1
|
Ndlovu MT, Harding CR, Kaschula CH, Chellan P. Synthesis of ferrocenyl benzimidazole derivatives as novel anti- Toxoplasma gondii agents. NEW J CHEM 2024; 48:16415-16428. [PMID: 39268224 PMCID: PMC11385693 DOI: 10.1039/d3nj05116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
Toxoplasmosis, a disease caused by the apicomplexan parasite Toxoplasma gondii, affects up to one third of the global population. Although immunocompetent individuals rarely experience severe symptoms, those with immunodeficiencies may potentially face fatal disease. The frontline treatments are currently sulphadiazine and pyrimethamine, which suffer from adverse side effects, and lack efficiency in clearing parasite cysts from the muscles and brain of patients. To address the need for novel, more effective, and less toxic treatments, four new ferrocenyl benzimidazole complexes 15-18 were synthesised and evaluated against the ΔKu80:mNeonGreen strain of T. gondii. Complexes 15 and 17 were found to be active with EC50 values of 17.9 and 17.5 μM respectively, with comparable activity to pyrimethamine, which had an EC50 value of 13.8 μM, and less effective than sulphadiazine, which had an EC50 value of 2.56 μM. Additionally, the compounds were found to be relatively non-toxic against HEK 293T and PNT1A human cell lines. Further investigations found that the complexes act by generating reactive oxygen species (ROS) through the ferrocenyl moiety. These complexes show potential for the development of new treatments against Toxoplasmosis.
Collapse
Affiliation(s)
- Malcolm T Ndlovu
- Department of Chemistry and Polymer Science, Stellenbosch University Stellenbosch Western Cape South Africa +2721 8083327
| | - Clare R Harding
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow Glasgow UK
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University Stellenbosch Western Cape South Africa +2721 8083327
| | - Prinessa Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University Stellenbosch Western Cape South Africa +2721 8083327
| |
Collapse
|
2
|
Phan NKN, Huynh TKC, Nguyen HP, Le QT, Nguyen TCT, Ngo KKH, Nguyen THA, Ton KA, Thai KM, Hoang TKD. Exploration of Remarkably Potential Multitarget-Directed N-Alkylated-2-(substituted phenyl)-1 H-benzimidazole Derivatives as Antiproliferative, Antifungal, and Antibacterial Agents. ACS OMEGA 2023; 8:28733-28748. [PMID: 37576624 PMCID: PMC10413844 DOI: 10.1021/acsomega.3c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Improving lipophilicity for drugs to penetrate the lipid membrane and decreasing bacterial and fungal coinfections for patients with cancer pose challenges in the drug development process. Here, a series of new N-alkylated-2-(substituted phenyl)-1H-benzimidazole derivatives were synthesized and characterized by 1H and 13C NMR, FTIR, and HRMS spectrum analyses to address these difficulties. All the compounds were evaluated for their antiproliferative, antibacterial, and antifungal activities. Results indicated that compound 2g exhibited the best antiproliferative activity against the MDA-MB-231 cell line and also displayed significant inhibition at minimal inhibitory concentration (MIC) values of 8, 4, and 4 μg mL-1 against Streptococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared with amikacin. The antifungal data of compounds 1b, 1c, 2e, and 2g revealed their moderate activities toward Candida albicans and Aspergillus niger, with MIC values of 64 μg mL-1 for both strains. Finally, the molecular docking study found that 2g interacted with crucial amino acids in the binding site of complex dihydrofolate reductase with nicotinamide adenine dinucleotide phosphate.
