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
29
|
Yang M, Li B, Li S, Dong Q, Huang Z, Zheng S, Fang Y, Zhou G, Chen X, Zhu X, Li T, Chi M, Wang G, Hu L, Ren ZJ. Highly Selective Electrochemical Nitrate to Ammonia Conversion by Dispersed Ru in a Multielement Alloy Catalyst. NANO LETTERS 2023; 23:7733-7742. [PMID: 37379097 DOI: 10.1021/acs.nanolett.3c01978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Electrochemical reduction of nitrate to ammonia (NH3) converts an environmental pollutant to a critical nutrient. However, current electrochemical nitrate reduction operations based on monometallic and bimetallic catalysts are limited in NH3 selectivity and catalyst stability, especially in acidic environments. Meanwhile, catalysts with dispersed active sites generally exhibit a higher atomic utilization and distinct activity. Herein, we report a multielement alloy nanoparticle catalyst with dispersed Ru (Ru-MEA) with other synergistic components (Cu, Pd, Pt). Density functional theory elucidated the synergy effect of Ru-MEA than Ru, where a better reactivity (NH3 partial current density of -50.8 mA cm-2) and high NH3 faradaic efficiency (93.5%) is achieved in industrially relevant acidic wastewater. In addition, the Ru-MEA catalyst showed good stability (e.g., 19.0% decay in FENH3 in three hours). This work provides a potential systematic and efficient catalyst discovery process that integrates a data-guided catalyst design and novel catalyst synthesis for a range of applications.
Collapse
Affiliation(s)
- Meiqi Yang
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shuke Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhennan Huang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sunxiang Zheng
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Ying Fang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Guangye Zhou
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Xi Chen
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaobo Zhu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37932, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
30
|
He W, Chandra S, Quast T, Varhade S, Dieckhöfer S, Junqueira JRC, Gao H, Seisel S, Schuhmann W. Enhanced Nitrate-to-Ammonia Efficiency over Linear Assemblies of Copper-Cobalt Nanophases Stabilized by Redox Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303050. [PMID: 37235856 DOI: 10.1002/adma.202303050] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Renewable electricity-powered nitrate (NO3 - ) reduction reaction (NO3 RR) offers a net-zero carbon route to the realization of high ammonia (NH3 ) productivity. However, this route suffers from low energy efficiency (EE, with a half-cell EE commonly <36%), since high overpotentials are required to overcome the weak NO3 - binding affinity and sluggish NO3 RR kinetics. To alleviate this, a rational catalyst design strategy that involves the linear assembly of sub-5 nm Cu/Co nanophases into sub-20 nm thick nanoribbons is suggested. The theoretical and experimental studies show that the Cu-Co nanoribbons, similar to enzymes, enable strong NO3 - adsorption and rapid tandem catalysis of NO3 - to NH3 , owing to their richly exposed binary phase boundaries and adjacent Cu-Co sites at sub-5 nm distance. In situ Raman spectroscopy further reveals that at low applied overpotentials, the Cu/Co nanophases are rapidly activated and subsequently stabilized by a specifically designed redox polymer that in situ scavenges intermediately formed highly oxidative nitrogen dioxide (NO2 ). As a result, a stable NO3 RR with a current density of ≈450 mA cm-2 is achieved, a Faradaic efficiency of >97% for the formation of NH3 , and an unprecedented half-cell EE of ≈42%.
