1
|
Zhang K, Chen Z. Promoting agricultural sustainable development by a novel integrated pythagorean neutrosophic and WINGS-BWM model. Sci Rep 2024; 14:29043. [PMID: 39580541 PMCID: PMC11585564 DOI: 10.1038/s41598-024-80463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
This paper identifies nine factors affecting agricultural sustainable development by reading extensive literature and invites five experts to assess these factors using the pythagorean neutrosophic linguistic variable. Some of these factors can directly reduce the environmental footprint of agriculture, improve soil health, and promote biodiversity, while others can indirectly integrate to support the adoption of sustainable practices, further mitigating environmental degradation. Collectively, these factors reinforce ecological balance and play a critical role in advancing agricultural sustainable development. To unravel the complex relationships among these factors, a novel decision theory model is proposed, integrating pythagorean neutrosophic set (PNS) with Weighted Influence Nonlinear Specification System (WINGS) and Best-Worst Method (BWM). In addition, we not only categorized all factors into cause-and-effect factors, but also constructed a network relationship diagram based on them. The study shows that agricultural modernization (Y6) is the most important factor and land remediation (Y2) is the most influential factor. This integrated approach can more effectively address the common challenges of uncertainty and linguistic ambiguity in decision-making scenarios. Combining PNS with WINGS helps make the interactions and importance of factors more apparent, which is particularly suitable for analyzing key factors that promote agricultural sustainability. The incorporation of BWM further ensures the model's accuracy and objectivity. This method provides a more comprehensive and accurate reflection of decision-makers' opinions and judgments, improving decision-making efficiency, and can be widely applied not only in agriculture but also to other decision-making problems.
Collapse
Affiliation(s)
- Kecheng Zhang
- School of Business Administration, Shandong Women's University, Jinan, China
| | - Zhicheng Chen
- School of Economics and Management, Shandong Agricultural University, Taian, China.
| |
Collapse
|
2
|
Guo S, Hu X, Wang Z, Yu F, Hou X, Xing B. Zinc oxide nanoparticles cooperate with the phyllosphere to promote grain yield and nutritional quality of rice under heatwave stress. Proc Natl Acad Sci U S A 2024; 121:e2414822121. [PMID: 39495932 PMCID: PMC11573674 DOI: 10.1073/pnas.2414822121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024] Open
Abstract
To address rising global food demand, the development of sustainable technologies to increase productivity is urgently needed. This study revealed that foliar application of zinc oxide nanoparticles (ZnO NPs; 30 to 80 nm, 0.67 mg/d per plant, 6 d) to rice leaves under heatwave (HW) stress increased the grain yield and nutritional quality. Compared with the HW control, the HWs+ZnO group presented increases in the grain yield, grain protein content, and amino acid content of 22.1%, 11.8%, and 77.5%, respectively. Nanoscale ZnO aggregated on the leaf surface and interacted with leaf surface molecules. Compared with that at ambient temperature, HW treatment increased the dissolution of ZnO NPs on the leaf surface by 25.9% and facilitated their translocation to mesophyll cells. The Zn in the leaves existed as both ionic Zn and particulate ZnO. Compared with the HW control, foliar application of ZnO NPs under HW conditions increased leaf nutrient levels (Zn, Mn, Cu, Fe, and Mg) by 15.8 to 416.9%, the chlorophyll content by 22.2 to 24.8%, Rubisco enzyme activity by 21.2%, and antioxidant activity by 26.7 to 31.2%. Transcriptomic analyses revealed that ZnO NPs reversed HW-induced transcriptomic dysregulation, thereby enhancing leaf photosynthesis by 74.4%. Additionally, ZnO NPs increased the diversity, stability, and enrichment of beneficial microbial taxa and protected the phyllosphere microbial community from HW damage. This work elucidates how NPs interact with the phyllosphere, highlighting the potential of NPs to promote sustainable agriculture, especially under extreme climate events (e.g., HWs).
Collapse
Affiliation(s)
- Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zixuan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
3
|
Zhou X, Zhang Y. Administration or marketization: Environmental regulation, marketization and agricultural green total factor productivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122433. [PMID: 39276656 DOI: 10.1016/j.jenvman.2024.122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
The mature market can effectively reflect the value of green agricultural products, but the market in developing countries is developing slowly, so how to implement administrative environmental policies while cultivating the market has become the key to the green development of agriculture. In this paper, the government and the market are discussed under the common goal of agricultural green development. Based on the provincial panel data of China, taking agricultural green total factor productivity (AGTFP) as a breakthrough point, the relationship between environmental regulation tools, marketization processes and agricultural green development, specific applicable conditions and transmission mechanisms are explored, and further subdivided into factor and product markets to verify their correlation with AGTFP. The results show that environmental regulation and marketization processes and AGTFP are positively correlated. The former can establish a positive relationship with AGTFP through resource reallocation and technological innovation, and the latter can do so by improving the level of information and land transfer and perfecting infrastructure construction. These findings will provide new ideas for developing countries similar to China's agricultural development and enlighten developing countries pay full attention to and cultivate the market while formulating appropriate environmental regulation policies. In addition, they also need to coordinate the development of technology and organizations.
Collapse
Affiliation(s)
- Xinxin Zhou
- College of Economics and Management, Northwest A&F University, Yangling, 712100, China
| | - Yongwang Zhang
- College of Economics and Management, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Jiang X, Yang F, Jia W, Jiang Y, Wu X, Song S, Shen H, Shen J. Nanomaterials and Nanotechnology in Agricultural Pesticide Delivery: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18806-18820. [PMID: 39177444 DOI: 10.1021/acs.langmuir.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Pesticides play a crucial role in ensuring food production and food security. Conventional pesticide formulations can not meet the current needs of social and economic development, and they also can not meet the requirements of green agriculture. Therefore, there is an urgent need to develop efficient, stable, safe, and environmentally friendly pesticide formulations to gradually replace old formulations which have high pollution and low efficacy. The rise of nanotechnology provides new possibilities for innovation in pesticide formulations. Through reasonable design and construction of an environmentally friendly pesticide delivery system (PDS) based on multifunctional nanocarriers, the drawbacks of conventional pesticides can be effectively solved, realizing a water-based, nanosized, targeted, efficient, and safe pesticide system. In the past five years, researchers in chemistry, materials science, botany, entomology, plant protection, and other fields are paying close attention to the research of nanomaterials based PDSs and nanopesticide formulations and have made certain research achievements. These explorations provide useful references for promoting the innovation of nanopesticides and developing a new generation of green and environmentally friendly pesticide formulations. This Perspective summarizes the recent advances of nanomaterials in PDSs and nanopesticide innovation, aiming to provide useful guidance for carrier selection, surface engineering, controlled release conditions, and application in agriculture.
Collapse
Affiliation(s)
- Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Jia
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Youfa Jiang
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Xiaoju Wu
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - He Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Nizamani MM, Hughes AC, Zhang HL, Wang Y. Revolutionizing agriculture with nanotechnology: Innovative approaches in fungal disease management and plant health monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172473. [PMID: 38615773 DOI: 10.1016/j.scitotenv.2024.172473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nanotechnology has emerged as a transformative force in modern agriculture, offering innovative solutions to address challenges related to fungal plant diseases and overall agricultural productivity. Specifically, the antifungal activities of metal, metal oxide, bio-nanoparticles, and polymer nanoparticles were examined, highlighting their unique mechanisms of action against fungal pathogens. Nanoparticles can be used as carriers for fungicides, offering advantages in controlled release, targeted delivery, and reduced environmental toxicity. Nano-pesticides and nano-fertilizers can enhance nutrient uptake, plant health, and disease resistance were explored. The development of nanosensors, especially those utilizing quantum dots and plasmonic nanoparticles, promises early and accurate detection of fungal pathogens, a crucial step in timely disease management. However, concerns about their potential toxic effects on non-target organisms, environmental impacts, and regulatory hurdles underscore the importance of rigorous research and impact assessments. The review concludes by emphasizing the significant prospects of nanotechnology in reshaping the future of agriculture but advocates for a balanced approach that prioritizes safety, sustainability, and environmental stewardship.
Collapse
Affiliation(s)
- Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, China
| | - Hai-Li Zhang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Orfei B, Moretti C, Scian A, Paglialunga M, Loreti S, Tatulli G, Scotti L, Aceto A, Buonaurio R. Combat phytopathogenic bacteria employing Argirium-SUNCs: limits and perspectives. Appl Microbiol Biotechnol 2024; 108:357. [PMID: 38822872 PMCID: PMC11144149 DOI: 10.1007/s00253-024-13189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.