Collapse
Affiliation(s)
- Ngoc-Kim-Ngan Phan
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Thi-Kim-Chi Huynh
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, No.18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi City 100000, Vietnam
| | - Hoang-Phuc Nguyen
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Quoc-Tuan Le
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Thi-Cam-Thu Nguyen
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Kim-Khanh-Huy Ngo
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Thi-Hong-An Nguyen
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Khoa Anh Ton
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
| | - Khac-Minh Thai
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, No.41-43, Dinh Tien Hoang Str.,
Dist. 1, Ho Chi Minh City 70000, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute
of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward,
Dist. 12, Ho Chi Minh City 70000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, No.18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi City 100000, Vietnam
| |
Collapse
|
3
|
Karges J, Giardini MA, Blacque O, Woodworth B, Siqueira-Neto JL, Cohen SM. Enantioselective inhibition of the SARS-CoV-2 main protease with rhenium(i) picolinic acid complexes. Chem Sci 2023; 14:711-720. [PMID: 36741526 PMCID: PMC9848156 DOI: 10.1039/d2sc05473f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
Infections of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have triggered a global pandemic with millions of deaths worldwide. Herein, the synthesis of functionalized Re(i) tricarbonyl complexes as inhibitors of the SARS-CoV-2 main protease, also referred to as the 3-chymotrypsin-like protease (3CLpro), is presented. The metal complexes were found to inhibit the activity of the enzyme with IC50 values in the low micromolar range. Mass spectrometry revealed that the metal complexes formed a coordinate covalent bond with the enzyme. Chiral separation of the enantiomers of the lead compound showed that one enantiomer was significantly more active than the other, consistent with specific binding and much like that observed for conventional organic small molecule inhibitors and druglike compounds. Evaluation of the lead compound against SARS-CoV-2 in a cell-based infection assay confirmed enantiospecific inhibition against the virus. This study represents a significant advancement in the use of metal complexes as coordinate covalent inhibitors of enzymes, as well as a novel starting point for the development of novel SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| | - Miriam A. Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| | - Olivier Blacque
- Department of Chemistry, University of ZurichWinterthurerstrasse 190CH-8057ZurichSwitzerland
| | - Brendon Woodworth
- Department of Medicine, Division of Infectious Diseases, University of California San DiegoLa JollaCalifornia 92093USA
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| |
Collapse
|
4
|
Yu X, Zhu W, Liu H, Liu Y, Li H, Han J, Duan G, Bai Z, Zhang P, Xia C. Practical chemoselective aromatic substitution: the synthesis of N-(4-halo-2-nitrophenyl)benzenesulfonamide through the efficient nitration and halogenation of N-phenylbenzenesulfonamide. Org Biomol Chem 2022; 20:5444-5451. [PMID: 35770678 DOI: 10.1039/d2ob01028c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel route involving the metal-promoted tandem nitration and halogenation of N-phenylbenzenesulfonamide to synthesize N-(4-halo-2-nitrophenyl)benzenesulfonamide derivatives has been developed. The method shows highly practical chemoselective and functional group compatibility. In addition, it employs insensitive and inexpensive Cu(NO3)2·3H2O, Fe(NO3)3·9H2O, and NH4NO3 as the nitration reagents, and it provides a direct approach for the preparation of 4-halo-2-nitroaniline, which is a crucial intermediate for the synthesis of benzimidazoles and quinoxaline derivatives.
Collapse
Affiliation(s)
- Xiao Yu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Wenjing Zhu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Hongyan Liu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Yi Liu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Hongshuang Li
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Junfen Han
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Guiyun Duan
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Zhushuang Bai
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chengcai Xia
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| |
Collapse
|
5
|
Lachguar A, Deydier E, Labande A, Manoury E, Poli R, Daran JC. Synthesis and crystal structure of [( Sp )-(2-phenyl-ferrocen-yl)meth-yl]tri-methyl-ammonium iodide di-chloro-methane monosolvate. Acta Crystallogr E Crystallogr Commun 2022; 78:722-726. [PMID: 35855359 PMCID: PMC9260353 DOI: 10.1107/s2056989022006053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/07/2022] [Indexed: 09/01/2024]
Abstract
As a follow-up to our research on the chemistry of disubstituted ferrocene derivatives, the synthesis and the structure of the title compound, [Fe(C5H5)(C15H19N)]I·CH2Cl2, is described. The cation mol-ecule is built up from a ferrocene disubstituted by a tri-methyl-ammonium methyl group and a phenyl ring. The asymmetric unit contains the iodide to equilibrate the charge and a disordered di-chloro-methane solvate. The disordered model results from a roughly statistical exchange (0.6/0.4) between one Cl and one H. The packing of the structure is stabilized by weak C-H⋯X (X = I, Cl), C-H⋯π(Cp) and C-Cl⋯π(phen-yl) inter-actions, building a three-dimensional network. The cation has planar chirality with Sp (Fc) absolute configuration. The structure of the title compound is compared with related disubstituted (tri-meth-ylammonio)-methyl ferrocenes.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