Collapse
Affiliation(s)
- Wenhui He
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Shubhadeep Chandra
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Swapnil Varhade
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - João R C Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Huimin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Sabine Seisel
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
31
|
Murphy E, Liu Y, Matanovic I, Rüscher M, Huang Y, Ly A, Guo S, Zang W, Yan X, Martini A, Timoshenko J, Cuenya BR, Zenyuk IV, Pan X, Spoerke ED, Atanassov P. Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nat Commun 2023; 14:4554. [PMID: 37507382 PMCID: PMC10382506 DOI: 10.1038/s41467-023-40174-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Electrocatalytic reduction of waste nitrates (NO3-) enables the synthesis of ammonia (NH3) in a carbon neutral and decentralized manner. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts demonstrate a high catalytic activity and uniquely favor mono-nitrogen products. However, the reaction fundamentals remain largely underexplored. Herein, we report a set of 14; 3d-, 4d-, 5d- and f-block M-N-C catalysts. The selectivity and activity of NO3- reduction to NH3 in neutral media, with a specific focus on deciphering the role of the NO2- intermediate in the reaction cascade, reveals strong correlations (R=0.9) between the NO2- reduction activity and NO3- reduction selectivity for NH3. Moreover, theoretical computations reveal the associative/dissociative adsorption pathways for NO2- evolution, over the normal M-N4 sites and their oxo-form (O-M-N4) for oxyphilic metals. This work provides a platform for designing multi-element NO3RR cascades with single-atom sites or their hybridization with extended catalytic surfaces.
Collapse
Affiliation(s)
- Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Yuanchao Liu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Ivana Matanovic
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Martina Rüscher
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin, 14195, Germany
| | - Ying Huang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Alvin Ly
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Andrea Martini
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin, 14195, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin, 14195, Germany
| | - Beatriz Roldán Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin, 14195, Germany
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Erik D Spoerke
- Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
32
|
Zheng Y, Qin M, Yu X, Yao H, Zhang W, Xie G, Guo X. Constructing Ru@C 3 N 4 /Cu Tandem Electrocatalyst with Dual-Active Sites for Enhanced Nitrate Electroreduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302266. [PMID: 37178389 DOI: 10.1002/smll.202302266] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Electroreduction of nitrate to ammonia reaction (NO3 - RR) is considered as a promising carbon-free energy technique, which can eliminate nitrate from waste-water also produce value-added ammonia. However, it remains a challenge for achieving satisfied ammonia selectivity and Faraday efficiency (FE) due to the complex multiple-electron reduction process. Herein, a novel Tandem electrocatalyst that Ru dispersed on the porous graphitized C3 N4 (g-C3 N4 ) encapsulated with self-supported Cu nanowires (denoted as Ru@C3 N4 /Cu) for NO3 - RR is presented. As expected, a high ammonia yield of 0.249 mmol h-1 cm-2 at -0.9 V and high FENH3 of 91.3% at -0.8 V versus RHE can be obtained, while achieving excellent nitrate conversion (96.1%) and ammonia selectivity (91.4%) in neutral solution. In addition, density functional theory (DFT) calculations further demonstrate that the superior NO3 - RR performance is mainly resulted from the synergistic effect between the Ru and Cu dual-active sites, which can significantly enhance the adsorption of NO3 - and facilitate hydrogenation, as well as suppress the hydrogen evolution reaction, thus lead to highly improved NO3 - RR performances. This novel design strategy would pave a feasible avenue for the development of advanced NO3 - RR electrocatalysts.