Collapse
Affiliation(s)
- Benedetta Orfei
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Anna Scian
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Michela Paglialunga
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Giuseppe Tatulli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Bill J. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2835-2852. [PMID: 38315814 DOI: 10.1021/acs.jafc.3c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Manali Thakur
- Uniklinik Köln, Kerpener Strasse 62, 50937 Köln Germany
| | - Ievgen Dosnkyi
- Institute of Chemistry and Biochemistry Department of Organic ChemistryFreie Universität Berlin Takustr. 3 14195 Berlin, Germany
| | - Giulia Santomauro
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alok Kumar Singh
- Department of Plant Molecular Biology & Genetic Engineering, ANDUA&T, Ayodhya 224229, Uttar Pradesh, India
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Joachim Bill
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
9
|
Hameed A, Maqsood W, Hameed A, Qayyum MA, Ahmed T, Farooq T. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: an ecofriendly and sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8917-8929. [PMID: 38182953 DOI: 10.1007/s11356-023-31768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
Over-accumulating salts in soil are hazardous materials that interfere with the biochemical pathways in growing plants drastically affecting their physiological attributes, growth, and productivity. Soil salinization poses severe threats to highly-demanded and important crops directly challenging food security and sustainable productivity. Recently, there has been a great demand to exploit natural sources for the development of nontoxic nanoformulations of growth enhancers and stress emulators. The chitosan (CS) has growth-stimulating properties and widespread use as nanocarriers, while curcumin (CUR) has a well-established high ROS scavenging potential. Herein, we use CS and CUR for the preparation of CSNPs encapsulating CUR as an ecofriendly nanopriming agent. The hydroprimed, nanoprimed (0.02 and 0.04%), and unprimed (control) wheat seeds were germinated under salt stress (150 mM NaCl) and normal conditions. The seedlings established from the aforementioned seeds were employed for germination studies and biochemical analyses. Priming imprints mitigated the ionic toxicity by upregulating the machinery of antioxidants (CAT, POD, APX, and SOD), photosynthetic pigments (Chl a, Chl b, total Chl, and lycopene), tannins, flavonoids, and protein contents in wheat seedlings under salt stress. It controlled ROS production and avoided structural injuries, thus reducing MDA contents and regulating osmoregulation. The nanopriming-induced readjustments in biochemical attributes counteracted the ionic toxicity and positively influenced the growth parameters including final germination, vigor, and germination index. It also reduced the mean germination time, significantly validating the growth-stimulating and stress-emulating role of the prepared nanosystem. Hence, the nanopriming conferred tolerance against salt stress during germination and seedling development, ensuring sustainable growth.
Collapse
Affiliation(s)
- Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waqas Maqsood
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Hameed
- Plant Breeding & Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
10
|
Ali S, Ahmad N, Dar MA, Manan S, Rani A, Alghanem SMS, Khan KA, Sethupathy S, Elboughdiri N, Mostafa YS, Alamri SA, Hashem M, Shahid M, Zhu D. Nano-Agrochemicals as Substitutes for Pesticides: Prospects and Risks. PLANTS (BASEL, SWITZERLAND) 2023; 13:109. [PMID: 38202417 PMCID: PMC10780915 DOI: 10.3390/plants13010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
This review delves into the mesmerizing technology of nano-agrochemicals, specifically pesticides and herbicides, and their potential to aid in the achievement of UN SDG 17, which aims to reduce hunger and poverty globally. The global market for conventional pesticides and herbicides is expected to reach USD 82.9 billion by 2027, growing 2.7% annually, with North America, Europe, and the Asia-Pacific region being the biggest markets. However, the extensive use of chemical pesticides has proven adverse effects on human health as well as the ecosystem. Therefore, the efficacy, mechanisms, and environmental impacts of conventional pesticides require sustainable alternatives for effective pest management. Undoubtedly, nano-agrochemicals have the potential to completely transform agriculture by increasing crop yields with reduced environmental contamination. The present review discusses the effectiveness and environmental impact of nanopesticides as promising strategies for sustainable agriculture. It provides a concise overview of green nano-agrochemical synthesis and agricultural applications, and the efficacy of nano-agrochemicals against pests including insects and weeds. Nano-agrochemical pesticides are investigated due to their unique size and exceptional performance advantages over conventional ones. Here, we have focused on the environmental risks and current state of nano-agrochemicals, emphasizing the need for further investigations. The review also draws the attention of agriculturists and stakeholders to the current trends of nanomaterial use in agriculture especially for reducing plant diseases and pests. A discussion of the pros and cons of nano-agrochemicals is paramount for their application in sustainable agriculture.
Collapse
Affiliation(s)
- Shehbaz Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Mudasir A. Dar
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Sehrish Manan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Abida Rani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | | | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia;
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Yasser S. Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (Y.S.M.); (S.A.A.)
| | - Saad A. Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (Y.S.M.); (S.A.A.)
| | - Mohamed Hashem
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| |
Collapse
|
11
|
Tang Y, Zhao W, Zhu G, Tan Z, Huang L, Zhang P, Gao L, Rui Y. Nano-Pesticides and Fertilizers: Solutions for Global Food Security. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:90. [PMID: 38202545 PMCID: PMC10780761 DOI: 10.3390/nano14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Nanotechnology emerges as an important way to safeguard global food security amid the escalating challenges posed by the expansion of the global population and the impacts of climate change. The perfect fusion of this breakthrough technology with traditional agriculture promises to revolutionize the way agriculture is traditionally practiced and provide effective solutions to the myriad of challenges in agriculture. Particularly noteworthy are the applications of nano-fertilizers and pesticides in agriculture, which have become milestones in sustainable agriculture and offer lasting alternatives to traditional methods. This review meticulously explores the key role of nano-fertilizers and pesticides in advancing sustainable agriculture. By focusing on the dynamic development of nanotechnology in the field of sustainable agriculture and its ability to address the overarching issue of global food security, this review aims to shed light on the transformative potential of nanotechnology to pave the way for a more resilient and sustainable future for agriculture.
Collapse
Affiliation(s)
- Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.T.); (G.Z.)
| | - Weichen Zhao
- State Key Laboratory for Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Z.); (Z.T.)
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.T.); (G.Z.)
| | - Zhiqiang Tan
- State Key Laboratory for Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Z.); (Z.T.)
| | - Lili Huang
- Jiaer Chen Academician Workstation, Jinan Huaxin Automation Engineering Co., Ltd., Xincheng Road, Shanghe County, Jinan 251616, China;
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.T.); (G.Z.)
| |
Collapse
|
12
|
Hou H, Xu Z, Takeda YS, Powers M, Yang Y, Hershberger K, Hanscom H, Svenson S, Simhadri RK, Vegas AJ. Quantitative biodistribution of nanoparticles in plants with lanthanide complexes. Sci Rep 2023; 13:21440. [PMID: 38052849 PMCID: PMC10698154 DOI: 10.1038/s41598-023-47811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
The inefficient distribution of fertilizers, nutrients, and pesticides on crops is a major challenge in modern agriculture that leads to reduced productivity and environmental pollution. Nanoformulation of agrochemicals is an attractive approach to enable the selective delivery of agents into specific plant organs, their release in those tissues, and improve their efficiency. Already commercialized nanofertilizers utilize the physiochemical properties of metal nanoparticles such as size, charge, and the metal core to overcome biological barriers in plants to reach their target sites. Despite their wide application in human diseases, lipid nanoparticles are rarely used in agricultural applications and a systematic screening approach to identifying efficacious formulations has not been reported. Here, we developed a quantitative metal-encoded platform to determine the biodistribution of different lipid nanoparticles in plant tissues. In this platform lanthanide metal complexes were encapsulated into four types of lipid nanoparticles. Our approach was able to successfully quantify payload accumulation for all the lipid formulations across the roots, stem, and leaf of the plant. Lanthanide levels were 20- to 57-fold higher in the leaf and 100- to 10,000-fold higher in the stem for the nanoparticle encapsulated lanthanide complexes compared to the unencapsulated, free lanthanide complex. This system will facilitate the discovery of nanoparticles as delivery carriers for agrochemicals and plant tissue-targeting products.
