1
|
Urbanczyk M, Abuhelou A, Köninger M, Jeyagaran A, Carvajal-Berrio D, Kim E, Marzi J, Loskill P, Layland SL, Schenke-Layland K. Heterogeneity of Endothelial Cells Impacts the Functionality of Human Pancreatic In Vitro Models. Tissue Eng Part A 2024. [PMID: 39453887 DOI: 10.1089/ten.tea.2024.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Endothelial cells (ECs) play a crucial role in maintaining tissue homeostasis and functionality. Depending on their tissue of origin, ECs can be highly heterogeneous regarding their morphology, gene and protein expression, functionality, and signaling pathways. Understanding the interaction between organ-specific ECs and their surrounding tissue is therefore critical when investigating tissue homeostasis, disease development, and progression. In vitro models often lack organ-specific ECs, potentially limiting the translatability and validity of the obtained results. The goal of this study was to assess the differences between commonly used EC sources in tissue engineering applications, including human umbilical vein ECs (HUVECs), human dermal microvascular ECs (hdmvECs), and human foreskin microvascular ECs (hfmvECs), and organ-specific human pancreatic microvascular ECs (hpmvECs), and test their impact on functionality within an in vitro pancreas test system used for diabetes research. Utilizing high-resolution Raman microspectroscopy and Raman imaging in combination with established protein and gene expression analyses and exposure to defined physical signals within microfluidic cultures, we identified that ECs exhibit significant differences in their biochemical composition, relevant protein expression, angiogenic potential, and response to the application of mechanical shear stress. Proof-of-concept results showed that the coculture of isolated human islets of Langerhans with hpmvECs significantly increased the functionality when compared with control islets and islets cocultured with HUVECs. Our study demonstrates that the choice of EC type significantly impacts the experimental results, which needs to be considered when implementing ECs into in vitro models.
Collapse
Affiliation(s)
- Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Athar Abuhelou
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marie Köninger
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Carvajal-Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ellie Kim
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
- Institute of Biomedical Engineering, Department for Microphysiological Systems, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Women's Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
| |
Collapse
|
2
|
Mote N, Kubik S, Polacheck WJ, Baker BM, Trappmann B. A nanoporous hydrogel-based model to study chemokine gradient-driven angiogenesis under luminal flow. LAB ON A CHIP 2024; 24:4892-4906. [PMID: 39308400 DOI: 10.1039/d4lc00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The growth of new blood vessels through angiogenesis is a highly coordinated process, which is initiated by chemokine gradients that activate endothelial cells within a perfused parent vessel to sprout into the surrounding 3D tissue matrix. While both biochemical signals from pro-angiogenic factors, as well as mechanical cues originating from luminal fluid flow that exerts shear stress on the vessel wall, have individually been identified as major regulators of endothelial cell sprouting, it remains unclear whether and how both types of cues synergize. To fill this knowledge gap, here, we created a 3D biomimetic model of chemokine gradient-driven angiogenic sprouting, in which a micromolded tube inside a hydrogel matrix is seeded with endothelial cells and connected to a perfusion system to control fluid flow rates and resulting shear forces on the vessel wall. To allow for the formation of chemokine gradients despite the presence of luminal flow, a nanoporous synthetic hydrogel that supports angiogenesis but limits the interstitial flow proved crucial. Using this system, we find that luminal flow and resulting shear stress is a major regulator of the speed and morphogenesis of angiogenic sprouting, whose action is mediated through changes in vascular permeability.