Collapse
Affiliation(s)
- Yinan Zheng
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - MingXin Qin
- Laboratory for Physical Sciences at the Microscale, Synergistic Innovation of Quantum Information & Quantum technology, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xin Yu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Hu Yao
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Wenhua Zhang
- Laboratory for Physical Sciences at the Microscale, Synergistic Innovation of Quantum Information & Quantum technology, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Gang Xie
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaohui Guo
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
33
|
Sun J, Zhang X, Zhang H, Ruan G, Wang X, Han X, Yuan M, Wang T, Xu H, Wu C, Wang Q. Copper/carbon nanotube catalysts prepared by ion-exchange/electroreduction for electrocatalytic nitrate reduction: Enhanced performance and mechanism insight. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
34
|
Luo W, Wu S, Jiang Y, Xu P, Zou J, Qian J, Zhou X, Ge Y, Nie H, Yang Z. Efficient Electrocatalytic Nitrate Reduction to Ammonia Based on DNA-Templated Copper Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18928-18939. [PMID: 37014152 DOI: 10.1021/acsami.3c00511] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In alkaline solutions, the electrocatalytic conversion of nitrates to ammonia (NH3) (NO3RR) is hindered by the sluggish hydrogenation step due to the lack of protons on the electrode surface, making it a grand challenge to synthesize NH3 at a high rate and selectivity. Herein, single-stranded deoxyribonucleic acid (ssDNA)-templated copper nanoclusters (CuNCs) were synthesized for the electrocatalytic production of NH3. Because ssDNA was involved in the optimization of the interfacial water distribution and H-bond network connectivity, the water-electrolysis-induced proton generation was enhanced on the electrode surface, which facilitated the NO3RR kinetics. The activation energy (Ea) and in situ spectroscopy studies adequately demonstrated that the NO3RR was exothermic until NH3 desorption, indicating that, in alkaline media, the NO3RR catalyzed by ssDNA-templated CuNCs followed the same reaction path as the NO3RR in acidic media. Electrocatalytic tests further verified the efficiency of ssDNA-templated CuNCs, which achieved a high NH3 yield rate of 2.62 mg h-1 cm-2 and a Faraday efficiency of 96.8% at -0.6 V vs reversible hydrogen electrode. The results of this study lay the foundation for engineering catalyst surface ligands for the electrocatalytic NO3RR.
Collapse
Affiliation(s)
- Wenjie Luo
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Shilu Wu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yingyang Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Peng Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jinxuan Zou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
35
|
Liu H, Qin J, Mu J, Liu B. In situ interface engineered Co/NC derived from ZIF-67 as an efficient electrocatalyst for nitrate reduction to ammonia. J Colloid Interface Sci 2023; 636:134-140. [PMID: 36623366 DOI: 10.1016/j.jcis.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Electrocatalytic nitrate (NO3-) reduction to ammonia (NH3) is a promising alternative approach for simultaneous NH3 green synthesis and NO3- contaminants removal. However, the complex eight-electron reaction requires catalysts with superb performance due to the low NH3 selectivity and yield. In this work, the Co nanoparticles decorated N-doped carbon (NC) by in situ interface engineering were prepared by deriving ZIF-67 at 800 ℃ (Co/NC-800) for the selective NH3 synthesis. This catalyst exhibits a remarkable performance and excellent cycle stability, achieving a great NH3 yield of 1352.5 μg h-1 mgcat-1 at -1.7 V vs Ag/AgCl, with a high NH3 selectivity of up to 98.2 %, and a maximum Faradic efficiency of 81.2 % at -1.2 V vs Ag/AgCl. Moreover, DFT calculation results indicate that the interfacial effect between Co nanoparticle and NC could enhance electron transfer, and the composite Co/NC-800 shows a lower adsorption and conversion free energy, which promotes the production of ammonia.
Collapse
Affiliation(s)
- Hongfei Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jiangzhou Qin
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jincheng Mu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
36
|
Yuan S, Xue Y, Ma R, Ma Q, Chen Y, Fan J. Advances in iron-based electrocatalysts for nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161444. [PMID: 36621470 DOI: 10.1016/j.scitotenv.2023.161444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Excessive nitrate has been a critical issue in the water environment, originating from the burning of fossil fuels, inefficient use of nitrogen fertilizers, and discharge of domestic and industrial wastewater. Among the effective treatments for nitrate reduction, electrocatalysis has become an advanced technique because it uses electrons as green reducing agents and can achieve high selectivity through cathode potential control. The effectiveness of electrocatalytic nitrate reduction (NO3RR) mainly lies in the electrocatalyst. Iron-based catalysts have the advantages of high activity and low cost, which are well-used in the field of electrocatalytic nitrates. A comprehensive overview of the electrocatalytic mechanism and the iron-based materials for NO3RR are given in terms of monometallic iron-based materials as well as bimetallic and oxide iron-based materials. A detailed introduction to NO3RR on zero valent iron, single-atom iron catalysts, and Cu/Fe-based bimetallic electrocatalysts are provided, as they are essential for the improvement of NO3RR performance. Finally, the advantages of iron-based materials for NO3RR and the problems in current applications are summarized, and the development prospects of efficient iron-based catalysts are proposed.