Collapse
Affiliation(s)
- H Hou
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| | - Z Xu
- Department of Chemistry, Boston University, Boston, MA, USA
| | | | - M Powers
- Invaio Sciences, Cambridge, MA, USA
| | - Y Yang
- Invaio Sciences, Cambridge, MA, USA
| | | | | | | | | | - A J Vegas
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Jha A, Pathania D, Sonu, Damathia B, Raizada P, Rustagi S, Singh P, Rani GM, Chaudhary V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. ENVIRONMENTAL RESEARCH 2023; 235:116456. [PMID: 37343760 DOI: 10.1016/j.envres.2023.116456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Bhavna Damathia
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
14
|
Ijaz M, Khan F, Ahmed T, Noman M, Zulfiqar F, Rizwan M, Chen J, H.M. Siddique K, Li B. Nanobiotechnology to advance stress resilience in plants: Current opportunities and challenges. Mater Today Bio 2023; 22:100759. [PMID: 37600356 PMCID: PMC10433128 DOI: 10.1016/j.mtbio.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
A sustainable and resilient crop production system is essential to meet the global food demands. Traditional chemical-based farming practices have become ineffective due to increased population pressures and extreme climate variations. Recently, nanobiotechnology is considered to be a promising approach for sustainable crop production by improving the targeted nutrient delivery, pest management efficacy, genome editing efficiency, and smart plant sensor implications. This review provides deeper mechanistic insights into the potential applications of engineered nanomaterials for improved crop stress resilience and productivity. We also have discussed the technology readiness level of nano-based strategies to provide a clear picture of our current perspectives of the field. Current challenges and implications in the way of upscaling nanobiotechnology in the crop production are discussed along with the regulatory requirements to mitigate associated risks and facilitate public acceptability in order to develop research objectives that facilitate a sustainable nano-enabled Agri-tech revolution. Conclusively, this review not only highlights the importance of nano-enabled approaches in improving crop health, but also demonstrated their roles to counter global food security concerns.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth, WA, 6001, Australia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
15
|
Fincheira P, Hoffmann N, Tortella G, Ruiz A, Cornejo P, Diez MC, Seabra AB, Benavides-Mendoza A, Rubilar O. Eco-Efficient Systems Based on Nanocarriers for the Controlled Release of Fertilizers and Pesticides: Toward Smart Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1978. [PMID: 37446494 DOI: 10.3390/nano13131978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The excessive application of pesticides and fertilizers has generated losses in biological diversity, environmental pollution, and harmful effects on human health. Under this context, nanotechnology constitutes an innovative tool to alleviate these problems. Notably, applying nanocarriers as controlled release systems (CRSs) for agrochemicals can overcome the limitations of conventional products. A CRS for agrochemicals is an eco-friendly strategy for the ecosystem and human health. Nanopesticides based on synthetic and natural polymers, nanoemulsions, lipid nanoparticles, and nanofibers reduce phytopathogens and plant diseases. Nanoproducts designed with an environmentally responsive, controlled release offer great potential to create formulations that respond to specific environmental stimuli. The formulation of nanofertilizers is focused on enhancing the action of nutrients and growth stimulators, which show an improved nutrient release with site-specific action using nanohydroxyapatite, nanoclays, chitosan nanoparticles, mesoporous silica nanoparticles, and amorphous calcium phosphate. However, despite the noticeable results for nanopesticides and nanofertilizers, research still needs to be improved. Here, we review the relevant antecedents in this topic and discuss limitations and future challenges.
Collapse
Affiliation(s)
- Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Nicolas Hoffmann
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias en Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
| | | | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| |
Collapse
|
16
|
Gupta A, Rayeen F, Mishra R, Tripathi M, Pathak N. Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach. PLANT NANO BIOLOGY 2023; 4:100033. [DOI: 10.1016/j.plana.2023.100033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Giri VP, Pandey S, Srivastava S, Shukla P, Kumar N, Kumari M, Katiyar R, Singh S, Mishra A. Chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) protectively modulate the defense mechanism of tomato during bacterial leaf spot (BLS) disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107637. [PMID: 36933507 DOI: 10.1016/j.plaphy.2023.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Herein, the impact of chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) has been evaluated for the protective management of bacterial leaf spot (BLS) disease in tomatoes caused by Xanthomonas campestris (NCIM5028). The Ch@BSNP originated by the Trichoderma viride (MTCC5661) derived extracellular compounds and subsequent chitosan hybridization. Spherical-shaped Ch@BSNP (30-35 nm) treated diseased plants were able to combat the biotic stress, as evidenced by the decreased elevated response of stress markers viz; anthocyanin (34.02%), proline (45.00%), flavonoids (20.26%), lipid peroxidation (10.00%), guaiacol peroxidase (36.58%), ascorbate peroxidase (41.50%), polyphenol oxidase (25.34%) and phenylalanine ammonia-lyase (2.10 fold) as compared to untreated diseased plants. Increased biochemical content specifically sugar (15.43%), phenolics (49.10%), chlorophyll, and carotenoids were measured in Ch@BSNP-treated diseased plants compared to untreated X. campestris-infested plants. The Ch@BSNP considerably reduced stress by increasing net photosynthetic rate and water use efficiency along with decreased transpiration rate and stomatal conductance in comparison to infected plants. Additionally, the expression of defense-regulatory genes viz; growth responsive (AUX, GH3, SAUR), early defense responsive (WRKYTF22, WRKY33, NOS1), defense responsive (PR1, NHO1, NPR1), hypersensitivity responsive (Pti, RbohD, OXI1) and stress hormones responsive (MYC2, JAR1, ERF1) were found to be upregulated in diseased plants while being significantly downregulated in Ch@BSNP-treated diseased plants. Furthermore, fruits obtained from pathogen-compromised plants treated with Ch@BSNP had higher levels of health-promoting compounds including lycopene and beta-carotene than infected plant fruits. This nano-enabled and environmentally safer crop protection strategy may encourage a sustainable agri-system towards the world's growing food demand and promote food security.
Collapse
Affiliation(s)
- Ved Prakash Giri
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Department of Botany, Lucknow University, Hasanganj, Lucknow, 226007, India
| | - Shipra Pandey
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Navinit Kumar
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhuree Kumari
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Ratna Katiyar
- Department of Botany, Lucknow University, Hasanganj, Lucknow, 226007, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Kanakari E, Dendrinou-Samara C. Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2388. [PMID: 36984268 PMCID: PMC10052108 DOI: 10.3390/ma16062388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The development of effective and ecofriendly agrochemicals, including bactericides, fungicides, insecticides, and nematicides, to control pests and prevent plant diseases remains a key challenge. Nanotechnology has provided opportunities for the use of nanomaterials as components in the development of anti-phytopathogenic agents. Indeed, inorganic-based nanoparticles (INPs) are among the promising ones. They may play an effective role in targeting and killing microbes via diverse mechanisms, such as deposition on the microbe surface, destabilization of cell walls and membranes by released metal ions, and the induction of a toxic mechanism mediated by the production of reactive oxygen species. Considering the lack of new agrochemicals with novel mechanisms of action, it is of particular interest to determine and precisely depict which types of INPs are able to induce antimicrobial activity with no phytotoxicity effects, and which microbe species are affected. Therefore, this review aims to provide an update on the latest advances in research focusing on the study of several types of engineered INPs, that are well characterized (size, shape, composition, and surface features) and show promising reactivity against assorted species (bacteria, fungus, virus). Since effective strategies for plant protection and plant disease management are urgently needed, INPs can be an excellent alternative to chemical agrochemical agents as indicated by the present studies.