Collapse
Affiliation(s)
- Nidhi Mote
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Sarah Kubik
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI, 48109 USA
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.
| |
Collapse
|
3
|
Ma T, Liu X, Su H, Shi Q, He Y, Wu F, Gao C, Li K, Liang Z, Zhang D, Zhang X, Hu K, Li S, Wang L, Wang M, Yue S, Hong W, Chen X, Zhang J, Zheng L, Deng X, Wang P, Fan Y. Coupling of Perinuclear Actin Cap and Nuclear Mechanics in Regulating Flow-Induced Yap Spatiotemporal Nucleocytoplasmic Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305867. [PMID: 38161226 PMCID: PMC10953556 DOI: 10.1002/advs.202305867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Mechanical forces, including flow shear stress, govern fundamental cellular processes by modulating nucleocytoplasmic transport of transcription factors like Yes-associated Protein (YAP). However, the underlying mechanical mechanism remains elusive. In this study, it is reported that unidirectional flow induces biphasic YAP transport with initial nuclear import, followed by nuclear export as actin cap formation and nuclear stiffening. Conversely, pathological oscillatory flow induces slight actin cap formation, nuclear softening, and sustained YAP nuclear localization. To elucidate the disparately YAP spatiotemporal distribution, a 3D mechanochemical model is developed, which integrates flow sensing, cytoskeleton organization, nucleus mechanotransduction, and YAP transport. The results unveiled that despite the significant localized nuclear stress imposed by the actin cap, its inherent stiffness counteracts the dispersed contractile stress exerted by conventional fibers on the nuclear membrane. Moreover, alterations in nuclear stiffness synergistically regulate nuclear deformation, thereby governing YAP transport. Furthermore, by expanding the single-cell model to a collective vertex framework, it is revealed that the irregularities in actin cap formation within individual cells have the potential to induce topological defects and spatially heterogeneous YAP distribution in the cellular monolayer. This work unveils a unified mechanism of flow-induced nucleocytoplasmic transport, providing a linkage between transcription factor localization and mechanical stimulation.
Collapse
Affiliation(s)
- Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Haoran Su
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yuan He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Fan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Chenxing Gao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Kexin Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zhuqing Liang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Dongrui Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Ke Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Shangyu Li
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Li Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Min Wang
- Department of Gynecology and ObstetricsStrategic Support Force Medical CenterBeijing100101China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Weili Hong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xun Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Pu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
- School of Engineering MedicineBeihang UniversityBeijing100083China
| |
Collapse
|
4
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
5
|
Yu Y, Leng Y, Song X, Mu J, Ma L, Yin L, Zheng Y, Lu Y, Li Y, Qiu X, Zhu H, Li J, Wang D. Extracellular Matrix Stiffness Regulates Microvascular Stability by Controlling Endothelial Paracrine Signaling to Determine Pericyte Fate. Arterioscler Thromb Vasc Biol 2023; 43:1887-1899. [PMID: 37650330 DOI: 10.1161/atvbaha.123.319119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The differentiation of pericytes into myofibroblasts causes microvascular degeneration, ECM (extracellular matrix) accumulation, and tissue stiffening, characteristics of fibrotic diseases. It is unclear how pericyte-myofibroblast differentiation is regulated in the microvascular environment. Our previous study established a novel 2-dimensional platform for coculturing microvascular endothelial cells (ECs) and pericytes derived from the same tissue. This study investigated how ECM stiffness regulated microvascular ECs, pericytes, and their interactions. METHODS Primary microvessels were cultured in the TGM2D medium (tubular microvascular growth medium on 2-dimensional substrates). Stiff ECM was prepared by incubating ECM solution in regular culture dishes for 1 hour followed by PBS wash. Soft ECM with Young modulus of ≈6 kPa was used unless otherwise noted. Bone grafts were prepared from the rat skull. Immunostaining, RNA sequencing, RT-qPCR (real-time quantitative polymerase chain reaction), Western blotting, and knockdown experiments were performed on the cells. RESULTS Primary microvascular pericytes differentiated into myofibroblasts (NG2+αSMA+) on stiff ECM, even with the TGFβ (transforming growth factor beta) signaling inhibitor A83-01. Soft ECM and A83-01 cooperatively maintained microvascular stability while inhibiting pericyte-myofibroblast differentiation (NG2+αSMA-/low). We thus defined 2 pericyte subpopulations: primary (NG2+αSMA-/low) and activated (NG2+αSMA+) pericytes. Soft ECM promoted microvascular regeneration and inhibited fibrosis in bone graft transplantation in vivo. As integrins are the major mechanosensor, we performed RT-qPCR screening of integrin family members and found Itgb1 (integrin β1) was the major subunit downregulated by soft ECM and A83-01 treatment. Knocking down Itgb1 suppressed myofibroblast differentiation on stiff ECM. Interestingly, ITGB1 phosphorylation (Y783) was mainly located on microvascular ECs on stiff ECM, which promoted EC secretion of paracrine factors, including CTGF (connective tissue growth factor), to induce pericyte-myofibroblast differentiation. CTGF knockdown or monoclonal antibody treatment partially reduced myofibroblast differentiation, implying the participation of multiple pathways in fibrosis formation. CONCLUSIONS ECM stiffness and TGFβ signaling cooperatively regulate microvascular stability and pericyte-myofibroblast differentiation. Stiff ECM promotes EC ITGB1 phosphorylation (Y783) and CTGF secretion, which induces pericyte-myofibroblast differentiation.