Collapse
Affiliation(s)
- Shiyin Yuan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinghao Xue
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Raner Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanyan Chen
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jianwei Fan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
37
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
38
|
Bui TS, Lovell EC, Daiyan R, Amal R. Defective Metal Oxides: Lessons from CO 2 RR and Applications in NO x RR. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2205814. [PMID: 36813733 DOI: 10.1002/adma.202205814] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/09/2023] [Indexed: 06/09/2023]
Abstract
Sluggish reaction kinetics and the undesired side reactions (hydrogen evolution reaction and self-reduction) are the main bottlenecks of electrochemical conversion reactions, such as the carbon dioxide and nitrate reduction reactions (CO2 RR and NO3 RR). To date, conventional strategies to overcome these challenges involve electronic structure modification and modulation of the charge-transfer behavior. Nonetheless, key aspects of surface modification, focused on boosting the intrinsic activity of active sites on the catalyst surface, are yet to be fully understood. Engingeering of oxygen vacancies (OVs) can tune surface/bulk electronic structure and improve surface active sites of electrocatalysts. The continuous breakthroughs and significant progress in the last decade position engineering of OVs as a potential technique for advancing electrocatalysis. Motivated by this, the state-of-the-art findings of the roles of OVs in both the CO2 RR and the NO3 RR are presented. The review starts with a description of approaches to constructing and techniques for characterizing OVs. This is followed by an overview of the mechanistic understanding of the CO2 RR and a detailed discussion on the roles of OVs in the CO2 RR. Then, insights into the NO3 RR mechanism and the potential of OVs on NO3 RR based on early findings are highlighted. Finally, the challenges in designing CO2 RR/NO3 RR electrocatalysts and perspectives in studying OV engineering are provided.
Collapse
Affiliation(s)
- Thanh Son Bui
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Fan K, Xie W, Li J, Sun Y, Xu P, Tang Y, Li Z, Shao M. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat Commun 2022; 13:7958. [PMID: 36575160 PMCID: PMC9794814 DOI: 10.1038/s41467-022-35664-w] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Electrochemical nitrate reduction to ammonia is a promising alternative strategy to the traditional Haber-Bosch process but suffers from a low Faradaic efficiency and limited ammonia yield due to the sluggish multi-electron/proton-involved steps. Herein, we report a typical hollow cobalt phosphide nanosphere electrocatalyst assembled on a self-supported carbon nanosheet array synthesized with a confinement strategy that exhibits an extremely high ammonia yield rate of 8.47 mmol h-1 cm-2 through nitrate reduction reaction, which is highly superior to previously reported values to our knowledge. In situ experiments and theoretical investigations reveal that the dynamic equilibrium between the generation of active hydrogen on cobalt phosphide and its timely consumption by nitrogen intermediates leads to a superior ammonia yield with a high Faradaic efficiency. This unique insight based on active hydrogen equilibrium provides new opportunities for large-scale ammonia production through electrochemical techniques and can be further used for carbon dioxide capture.