Collapse
|
19
|
Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, Xiao J, Chaskar M, Kai G, Patil R. Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. NANO-MICRO LETTERS 2023; 15:54. [PMID: 36795339 PMCID: PMC9935810 DOI: 10.1007/s40820-023-01025-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/14/2023]
Abstract
Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Shivraj Hariram Nile
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589, Berlin, Germany
| | - Dirk Rothenstein
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manohar Chaskar
- Faculty of Science and Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
20
|
Giri VP, Shukla P, Tripathi A, Verma P, Kumar N, Pandey S, Dimkpa CO, Mishra A. A Review of Sustainable Use of Biogenic Nanoscale Agro-Materials to Enhance Stress Tolerance and Nutritional Value of Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:815. [PMID: 36840163 PMCID: PMC9967242 DOI: 10.3390/plants12040815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Climate change is more likely to have a detrimental effect on the world's productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are wreaking havoc on human health, especially in rural regions of less developed countries. This could be because plants are unable to absorb the nutrients in conventional fertilizers, or these fertilizers have an inappropriate or unbalanced nutrient composition. Chemical fertilizers have been used for centuries and have considerably increased crop yields. However, they also disrupt soil quality and structure, eventually impacting the entire ecosystem. To address the situation, it is necessary to develop advanced materials that can release nutrients to targeted points in the plant-soil environment or appropriate receptors on the leaf in the case of foliar applications. Recently, nanotechnology-based interventions have been strongly encouraged to meet the world's growing food demand and to promote food security in an environmentally friendly manner. Biological approaches for the synthesis of nanoscale agro-materials have become a promising area of research, with a wide range of product types such as nanopesticides, nanoinsecticides, nanoherbicides, nanobactericides/fungicides, bio-conjugated nanocomplexes, and nanoemulsions emerging therefrom. These materials are more sustainable and target-oriented than conventional agrochemicals. In this paper, we reviewed the literature on major abiotic and biotic stresses that are detrimental to plant growth and productivity. We comprehensively discussed the different forms of nanoscale agro-materials and provided an overview of biological approaches in nano-enabled strategies that can efficiently alleviate plant biotic and abiotic stresses while potentially enhancing the nutritional values of plants.
Collapse
Affiliation(s)
- Ved Prakash Giri
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Department of Botany, Lucknow University, Hasanganj, Lucknow 226007, India
| | - Pallavi Shukla
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Tripathi
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Verma
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Navinit Kumar
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shipra Pandey
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Christian O. Dimkpa
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N. Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159639. [PMID: 36283520 DOI: 10.1016/j.scitotenv.2022.159639] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
The potential of nanotechnology for the development of sustainable agriculture has been promising. The initiatives to meet the rising food needs of the rapidly growing world population are mainly powered by sustainable agriculture. Nanoparticles are used in agriculture due to their distinct physicochemical characteristics. The interaction of nanomaterials with soil components is strongly determined in terms of soil quality and plant growth. Numerous research has been carried out to investigate how nanoparticles affect the growth and development of plants. Nanotechnology has been applied to improve the quality and reduce post-harvest loss of agricultural products by extending their shelf life, particularly for fruits and vegetables. This review assesses the latest literature on nanotechnology, which is used as a nano-biofertilizer as seen in the agricultural field for high productivity and better growth of plants, an important source of balanced nutrition for the crop, seed germination, and quality enrichment. Additionally, post-harvest food processing and packaging can benefit greatly from the use of nanotechnology to cut down on food waste and contamination. It also critically discusses the mechanisms involved in nanoparticle absorption and translocation within the plants and the synthesis of green nanoparticles.
Collapse
Affiliation(s)
- Mohammad Haris
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Touseef Hussain
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Division. of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Amir Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Moh Sajid Ansari
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Atirah Tauseef
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Abrar Ahmad Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51418, Saudi Arabia
| |
Collapse
|
22
|
Wang J, Cao X, Wang C, Chen F, Feng Y, Yue L, Wang Z, Xing B. Fe-Based Nanomaterial-Induced Root Nodulation Is Modulated by Flavonoids to Improve Soybean ( Glycine max) Growth and Quality. ACS NANO 2022; 16:21047-21062. [PMID: 36479882 DOI: 10.1021/acsnano.2c08753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Innovative technology to increase efficient nitrogen (N) use while avoiding environmental damages is needed because of the increasing food demand of the rapidly growing global population. Soybean (Glycine max) has evolved a complex symbiosis with N-fixing bacteria that forms nodules to fix N. Herein, foliar application of 10 mg L-1 Fe7(PO4)6 and Fe3O4 nanomaterials (NMs) (Fe-based NMs) promoted soybean growth and root nodulation, thus improving the yield and quality over that of the unexposed control, EDTA-control, and 1 and 5 mg L-1 NMs. Mechanistically, flavonoids, key signaling molecules at the initial signaling steps in nodulation, were increased by more than 20% upon exposure to 10 mg L-1 Fe-based NMs, due to enhanced key enzyme (phenylalanine ammonia-lyase, PAL) activity and up-regulation of flavonoid biosynthetic genes (GmPAL, GmC4H, Gm4CL, and GmCHS). Accumulated flavonoids were secreted to the rhizosphere, recruiting rhizobia for colonization. Fe7(PO4)6 NMs increased Allorhizobium by 87.3%, and Fe3O4 NMs increased Allorhizobium and Mesorhizobium by 142.2% and 34.9%, leading to increased root nodules by 50.0% and 35.4% over the unexposed control, respectively. Leghemoglobin content was also noticeably improved by 8.2-46.5% upon Fe-based NMs. The higher levels of nodule number and leghemoglobin content resulted in enhanced N content by 15.5-181.2% during the whole growth period. Finally, the yield (pod number and grain biomass) and quality (flavonoids, soluble protein, and elemental nutrients) were significantly increased more than 14% by Fe-based NMs. Our study provides an effective nanoenabled strategy for inducing root nodules to increase N use efficiency, and then both yield and quality of soybean.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Yan Feng
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
23
|
Cow dung extract mediated green synthesis of zinc oxide nanoparticles for agricultural applications. Sci Rep 2022; 12:20371. [PMID: 36437253 PMCID: PMC9701797 DOI: 10.1038/s41598-022-22099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, zinc oxide nanoparticles (ZnO) were synthesized using cow dung extract to apply sustainable agriculture from rural resources. Studies on their antibacterial potential against E. coli DH 5 alpha indicated lower antimicrobial activities than the bulk Zn and commercial Zn nanoparticles. Compared with control and commercial ZnO nanoparticles, the maximum seed germination, root length, and shoot length were observed after the priming of synthesized ZnO NPs. This study suggests that ZnO may significantly increase seed germination and have lower antimicrobial potential. Further, the lower in-vitro cellular leakage and reactive oxygen species (ROS) production provided new hope for using cow dung extract mediated nanoparticles for agricultural and industrial applications.
Collapse
|
24
|
Farooq T, Akram MN, Hameed A, Ahmed T, Hameed A. Nanopriming-mediated memory imprints reduce salt toxicity in wheat seedlings by modulating physiobiochemical attributes. BMC PLANT BIOLOGY 2022; 22:540. [PMID: 36414951 PMCID: PMC9682780 DOI: 10.1186/s12870-022-03912-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Around the globe, salinity is one of the serious environmental stresses which negatively affect rapid seed germination, uniform seedling establishment and plant developments restricting sustainable agricultural productivity. In recent years, the concepts of sustainable agriculture and cleaner production strategy have emphasized the introduction of greener agrochemicals using biocompatible and natural sources to maximize crop yield with minimum ecotoxicological effects. Over the last decade, the emergence of nanotechnology as a forefront of interdisciplinary science has introduced nanomaterials as fast-acting plant growth-promoting agents. RESULTS Herein, we report the preparation of nanocomposite using chitosan and green tea (CS-GTE NC) as an ecofriendly nanopriming agent to elicit salt stress tolerance through priming imprints. The CS-GTE NC-primed (0.02, 0.04 and 0.06%), hydroprimed and non-primed (control) wheat seeds were germinated under normal and salt stress (150 mM NaCl) conditions. The seedlings developed from aforesaid seeds were used for physiological, biochemical and germination studies. The priming treatments increased protein contents (10-12%), photosynthetic pigments (Chl a (4-6%), Chl b (34-36%), Total Chl (7-14%) and upregulated the machinery of antioxidants (CAT (26-42%), POD (22-43%)) in wheat seedlings under stress conditions. It also reduced MDA contents (65-75%) and regulated ROS production resulting in improved membrane stability. The priming-mediated alterations in biochemical attributes resulted in improved final germination (20-22%), vigor (4-11%) and germination index (6-13%) under both conditions. It reduced mean germination time significantly, establishing the stress-insulating role of the nanocomposite. The improvement of germination parameters validated the stimulation of priming memory in composite-treated seeds. CONCLUSION Pre-treatment of seeds with nanocomposite enables them to counter salinity at the seedling development stage by means of priming memory warranting sustainable plant growth and high crop productivity.