- IUT A Paul Sabatier, de Chimie, Avenue Georges Pompidou, CS 20258, F-81104, Castres Cedex, France
| | - Eric Deydier
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
- IUT A Paul Sabatier, de Chimie, Avenue Georges Pompidou, CS 20258, F-81104, Castres Cedex, France
| | - Agnès Labande
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Jean-Claude Daran
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
6
|
Welsh A, Mbaba M, Prince S, Smith GS. Synthesis, molecular modeling and preliminary anticancer evaluation of 2-ferrocenylbenzimidazole metallofragments. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Navarro-Peñaloza R, Vázquez-Palma AB, López-Sandoval H, Sánchez-Bartéz F, Gracia-Mora I, Barba-Behrens N. Coordination compounds with heterocyclic ester derivatives. Structural characterization and anti-proliferative activity. J Inorg Biochem 2021; 219:111432. [PMID: 33873052 DOI: 10.1016/j.jinorgbio.2021.111432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
A series of new coordination compounds of cobalt(II), copper(II) and zinc(II) with heterocyclic ester derivatives (ethyl 4-methyl-5-imidazole-carboxylate (emizco), 1-(2-(phenylsulphonyl)ethyl)-4-imidazole carboxylate (semizco)) and methyl 5-(propylthio)-2-benzimidazolecarbamate (albendazole, abz) were synthesized. They were fully characterized by different techniques such as IR, UV-Vis-NIR, elemental analysis, molar conductivity and magnetic susceptibility. Additionally, X-ray crystal structures of semizco and its [Co(semizco)2Cl2]·2CH3CN 10, [Co(smmizco)2Br2]·2CH3CN 11 and [Cu(semizco)2Br2] 15 coordination compounds are analyzed. These compounds present lone pair SO⋯π interactions between the sulfone and the imidazolic ring. These ligands showed three coordination modes: monodentate, through an imidazolic nitrogen atom, or a bidentate chelating mode by a nitrogen and an oxygen atom from the ester group. The different coordination modes and the number of coordinated ligands gave rise to tetrahedral and octahedral compounds, or for [Cu(semizco)(μ-Br)Br]n·0.5H2O 7 a square base pyramidal geometry. A cytotoxic study was carried out with the free ligands and their copper(II) and zinc(II) halide coordination compounds on HeLa (cervix-uterine), MCF-7 (breast), HCT-15 (colon), PC3 (prostate) human carcinoma cell lines and L929 mouse fibroblast (healthy cells). A TUNEL assay (terminal deoxynucleotidyl transferase dUTP nick end labeling) was performed with the most active copper(II) compounds to determine if cell death was by apoptosis.
Collapse
Affiliation(s)
- Rubí Navarro-Peñaloza
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Adriana B Vázquez-Palma
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Horacio López-Sandoval
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Francisco Sánchez-Bartéz
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Isabel Gracia-Mora
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Norah Barba-Behrens
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico.
| |
Collapse
|
8
|
Rivas F, Medeiros A, Quiroga C, Benítez D, Comini M, Rodríguez-Arce E, Machado I, Cerecetto H, Gambino D. New Pd-Fe ferrocenyl antiparasitic compounds with bioactive 8-hydroxyquinoline ligands: a comparative study with their Pt-Fe analogues. Dalton Trans 2021; 50:1651-1665. [PMID: 33449983 DOI: 10.1039/d0dt03963b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the search for a more effective chemotherapy for the treatment of Human African Trypanosomiasis, a disease caused by the parasite Trypanosoma brucei, the development of ferrocenyl compounds has arisen as a promising strategy. In this work, five new Pd-Fe heterobimetallic [PdII(L)(dppf)](PF6) compounds, including 8-hydroxyquinolyl derivatives HL1-HL5 as bioactive ligands and dppf = 1,1'-bis(diphenylphosphino)ferrocene as the organometallic co-ligand, were synthesized and fully characterized in the solid state and in solution. Molecular structures of three compounds were solved by single crystal X-ray diffraction methods. The compounds displayed submicromolar or micromolar IC50 values against bloodstream T. brucei (IC50: 0.33-1.2 μM), and good selectivity towards the pathogen (SI: 4-102) with respect to mammalian macrophages (cell line J774). The new Pd complexes proved to be 2-fold to 45-fold more potent than the drug nifurtimox but most of them are less active than their Pt analogues. Potential molecular targets were studied. The complexes interact with DNA but they do not alter the intracellular thiol-redox homeostasis of the parasite. In order to understand and predict the main structural determinants on the anti-T. brucei activity, a search of quantitative structure-activity relationships (QSAR) was performed including all the [M(L)(dppf)](PF6) complexes, where M = Pd(ii) or Pt(ii), currently and previously developed by us. The correlation obtained shows the relevance of the electronic effects, the lipophilicity and the type of metal. According to the QSAR study, compounds with electron-withdrawing ligands, higher lipophilicity and harboring Pt would result in higher T. brucei cytotoxicity. From the whole series of [M(L)(dppf)](PF6) compounds developed, where M = Pt(ii) or Pd(ii) and HL = 8-hydroxyquinolyl derivatives, Pt-dppf-L4 (IC50 = 0.14 μM, SI = 48) was selected to perform an exploratory pre-clinical study in infected mice. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described and exerts an anti-proliferative effect on parasites, which extends animal survival but is not curative.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Programa de Posgrados, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | |
Collapse
|