Collapse
Affiliation(s)
- Kui Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenfu Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinze Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yining Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengcheng Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Tang
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
40
|
Xia J, Du H, Dong S, Luo Y, Liu Q, Chen JS, Guo H, Li T. Heterogenous Cu@ZrO 2 nanofibers enable efficient electrocatalytic nitrate reduction to ammonia under ambient conditions. Chem Commun (Camb) 2022; 58:13811-13814. [PMID: 36444816 DOI: 10.1039/d2cc05331d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we construct a Cu@ZrO2 heterogenous structure as a new catalyst that achieves a large NH3 yield of 15.4 mg h-1 mg-1cat. and a high faradaic efficiency of 67.6% at -0.7 V vs. RHE in 0.1 M PBS with 0.1 M NaNO3, and it also shows excellent electrochemical durability and structural stability. Theoretical calculations reveal an extremely low adsorption energy of -1.54 eV at Cu surfaces and Cu can significantly reduce the applied overpotential and correspondingly promote the catalytic activity.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.,School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Hongting Du
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Shuyue Dong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yongsong Luo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Haoran Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| |
Collapse
|
41
|
Role of oxide support in electrocatalytic nitrate reduction on Cu. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
42
|
Xie L, Sun S, Hu L, Chen J, Li J, Ouyang L, Luo Y, Alshehri AA, Kong Q, Liu Q, Sun X. In Situ Derived Co 2B Nanosheet Array: A High-Efficiency Electrocatalyst for Ambient Ammonia Synthesis via Nitrate Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49650-49657. [PMID: 36301122 DOI: 10.1021/acsami.2c12175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ambient ammonia synthesis via electrochemical nitrate (NO3-) reduction is regarded as a green alternative to the Haber-Bosch process. Herein, we report the in situ derivation of an amorphous Co2B layer on a Co3O4 nanosheet array on a Ti mesh (Co2B@Co3O4/TM) for efficient NH3 production via selective electroreduction of NO3- under ambient conditions. In 0.1 M PBS and 0.1 M NaNO3, Co2B@Co3O4/TM exhibits a maximum Faradaic efficiency of 97.0% at -0.70 V and a remarkable NH3 yield of 8.57 mg/h/cm2 at -1.0 V, with durability for stable NO3--to-NH3 conversion over eight recycling tests and 12 h of electrolysis. Additionally, it can be applied as an efficient cathode material for Zn-NO3- batteries to produce NH3 while generating electricity. The catalytic mechanisms on Co2B@Co3O4 are further revealed by theoretical calculations.
Collapse
Affiliation(s)
- Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu610106, Sichuan, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Long Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah21589, Saudi Arabia
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu610106, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu610106, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, Shandong, China
| |
Collapse
|
43
|
Surfactant mediated electrodeposition of copper nanostructures for environmental electrochemistry: influence of morphology on electrochemical nitrate reduction reaction. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Tran R, Wang D, Kingsbury R, Palizhati A, Persson KA, Jain A, Ulissi ZW. Screening of bimetallic electrocatalysts for water purification with machine learning. J Chem Phys 2022; 157:074102. [DOI: 10.1063/5.0092948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrocatalysis provides a potential solution to [Formula: see text] pollution in wastewater by converting it to innocuous N2 gas. However, materials with excellent catalytic activity are typically limited to expensive precious metals, hindering their commercial viability. In response to this challenge, we have conducted the most extensive computational search to date for electrocatalysts that can facilitate [Formula: see text] reduction reaction, starting with 59 390 candidate bimetallic alloys from the Materials Project and Automatic-Flow databases. Using a joint machine learning- and computation-based screening strategy, we evaluated our candidates based on corrosion resistance, catalytic activity, N2 selectivity, cost, and the ability to synthesize. We found that only 20 materials will satisfy all criteria in our screening strategy, all of which contain varying amounts of Cu. Our proposed list of candidates is consistent with previous materials investigated in the literature, with the exception of Cu–Co and Cu–Ag based compounds that merit further investigation.