Collapse
Affiliation(s)
- Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- College of Life Sciences and School of Pharmacy, Medical College, Qingdao University, China (J.M.)
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
| | - Lin Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Yu Zheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Yi Lu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Yuanming Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y. Li, X.Q.)
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y. Li, X.Q.)
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
- Shandong Provincial Institute of Cancer Prevention, Jinan, China (D.W.)
| |
Collapse
|
6
|
Motlana MK, Ngoepe MN. Computational Fluid Dynamics (CFD) Model for Analysing the Role of Shear Stress in Angiogenesis in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7886. [PMID: 37175591 PMCID: PMC10178063 DOI: 10.3390/ijms24097886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterised by an attack on healthy cells in the joints. Blood flow and wall shear stress are crucial in angiogenesis, contributing to RA's pathogenesis. Vascular endothelial growth factor (VEGF) regulates angiogenesis, and shear stress is a surrogate for VEGF in this study. Our objective was to determine how shear stress correlates with the location of new blood vessels and RA progression. To this end, two models were developed using computational fluid dynamics (CFD). The first model added new blood vessels based on shear stress thresholds, while the second model examined the entire blood vessel network. All the geometries were based on a micrograph of RA blood vessels. New blood vessel branches formed in low shear regions (0.840-1.260 Pa). This wall-shear-stress overlap region at the junctions was evident in all the models. The results were verified quantitatively and qualitatively. Our findings point to a relationship between the development of new blood vessels in RA, the magnitude of wall shear stress and the expression of VEGF.
Collapse
Affiliation(s)
- Malaika K. Motlana
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malebogo N. Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
7
|
Konopka J, Kołodziejek D, Flont M, Żuchowska A, Jastrzębska E, Brzózka Z. Exploring Endothelial Expansion on a Chip. SENSORS (BASEL, SWITZERLAND) 2022; 22:9414. [PMID: 36502120 PMCID: PMC9741423 DOI: 10.3390/s22239414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Angiogenesis is the development of new blood vessels from the existing vasculature. Its malfunction leads to the development of cancers and cardiovascular diseases qualified by the WHO as a leading cause of death worldwide. A better understanding of mechanisms regulating physiological and pathological angiogenesis will potentially contribute to developing more effective treatments for those urgent issues. Therefore, the main goal of the following study was to design and manufacture an angiogenesis-on-a-chip microplatform, including cylindrical microvessels created by Viscous Finger Patterning (VFP) technique and seeded with HUVECs. While optimizing the VFP procedure, we have observed that lumen's diameter decreases with a diminution of the droplet's volume. The influence of Vascular Endothelial Growth Factor (VEGF) with a concentration of 5, 25, 50, and 100 ng/mL on the migration of HUVECs was assessed. VEGF's solution with concentrations varying from 5 to 50 ng/mL reveals high angiogenic potential. The spatial arrangement of cells and their morphology were visualized by fluorescence and confocal microscopy. Migration of HUVECs toward loaded angiogenic stimuli has been initiated after overnight incubation. This research is the basis for developing more complex vascularized multi-organ-on-a-chip microsystems that could potentially be used for drug screening.