Collapse
Affiliation(s)
- Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Amjad Hameed
- Plant Breeding & Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
25
|
Zinc- and magnesium-doped hydroxyapatite-urea nanohybrids enhance wheat growth and nitrogen uptake. Sci Rep 2022; 12:19506. [PMID: 36376430 PMCID: PMC9663570 DOI: 10.1038/s41598-022-20772-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The ongoing and unrestrained application of nitrogen fertilizer to agricultural lands has been directly linked to climate change and reductions in biodiversity. The agricultural sector needs a technological upgrade to adopt sustainable methods for maintaining high yield. We report synthesis of zinc and magnesium doped and undoped hydroxyapatite nanoparticles, and their urea nanohybrids, to sustainably deliver nitrogen to wheat. The urea nanohybrids loaded with up to 42% nitrogen were used as a new source of nitrogen and compared with a conventional urea-based fertilizer for efficient and sufficient nitrogen delivery to pot-grown wheat. Doping with zinc and magnesium manipulated the hydroxyapatite crystallinity for smaller size and higher nitrogen loading capacity. Interestingly, 50% and 25% doses of urea nanohybrids significantly boosted the wheat growth and yield compared with 100% doses of urea fertilizer. In addition, the nutritional elements uptake and grain protein and phospholipid levels were significantly enhanced in wheat treated with nanohybrids. These results demonstrate the potential of the multi-nutrient complexes, the zinc and magnesium doped and undoped hydroxyapatite-urea nanoparticles, as nitrogen delivery agents that reduce nitrogen inputs by at least 50% while maintaining wheat plant growth and nitrogen uptake to the same level as full-dose urea treatments.
Collapse
|
26
|
Xie N, Gross AD. Muscarinic acetylcholine receptor activation synergizes the knockdown and toxicity of GABA-gated chloride channel insecticides. PEST MANAGEMENT SCIENCE 2022; 78:4599-4607. [PMID: 35841135 PMCID: PMC9805118 DOI: 10.1002/ps.7079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Pest management requires continual identification of new physiological targets and strategies to control pests affecting agriculture and public/animal health. We propose the muscarinic system as a target for agrochemicals because of its physiological importance. Unlike the muscarinic system, gamma-amino butyric acid (GABA) receptors are an established insecticide target. Here, we investigated target-site synergism using small molecule probes (agonist and antagonist) against the muscarinic system and their ability to enhance the toxicity of GABAergic insecticides in Drosophila melanogaster (Meigen). RESULTS Oral delivery of pilocarpine (muscarinic agonist) enhanced the toxicity of dieldrin, fipronil, and lindane, resulting in synergist ratios (SRs) between 4-32-fold (orally delivered) or between 2-67-fold when insecticides were topically applied. The synergism between pilocarpine and the GABA-insecticides was greater than the synergism observed with atropine (muscarinic antagonist), and was greater, or comparable, to the synergism observed with the metabolic inhibitor piperonyl butoxide. In addition to lethality, pilocarpine increased the knockdown of lindane. The mechanism of synergism was also investigated in the central nervous system using extracellular electrophysiology, where pilocarpine (3 μmo/L) lowered the half-maximal inhibitory concentration (IC50 ) of lindane from 1.3 (0.86-1.98) μmol/L to 0.17 (0.14-0.21) μmol/L and fipronil's IC50 from 2.2 (1.54-3.29) μmol/L to 0.56 (0.40-0.77) μmol/L. CONCLUSION Convergence of the cellular function between the muscarinic and GABAergic systems enhanced the insecticidal activity of GABA receptor blocking insecticides through the modulation of the central nervous system (CNS). The future impact of the findings could be the reduction of the active ingredient needed in a formulation with the development of muscarinic synergists. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Na Xie
- Molecular Physiology and Toxicology Laboratory, Department of EntomologyVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Aaron D. Gross
- Molecular Physiology and Toxicology Laboratory, Department of EntomologyVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
- School of Neuroscience, Fralin Life Science Institute, Virginia Polytechnic Institute and State UniversityVirginia Tech Center for Drug Discovery, Center for Emerging Zoonotic and Arthropod‐borne Diseases, and Molecular and Cellular Biology ProgramBlacksburgVAUSA
| |
Collapse
|
27
|
Cui Z, Li Y, Zhang H, Qin P, Hu X, Wang J, Wei G, Chen C. Lighting Up Agricultural Sustainability in the New Era through Nanozymology: An Overview of Classifications and Their Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13445-13463. [PMID: 36226740 DOI: 10.1021/acs.jafc.2c04882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the concept of sustainable agriculture receiving increasing attention from humankind, nanozymes, nanomaterials with enzyme-like activity but higher environmental endurance and longer-term stability than natural enzymes, have enabled agricultural technologies to be reformative, economic, and portable. Benefiting from their multiple catalytic activities and renewable nanocharacteristics, nanozymes can shine in agricultural scenarios using enzyme engineering and nanoscience, acting as sustainable toolboxes to improve agricultural production and reduce the risk to agricultural systems. Herein, we comprehensively discuss the classifications of nanozymes applied in current agriculture, including peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, and laccase-like nanozymes, as well as their biocatalytic mechanisms. Especially, different applications of nanozymes in agriculture are deeply reviewed, covering crop protection and nutrition, agroenvironmental remediation and monitoring, and agroproduct quality monitoring. Finally, the challenges faced by nanozymes in agricultural applications are proposed, and we expect that our review can further enhance agricultural sustainability through nanozymology.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Peiyan Qin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Xiao Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| |
Collapse
|
28
|
Maity D, Gupta U, Saha S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. NANOSCALE 2022; 14:13950-13989. [PMID: 36124943 DOI: 10.1039/d2nr03944c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current agricultural sector is not only in its most vulnerable state but is also becoming a threat to our environment due to expanding population and growing food demands along with worsening climatic conditions. In addition, numerous agrochemicals presently being used as fertilizers and pesticides have low efficiency and high toxicity. However, the rapid growth of nanotechnology has shown great promise to tackle these issues replacing conventional agriculture industries. Since the last decade, nanomaterials especially metal oxide nanoparticles (MONPs) have been attractive for improving agricultural outcomes due to their large surface area, higher chemical/thermal stability and tunable unique physicochemical characteristics. Further, to achieve sustainability, researchers have been extensively working on ecological and cost-effective biological approaches to synthesize MONPs. Hereby, we have elaborated on recent successful biosynthesis methods using various plants/microbes. Furthermore, we have elucidated different mechanisms for the interaction of MONPs with plants, including their uptake/translocation/internalization, photosynthesis, antioxidant activity, and gene alteration, which could revolutionize crop productivity/yield through increased nutrient amount, photosynthesis rate, antioxidative enzyme level, and gene upregulations. Besides, we have briefly discussed about functionalization of MONPs and their application in agricultural-waste-management. We have further illuminated recent developments of various MONPs (Fe2O3/ZnO/CuO/Al2O3/TiO2/MnO2) as nanofertilizers, nanopesticides and antimicrobial agents and their implications for enhanced plant growth and pest/disease management. Moreover, the potential use of MONPs as nanobiosensors for detecting nutrients/pathogens/toxins and safeguarding plant/soil health is also illuminated. Overall, this review attempts to provide a clear insight into the latest advances in biosynthesized MONPs for sustainable crop production, protection and management and their scope in the upcoming future of eco-friendly agricultural nanotechnology.
Collapse
Affiliation(s)
- Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Urvashi Gupta
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
29
|
Nongbet A, Mishra AK, Mohanta YK, Mahanta S, Ray MK, Khan M, Baek KH, Chakrabartty I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192587. [PMID: 36235454 PMCID: PMC9573764 DOI: 10.3390/plants11192587] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
The widespread use of fertilizers is a result of the increased global demand for food. The commonly used chemical fertilizers may increase plant growth and output, but they have deleterious effects on the soil, the environment, and even human health. Therefore, nanofertilizers are one of the most promising solutions or substitutes for conventional fertilizers. These engineered materials are composed of nanoparticles containing macro- and micronutrients that are delivered to the plant rhizosphere in a regulated manner. In nanofertilizers, the essential minerals and nutrients (such as N, P, K, Fe, and Mn) are bonded alone or in combination with nano-dimensional adsorbents. This review discusses the development of nanotechnology-based smart and efficient agriculture using nanofertilizers that have higher nutritional management, owing to their ability to increase the nutrient uptake efficiency. Additionally, the synthesis and mechanism of action of the nanofertilizers are discussed, along with the different types of fertilizers that are currently available. Furthermore, sustainable agriculture can be realised by the targeted delivery and controlled release of nutrients through the application of nanoscale active substances. This paper emphasises the successful development and safe application of nanotechnology in agriculture; however, certain basic concerns and existing gaps in research need to be addressed and resolved.