Collapse
Affiliation(s)
- Richard Tran
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Duo Wang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ryan Kingsbury
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Aini Palizhati
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Kristin Aslaug Persson
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anubhav Jain
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Zachary W. Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
45
|
Carvalho OQ, Marks R, Nguyen HKK, Vitale-Sullivan ME, Martinez SC, Árnadóttir L, Stoerzinger KA. Role of Electronic Structure on Nitrate Reduction to Ammonium: A Periodic Journey. J Am Chem Soc 2022; 144:14809-14818. [PMID: 35926171 DOI: 10.1021/jacs.2c05673] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electrocatalysis is a promising approach to convert waste nitrate to ammonia and help close the nitrogen cycle. This renewably powered ammonia production process sources hydrogen from water (as opposed to methane in the thermal Haber-Bosch process) but requires a delicate balance between a catalyst's activity for the hydrogen evolution reaction (HER) and the nitrate reduction reaction (NO3RR), influencing the Faradaic efficiency (FE) and selectivity to ammonia/ammonium over other nitrogen-containing products. We measure ammonium FEs ranging from 3.6 ± 6.6% (on Ag) to 93.7 ± 0.9% (on Co) across a range of transition metals (TMs; Ti, Fe, Co, Ni, Ni0.68Cu0.32, Cu, and Ag) in buffered neutral media. To better understand these competing reaction kinetics, we develop a microkinetic model that captures the voltage-dependent nitrate rate order and illustrates its origin as competitive adsorption between nitrate and hydrogen adatoms (H*). NO3RR FE can be described via competition for electrons with the HER, decreasing sharply for TMs with a high work function and a correspondingly high HER activity (e.g., Ni). Ammonium selectivity nominally increases as the TM d-band center energy (Ed) approaches and overcomes the Fermi level (EF), but is exceptionally high for Co compared to materials with similar Ed. Density functional theory (DFT) calculations indicate Co maximizes ammonium selectivity via (1) strong nitrite binding enabling subsequent reduction and (2) promotion of nitric oxide dissociation, leading to selective reduction of the nitrogen adatom (N*) to ammonium.
Collapse
Affiliation(s)
- O Quinn Carvalho
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States.,The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94705, United States
| | - Rylee Marks
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Hoan K K Nguyen
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Molly E Vitale-Sullivan
- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Selena C Martinez
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Líney Árnadóttir
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kelsey A Stoerzinger
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States.,Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99354, United States
| |
Collapse
|
46
|
Wang Y, Wu D, Lv P, He B, Li X, Ma D, Jia Y. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. NANOSCALE 2022; 14:10862-10872. [PMID: 35843116 DOI: 10.1039/d2nr02813a] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrocatalytic reduction of harmful nitrate (NO3-) to valuable ammonia (eNO3RR) is critical and attractive for both environmental remediation and energy transformation. A single atom catalyst (SAC) based on graphene represents one of the most promising eNO3RR catalysts. However, the underlying catalytic mechanism and the intrinsic factors dictating the catalytic activity trend remain unclear. Herein, using first-principles calculations, eNO3RR on TMN3 and TMN4 (TM = Ti-Ni) doped graphene was thoroughly investigated. Our results reveal that FeN4 doped graphene exhibits excellent eNO3RR performance with a low limiting potential of -0.38 V, agreeing with the experimental finding, which can be ascribed to the effective adsorption and activation of NO3-via the charge "acceptance-donation" mechanism and its moderate binding due to the occupation of the d-p antibonding orbital. In particular, we found that eNO3RR activities are well correlated with the intrinsic properties of TM centers and their local environments. With the established activity descriptor, several other graphene-based SACs were efficiently screened out with excellent eNO3RR performance. Our studies could not only provide an atomic insight into the catalytic mechanism and activity origin of eNO3RR on graphene-based SACs, but also open an avenue for the rational design of SACs for eNO3RR towards ammonia by regulating the metal center and its local coordination environment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Peng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Bingling He
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Xue Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
47
|