Collapse
Affiliation(s)
- Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | - Manjit Kumar Ray
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Maryam Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| |
Collapse
|
30
|
Song S, Wan M, Feng W, Tian Y, Jiang X, Luo Y, Shen J. Environmentally Friendly Zr-Based MOF for Pesticide Delivery: Ultrahigh Loading Capacity, pH-Responsive Release, Improved Leaf Affinity, and Enhanced Antipest Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10867-10874. [PMID: 36007159 DOI: 10.1021/acs.langmuir.2c01556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The stimuli responsive pesticide delivery system (PDS) has drawn increasing attention in recent years, a system which can effectively improve the utilization of pesticides. In the current research, we report a pH responsive PDS by using carboxymethyl cellulose (CMC) modified Zr-based metal organic frameworks (UiO-66-NH2) as the nanocarrier for acetamiprid (ATP). UiO-66-NH2-CMC possesses a large surface area and abundant pores, which can effectively load ATP, and the loading rate is as high as 90.79%. Compared with free ATP, the ATP@UiO-66-NH2-CMC nanopesticide exhibits pH responsive controlled release behavior, and the pesticide can sustained release to the medium. In addition, it also shows improved leaf affinity, which makes it easier to wet the leaf surface and improve the utilization of pesticide. Therefore, ATP@UiO-66-NH2-CMC displays better antipest activity against aphids than free ATP does. Meanwhile, ATP@UiO-66-NH2-CMC shows no negative effects on the germination and growth of maize, showing good biosafety. Moreover, the ATP@UiO-66-NH2-CMC nanopesticide does not contain any toxic organic solvents or additives. Therefore, we hope that it can be a suitable candidate for plant protection and sustainable agriculture.
Collapse
Affiliation(s)
- Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Minghui Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenli Feng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Tian
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yi Luo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Basit F, Asghar S, Ahmed T, Ijaz U, Noman M, Hu J, Liang X, Guan Y. Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51281-51297. [PMID: 35614352 DOI: 10.1007/s11356-022-20950-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 05/27/2023]
Abstract
Nutrient fertilization plays a major role in improving crop productivity and maintaining soil fertility. In the last few decades, the productivity of current agricultural practices highly depends on the use of chemical fertilizers. Major drawback of traditional fertilizers is their low crop nutrient use efficiency and high loss into water. Nanomaterial in agriculture is a multipurpose tool for increasing growth, development, and yield of plants. Nanotechnology facilitates the amplifying of agriculture production by reducing relevant losses and improving the input efficiency. Nanotechnology has emerged as an attractive field of research and has various agriculture applications, especially the use of nano-agrochemicals to increase nutrient use efficiency and agricultural yield. Nanofertilizers are more effective as compared to chemical fertilizers due to their cost-efficient, eco-friendly, non-toxic, and more stable in nature. Overall, this chapter focuses on synthesis of nanofertilizers through physical, chemical, and biological methods. This chapter will also explore the use of nano-enabled fertilizers to enhance the nutrient use efficiency for sustainable crop production, and global food safety.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Sana Asghar
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Temoor Ahmed
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Usman Ijaz
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Muhammad Noman
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China.
| |
Collapse
|
32
|
Li Q. Perspectives on Converting Keratin-Containing Wastes Into Biofertilizers for Sustainable Agriculture. Front Microbiol 2022; 13:918262. [PMID: 35794912 PMCID: PMC9251476 DOI: 10.3389/fmicb.2022.918262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Keratin-containing wastes become pollution to the environment if they are not treated properly. On the other hand, these wastes can be converted into value-added products applicable to many fields. Organic fertilizers and biofertilizers are important for sustainable agriculture by providing nutrients to enhance the growth speed of the plant and production. Keratin-containing wastes, therefore, will be an important resource to produce organic fertilizers. Many microorganisms exhibit capabilities to degrade keratins making them attractive to convert keratin-containing wastes into valuable products. In this review, the progress in microbial degradation of keratins is summarized. In addition, perspectives in converting keratin into bio- and organic fertilizers for agriculture are described. With proper treatment, feather wastes which are rich in keratin can be converted into high-value fertilizers to serve as nutrients for plants, reduce environmental pressure and improve the quality of the soil for sustainable agriculture.
Collapse
|
33
|
Kad A, Pundir A, Arya SK, Puri S, Khatri M. Meta-analysis of in-vitro cytotoxicity evaluation studies of zinc oxide nanoparticles: Paving way for safer innovations. Toxicol In Vitro 2022; 83:105418. [PMID: 35724836 DOI: 10.1016/j.tiv.2022.105418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
Nano-based products have shown their daunting presence in several sectors. Among them, Zinc Oxide (ZnO) nanoparticles wangled the reputation of providing "next-generation solutions" and are being utilized in plethora of products. Their widespread application has led to increased exposure of these particles, raising concerns regarding toxicological repercussions to the human health and environment. The diversity, complexity, and heterogeneity in the available literature, along with correlation of befitting attributes, makes it challenging to develop one systematic framework to predict this toxicity. The present study aims at developing predictive modelling framework to tap the prospective features responsible for causing cytotoxicity in-vitro on exposure to ZnO nanoparticles. Rigorous approach was used to mine the information from complete body of evidence published to date. The attributes, features and experimental conditions were systematically extracted to unmask the effect of varied features. 1240 data points from 76 publications were obtained, containing 14 qualitative and quantitative attributes, including physiochemical properties of nanoparticles, cell culture and experimental parameters to perform meta-analysis. For the first time, the efforts were made to investigate the degree of significance of attributes accountable for causing cytotoxicity on exposure to ZnO nanoparticles. We show that in-vitro cytotoxicity is closely related with dose concentration of nanoparticles, followed by exposure time, disease state of the cell line and size of these nanoparticles among other attributes.
Collapse
Affiliation(s)
- Anaida Kad
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Archit Pundir
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India; Wellcome trustTrust/DBT IA Early Career Fellow Panjab University, Chandigarh 160014, India.
| |
Collapse
|
34
|
Silva S, Dias MC, Silva AMS. Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)biotic Stresses? TOXICS 2022; 10:toxics10040172. [PMID: 35448432 PMCID: PMC9033035 DOI: 10.3390/toxics10040172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Abiotic stresses, such as those induced by climatic factors or contaminants, and biotic stresses prompted by phytopathogens and pests inflict tremendous losses in agriculture and are major threats to worldwide food security. In addition, climate changes will exacerbate these factors as well as their negative impact on crops. Drought, salinity, heavy metals, pesticides, and drugs are major environmental problems that need deep attention, and effective and sustainable strategies to mitigate their effects on the environment need to be developed. Besides, sustainable solutions for agrocontrol must be developed as alternatives to conventional agrochemicals. In this sense, nanotechnology offers promising solutions to mitigate environmental stress effects on plants, increasing plant tolerance to the stressor, for the remediation of environmental contaminants, and to protect plants against pathogens. In this review, nano-sized TiO2 (nTiO2) and ZnO (nZnO) are scrutinized, and their potential to ameliorate drought, salinity, and xenobiotics effects in plants are emphasized, in addition to their antimicrobial potential for plant disease management. Understanding the level of stress alleviation in plants by these nanomaterials (NM) and relating them with the application conditions/methods is imperative to define the most sustainable and effective approaches to be adopted. Although broad-spectrum reviews exist, this article provides focused information on nTiO2 and nZnO for improving our understanding of the ameliorative potential that these NM show, addressing the gaps in the literature.
Collapse
Affiliation(s)
- Sónia Silva
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234-370-766
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Artur M. S. Silva
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
35
|
Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Alomary MN, Alshamrani M, Salawi A, Almoshari Y, Ansari MA, Amruthesh KN. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152249. [PMID: 34896497 DOI: 10.1016/j.scitotenv.2021.152249] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 05/27/2023]
Abstract
The main focus of this review is to discuss the current advancement in nano-metallic caused phytotoxicity on living organisms and current challenges in crops. Nanostructured materials provide new tools in agriculture to boost sustainable food production, but the main concern is that large-scale production and release of nanomaterials (NMs) into the ecosystem is a rising threat to the surrounding environment that is an urgent challenge to be addressed. The usage of NMs directly influences the transport pathways within plants, which directly relates to their stimulatory/ inhibitory effects. Because of the unregulated nanoparticles (NMs) exposure to soil, they are adsorbed at the root surface, followed by uptake and inter/intracellular mobility within the plant tissue, while the aerial exposure is taken up by foliage, mostly through cuticles, hydathodes, stigma, stomata, and trichomes, but the actual mode of NMs absorption into plants is still unclear. NMs-plant interactions may have stimulatory or inhibitory effects throughout their life cycle depending on their composition, size, concentration, and plant species. Although many publications on NMs interactions with plants have been reported, the knowledge on their uptake, translocation, and bioaccumulation is still a question to be addressed by the scientific community. One of the critical aspects that must be discovered and understood is detecting NMs in soil and the uptake mechanism in plants. Therefore, the nanopollution in plants has yet to be completely understood regarding its impact on plant health, making it yet another artificial environmental influence of unknown long-term consequences. The present review summarizes the uptake, translocation, and bioaccumulation of NMs in plants, focusing on their inhibitory effects and mechanisms involved within plants.
Collapse
Affiliation(s)
- M Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - H G Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - S Brijesh Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - K N Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
36
|
Grodetskaya TA, Evlakov PM, Fedorova OA, Mikhin VI, Zakharova OV, Kolesnikov EA, Evtushenko NA, Gusev AA. Influence of Copper Oxide Nanoparticles on Gene Expression of Birch Clones In Vitro under Stress Caused by Phytopathogens. NANOMATERIALS 2022; 12:nano12050864. [PMID: 35269352 PMCID: PMC8912387 DOI: 10.3390/nano12050864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Recently, metal oxide nanoparticles (NPs) have attracted attention as promising components for the protection and stimulation of plant microclones in tissue culture in vitro. However, the effect of NPs on the genetic mechanisms underlying plant adaptive responses remains poorly understood. We studied the effect of column-shaped CuO NPs 50 nm in diameter and 70–100 nm in length at a concentration of 0.1–10 mg/L on the development of phytopathogenic fungi Alternaria alternata, Fusarium oxysporum, and Fusarium avenaceum in culture, as well as on the infection of downy birch micro-clones with phytopathogens and the level of genes expression associated with the formation of plant responses to stress induced by microorganisms. CuO NPs effectively suppressed the development of colonies of phytopathogenic fungi A. alternata and F. avenaceum (up to 68.42% inhibition at 10 mg/L CuO NPs) but not the development of a colony of F. oxysporum. Exposure to the NPs caused multidirectional responses at the level of plant genes transcription: 5 mg/L CuO NPs significantly increased the expression level of the LEA8 and MYB46 genes and decreased the expression of DREB2 and PAL. Infection with A. alternata significantly increased the level of MYB46, LEA8, PAL, PR-1, and PR-10 transcripts in birch micro-clones; however, upon exposure to a medium with NPs and simultaneous exposure to a phytopathogen, the expression of the MYB46, PR-1, and PR-10 genes decreased by 5.4 times, which is associated with a decrease in the pathogenic load caused by the effect of NPs and the simultaneous stimulation of clones in vitro. The results obtained can be used in the development of preparations based on copper oxide NPs for disinfection and stimulation of plant phytoimmunity during clonal micropropagation of tree crops.
Collapse
Affiliation(s)
- Tatiana A. Grodetskaya
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Peter M. Evlakov
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
- Correspondence: ; Tel.: +7-9204366589
| | - Olga A. Fedorova
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Vyacheslav I. Mikhin
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Olga V. Zakharova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Evgeny A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Nadezhda A. Evtushenko
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Alexander A. Gusev
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
37
|
Shao C, Zhao H, Wang P. Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. NANO CONVERGENCE 2022; 9:11. [PMID: 35235069 PMCID: PMC8891417 DOI: 10.1186/s40580-022-00302-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
New advances in nanotechnology are driving a wave of technology revolution impacting a broad range of areas in agricultural production. The current work reviews nanopesticides, nano-fabricated fertilizers, and nano activity-based growth promoters reported in the last several years, focusing on mechanisms revealed for preparation and functioning. It appears to us that with many fundamental concepts have been demonstrated over last two decades, new advances in this area continue to expand mainly in three directions, i.e., efficiency improvement, material sustainability and environment-specific stimulation functionalities. It is also evident that environmental and health concerns associated with nano agrochemicals are the primary motivation and focus for most recent work. Challenges and perspectives for future development of nano agrochemicals are also discussed.
Collapse
Affiliation(s)
- Chen Shao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
- School of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Huawei Zhao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
- School of Food Engineering, Ludong University, Yantai, 264025, Shandong, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA.
| |
Collapse
|
38
|
Granetto M, Serpella L, Fogliatto S, Re L, Bianco C, Vidotto F, Tosco T. Natural clay and biopolymer-based nanopesticides to control the environmental spread of a soluble herbicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151199. [PMID: 34699829 DOI: 10.1016/j.scitotenv.2021.151199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In this work a novel nano-formulation is proposed to control leaching and volatilization of a broadly used herbicide, dicamba. Dicamba is subject to significant leaching in soils, due to its marked solubility, and to significant volatilization and vapor drift, with consequent risks for operators and neighbouring crops. Natural, biocompatible, low-cost materials were employed to control its dispersion in the environment: among four tested candidate carriers, a nanosized natural clay (namely, K10 montmorillonite) was selected to adsorb the pesticide, and carboxymethyl cellulose (CMC), a food-grade biodegradable polymer, was employed as a coating agent. The synthesis approach is based on direct adsorption at ambient temperature and pressure, with a subsequent particle coating to increase suspension stability and control pesticide release. The nano-formulation showed a controlled release when diluted to field-relevant concentrations: in tap water, the uncoated K10 released approximately 45% of the total loaded dicamba, and the percentage reduced to less than 30% with coating. CMC also contributed to significantly reduce dicamba losses due to volatilization from treated soils (e.g., in medium sand, 9.3% of dicamba was lost in 24 h from the commercial product, 15.1% from the uncoated nanoformulation, and only 4.5% from the coated one). Moreover, the coated nanoformulation showed a dramatic decrease in mobility in porous media (when injected in a 11.6 cm sand-packed column, 99.3% of the commercial formulation was eluted, compared to 88.4% of the uncoated nanoformulation and only 24.5% of the coated one). Greenhouse tests indicated that the clay-based nanoformulation does not hinder the dicamba efficacy toward target weeds, even though differences were observed depending on the treated species. Despite the small (lab and greenhouse) scale of the tests, these preliminary results suggest a good efficacy of the proposed nanoformulation in controlling the environmental spreading of dicamba, without hindering efficacy toward target species.
Collapse
Affiliation(s)
- Monica Granetto
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luca Serpella
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Silvia Fogliatto
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Lucia Re
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlo Bianco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Francesco Vidotto
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Tiziana Tosco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
39
|
Verma KK, Song XP, Joshi A, Tian DD, Rajput VD, Singh M, Arora J, Minkina T, Li YR. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:173. [PMID: 35010126 PMCID: PMC8746782 DOI: 10.3390/nano12010173] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022]
Abstract
Nano-fertilizers (NFs) significantly improve soil quality and plant growth performance and enhance crop production with quality fruits/grains. The management of macro-micronutrients is a big task globally, as it relies predominantly on synthetic chemical fertilizers which may not be environmentally friendly for human beings and may be expensive for farmers. NFs may enhance nutrient uptake and plant production by regulating the availability of fertilizers in the rhizosphere; extend stress resistance by improving nutritional capacity; and increase plant defense mechanisms. They may also substitute for synthetic fertilizers for sustainable agriculture, being found more suitable for stimulation of plant development. They are associated with mitigating environmental stresses and enhancing tolerance abilities under adverse atmospheric eco-variables. Recent trends in NFs explored relevant agri-technology to fill the gaps and assure long-term beneficial agriculture strategies to safeguard food security globally. Accordingly, nanoparticles are emerging as a cutting-edge agri-technology for agri-improvement in the near future. Interestingly, they do confer stress resistance capabilities to crop plants. The effective and appropriate mechanisms are revealed in this article to update researchers widely.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India;
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
40
|
González-Grandío E, Demirer GS, Jackson CT, Yang D, Ebert S, Molawi K, Keller H, Landry MP. Carbon nanotube biocompatibility in plants is determined by their surface chemistry. J Nanobiotechnology 2021; 19:431. [PMID: 34930290 PMCID: PMC8686619 DOI: 10.1186/s12951-021-01178-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. RESULTS Herein, we characterize the response of Arabidopsis thaliana to single walled carbon nanotube (SWNT) exposure with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that pristine SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this adverse reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. CONCLUSIONS While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We use molecular markers to identify more biocompatible SWNT formulations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement.