Ordered Mesoporous nZVI/Zr-Ce-SBA-15 Catalysts Used for Nitrate Reduction: Synthesis, Optimization and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12070797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Excessive concentrations of nitrate (NO3-N) in water lead to the deterioration of water quality, reducing biodiversity and destroying ecosystems. Therefore, the present study investigated NO3-N removal from simulated wastewater by nanoscale zero-valent iron-supported ordered mesoporous Zr-Ce-SBA-15 composites (nZVI/Zr-Ce-SBA-15) assisted by response surface methodology (RSM), an artificial neural network combined with a genetic algorithm (ANN-GA) and a radial basis neural network (RBF). The successful support of nZVI on Zr-Ce-SBA-15 was confirmed using XRD, FTIR, TEM, SEM–EDS, N2 adsorption and XPS, which indicated ordered mesoporous materials. The results showed that ANN-GA was better than the RSM for optimizing the conditions of NO3-N removal and the RBF neural network further confirmed the reliability of the ANN-GA model. The removal rate of NO3-N by the composites reached 95.71% under the optimized experimental conditions (initial pH of 4.89, contact time = of 62.27 min, initial NO3-N concentration of 74.84 mg/L and temperature of 24.77 °C). The process of NO3-N adsorption onto Zr-Ce-SBA-15 composites was followed by the Langmuir model (maximum adsorption capacity of 45.24 mg/g), pseudo-second-order kinetics, and was spontaneous, endothermic and entropy driven. The yield of N2 can be improved after nZVI was supported on Zr-Ce-SBA-15, and the composites exhibited a strong renewability in the short term within three cycles. The resolution of Fe2+ experiments confirmed that nZVI/Zr-Ce-SBA-15 was simultaneously undergoing adsorption and catalysis in the process of NO3-N removal. Our study suggests that the ordered mesoporous nZVI/Zr-Ce-SBA-15 composites are a promising material for simultaneously performing NO3-N removal and improving the selectivity of N2, which provides a theoretical reference for NO3-N remediation from wastewater.
Collapse
|
48
|
Harmon NJ, Rooney CL, Tao Z, Shang B, Raychaudhuri N, Choi C, Li H, Wang H. Intrinsic Catalytic Activity of Carbon Nanotubes for Electrochemical Nitrate Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nia J. Harmon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Conor L. Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Zixu Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Bo Shang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Neera Raychaudhuri
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Chungseok Choi
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Huaping Li
- Chemelectronics LLC, Inglewood, California 90301, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
49
|
Xie L, Liu Q, Sun S, Hu L, Zhang L, Zhao D, Liu Q, Chen J, Li J, Ouyang L, Alshehri AA, Hamdy MS, Kong Q, Sun X. High-Efficiency Electrosynthesis of Ammonia with Selective Reduction of Nitrate in Neutral Media Enabled by Self-Supported Mn 2CoO 4 Nanoarray. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33242-33247. [PMID: 35834395 DOI: 10.1021/acsami.2c07818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ambient ammonia synthesis by electroreduction of nitrate (NO3-) provides us a sustainable and environmentally friendly alternative to the traditional Haber-Bosch process. In this work, Mn2CoO4 nanoarray grown on carbon cloth (Mn2CoO4/CC) serves as a superior electrocatalyst for efficient NH3 synthesis by selective reduction of NO3-. When operated in 0.1 M PBS with 0.1 M NaNO3, Mn2CoO4/CC reaches a high Faraday efficiency of 98.6% and a large NH3 yield up to 11.19 mg/h/cm2. Moreover, it exhibits excellent electrocatalytic stability. Theory calculations show that the Mn2CoO4 surface has strong interaction with NO3-, which can effectively inhibit the occurrence of hydrogen evolution, beneficial for NO3--to-NH3 conversion.
Collapse
Affiliation(s)
- Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Long Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Donglin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qin Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed S Hamdy
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
50
|
Murphy E, Liu Y, Matanovic I, Guo S, Tieu P, Huang Y, Ly A, Das S, Zenyuk I, Pan X, Spoerke E, Atanassov P. Highly Durable and Selective Fe- and Mo-Based Atomically Dispersed Electrocatalysts for Nitrate Reduction to Ammonia via Distinct and Synergized NO 2– Pathways. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, United States
| | - Yuanchao Liu
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, United States
| | - Ivana Matanovic
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, United States
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Ying Huang
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Alvin Ly
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Suparna Das
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, United States
| | - Iryna Zenyuk
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, United States
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Erik Spoerke
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, United States
| |
Collapse
|