Collapse
Affiliation(s)
- Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Gözde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.,Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Christopher T Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Sophia Ebert
- BASF, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Kian Molawi
- BASF, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Harald Keller
- BASF, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute (IGI), Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA. .,Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
41
|
Lima PHCD, Antunes DR, Forini MMDL, Pontes MDS, Mattos BD, Grillo R. Recent Advances on Lignocellulosic-Based Nanopesticides for Agricultural Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.809329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Controlled release systems of agrochemicals have been developed in recent years. However, the design of intelligent nanocarriers that can be manufactured with renewable and low-cost materials is still a challenge for agricultural applications. Lignocellulosic building blocks (cellulose, lignin, and hemicellulose) are ideal candidates to manufacture ecofriendly nanocarriers given their low-cost, abundancy and sustainability. Complexity and heterogeneity of biopolymers have posed challenges in the development of nanocarriers; however, the current engineering toolbox for biopolymer modification has increased remarkably, which enables better control over their properties and tuned interactions with cargoes and plant tissues. In this mini-review, we explore recent advances on lignocellulosic-based nanocarriers for the controlled release of agrochemicals. We also offer a critical discussion regarding the future challenges of potential bio-based nanocarrier for sustainable agricultural development.
Collapse
|
42
|
Neme K, Nafady A, Uddin S, Tola YB. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon 2021; 7:e08539. [PMID: 34934845 PMCID: PMC8661015 DOI: 10.1016/j.heliyon.2021.e08539] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
Ensuring food security in developing countries is highly challenging due to low productivity of the agriculture sector, degradation of natural resources, high post farming losses, less or no value addition, and high population growth. Researchers are striving to adopt newer technologies to enhance supply to narrow the food demand gap. Nanotechnology is one of the promising technologies that could improve agricultural productivity via nano fertilizers, use of efficient herbicides and pesticides, soil feature regulation, wastewater management, and pathogen detection. It is equally beneficial for industrial food processing with enhanced food production with excellent market value, elevated nutritional and sensing property, improved safety, and better antimicrobial protection. Nanotechnology can also reduce post-farming losses by increasing the shelf life with the aid of nanoparticles. However, further investigation is required to solve the safety and health risks associated with the technology.
Collapse
Affiliation(s)
- Kumera Neme
- Department of Food and Nutritional Sciences, College of Agriculture, Wollega University, Box 38, Shambu, Ethiopia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Siraj Uddin
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Center, University of Karachi, 75270, Pakistan
| | - Yetenayet B. Tola
- Department of Food Science and Postharvest Technology, Jimma University College of Agriculture & Veterinary Medicine, Box 307, Jimma, Ethiopia
| |
Collapse
|
43
|
Liu C, Zhou H, Zhou J. The Applications of Nanotechnology in Crop Production. Molecules 2021; 26:7070. [PMID: 34885650 PMCID: PMC8658860 DOI: 10.3390/molecules26237070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/26/2023] Open
Abstract
With the frequent occurrence of extreme climate, global agriculture is confronted with unprecedented challenges, including increased food demand and a decline in crop production. Nanotechnology is a promising way to boost crop production, enhance crop tolerance and decrease the environmental pollution. In this review, we summarize the recent findings regarding innovative nanotechnology in crop production, which could help us respond to agricultural challenges. Nanotechnology, which involves the use of nanomaterials as carriers, has a number of diverse applications in plant growth and crop production, including in nanofertilizers, nanopesticides, nanosensors and nanobiotechnology. The unique structures of nanomaterials such as high specific surface area, centralized distribution size and excellent biocompatibility facilitate the efficacy and stability of agro-chemicals. Besides, using appropriate nanomaterials in plant growth stages or stress conditions effectively promote plant growth and increase tolerance to stresses. Moreover, emerging nanotools and nanobiotechnology provide a new platform to monitor and modify crops at the molecular level.
Collapse
Affiliation(s)
- Chenxu Liu
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
| | - Hui Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
44
|
Skiba E, Pietrzak M, Glińska S, Wolf WM. The Combined Effect of ZnO and CeO 2 Nanoparticles on Pisum sativum L.: A Photosynthesis and Nutrients Uptake Study. Cells 2021; 10:3105. [PMID: 34831328 PMCID: PMC8624121 DOI: 10.3390/cells10113105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| |
Collapse
|
45
|
Kah M, Johnston LJ, Kookana RS, Bruce W, Haase A, Ritz V, Dinglasan J, Doak S, Garelick H, Gubala V. Comprehensive framework for human health risk assessment of nanopesticides. NATURE NANOTECHNOLOGY 2021; 16:955-964. [PMID: 34518657 DOI: 10.1038/s41565-021-00964-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nanopesticides are not only in an advanced state of research and development but have started to appear on the market. Industry and regulatory agencies need a consolidated and comprehensive framework and guidance for human health risk assessments. In this perspective we develop such a comprehensive framework by exploring two case studies from relevant product types: an active ingredient delivered with a nanocarrier system, and a nanoparticle as an active ingredient. For a nanocarrier system, three entities are tracked during the assessment: the nanocarrier-active ingredient complex, the empty nanocarrier remaining after the complete release of the active ingredient, and the released active ingredient. For the nanoparticle of pure active ingredient, only two entities are relevant: the nanoparticle and the released ions. We suggest important adaptations of the existing pesticide framework to determine the relevant nanopesticide entities and their concentrations for toxicity testing. Depending on the nature of the nanopesticides, additional data requirements, such as those pertaining to durability in biological media and potential for crossing biological barriers, have also been identified. Overall, our framework suggests a tiered approach for human health risk assessment, which is applicable for a range of nanopesticide products to support regulators and industry in making informed decisions on nanopesticide submissions. Brief summaries of suitable methods including references to existing standards (if available) have been included together with an analysis of current knowledge gaps. Our study is an important step towards a harmonized approach accepted by regulatory agencies for assessing nanopesticides.
Collapse
Affiliation(s)
- Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand.
| | - Linda J Johnston
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rai S Kookana
- CSIRO, Glen Osmond, South Australia, Australia
- University of Adelaide, Glen Osmond, South Australia, Australia
| | - Wendy Bruce
- Health Evaluation Directorate, Health Canada's Pest Management Regulatory Agency, Ottawa, Ontario, Canada
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Vera Ritz
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Shareen Doak
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Hemda Garelick
- Department of Natural Science, Faculty of Technology, Middlesex University, London, UK
| | - Vladimir Gubala
- Medway School of Pharmacy, University of Kent, Chatham Maritime, UK
| |
Collapse
|
46
|
Maiuolo L, Olivito F, Algieri V, Costanzo P, Jiritano A, Tallarida MA, Tursi A, Sposato C, Feo A, De Nino A. Synthesis, Characterization and Mechanical Properties of Novel Bio-Based Polyurethane Foams Using Cellulose-Derived Polyol for Chain Extension and Cellulose Citrate as a Thickener Additive. Polymers (Basel) 2021; 13:2802. [PMID: 34451341 PMCID: PMC8400649 DOI: 10.3390/polym13162802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
A novel series of bio-based polyurethane composite foams was prepared, employing a cellulose-derived polyol for chain extension and cellulose-citrate as a thickener additive. The utilized polyol was obtained from the reduction reaction of cellulose-derived bio-oil through the use of sodium borohydride and iodine. Primarily, we produced both rigid and flexible polyurethane foams through chain extension of the prepolymers. Secondly, we investigated the role of cellulose citrate as a polyurethane additive to improve the mechanical properties of the realized composite materials. The products were characterized by FT-IR spectroscopy and their morphologies were analysed by SEM. Mechanical tests were evaluated to open new perspectives towards different applications.
Collapse
Affiliation(s)
- Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Matteo Antonio Tallarida
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Corradino Sposato
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Ionica, km 419 + 500, 75026 Rotondella, MT, Italy; (C.S.); (A.F.)
| | - Andrea Feo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Ionica, km 419 + 500, 75026 Rotondella, MT, Italy; (C.S.); (A.F.)
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| |
Collapse
|