Collapse
Affiliation(s)
- Joanna Konopka
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
| | - Dominik Kołodziejek
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
| | - Magdalena Flont
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warszawa, Poland
| | - Agnieszka Żuchowska
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
| | - Elżbieta Jastrzębska
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warszawa, Poland
| | - Zbigniew Brzózka
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
| |
Collapse
|
8
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
9
|
Laschke MW, Gu Y, Menger MD. Replacement in angiogenesis research: Studying mechanisms of blood vessel development by animal-free in vitro, in vivo and in silico approaches. Front Physiol 2022; 13:981161. [PMID: 36060683 PMCID: PMC9428454 DOI: 10.3389/fphys.2022.981161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis, the development of new blood vessels from pre-existing ones, is an essential process determining numerous physiological and pathological conditions. Accordingly, there is a high demand for research approaches allowing the investigation of angiogenic mechanisms and the assessment of pro- and anti-angiogenic therapeutics. The present review provides a selective overview and critical discussion of such approaches, which, in line with the 3R principle, all share the common feature that they are not based on animal experiments. They include in vitro assays to study the viability, proliferation, migration, tube formation and sprouting activity of endothelial cells in two- and three-dimensional environments, the degradation of extracellular matrix compounds as well as the impact of hemodynamic forces on blood vessel formation. These assays can be complemented by in vivo analyses of microvascular network formation in the chorioallantoic membrane assay and early stages of zebrafish larvae. In addition, the combination of experimental data and physical laws enables the mathematical modeling of tissue-specific vascularization, blood flow patterns, interstitial fluid flow as well as oxygen, nutrient and drug distribution. All these animal-free approaches markedly contribute to an improved understanding of fundamental biological mechanisms underlying angiogenesis. Hence, they do not only represent essential tools in basic science but also in early stages of drug development. Moreover, their advancement bears the great potential to analyze angiogenesis in all its complexity and, thus, to make animal experiments superfluous in the future.
Collapse
|
10
|
A Review of Functional Analysis of Endothelial Cells in Flow Chambers. J Funct Biomater 2022; 13:jfb13030092. [PMID: 35893460 PMCID: PMC9326639 DOI: 10.3390/jfb13030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers are known as parallel plate, T-chamber, step, cone plate, and stretch. The stimulated functions or signals from endothelial cells by flows are extensively connected to other outer layers of arteries or organs. The coculture layer was developed in a chamber to investigate the interaction between smooth muscle cells in the middle layer of the blood vessel wall in vascular physiology and pathology. Additionally, the microfabrication technology used to create a chamber for a microfluidic device involves both mechanical and chemical stimulation of cells to show their dynamics in in vivo microenvironments. The purpose of this study is to summarize the blood flow (flow inducing) for the functions connecting to endothelial cells and blood vessels, and to find directions for future chamber and device developments for further understanding and application of vascular functions. The relationship between chamber design flow, cell layers, and microfluidics was studied.
Collapse
|
11
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Zohar B, Debbi L, Machour M, Nachum N, Redenski I, Epshtein M, Korin N, Levenberg S. A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks. Acta Biomater 2022; 163:182-193. [PMID: 35597433 DOI: 10.1016/j.actbio.2022.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Vascularization of 3D engineered tissues poses a great challenge in the field of tissue engineering. One promising approach for vascularizing engineered tissue is cocultivation with endothelial cells (ECs), which spontaneously self-assemble into a natural capillary network in the presence of supportive cells. However, the ECs do not self-assemble according to physiological hierarchy which is required to support blood supply. This work describes the design and fabrication of an AngioTube, a biodegradable engineered macro-vessel surrounded by cylindrical micro-channel array, which is designed to support physiological flow distribution and enable the integration with living capillaries. The well-defined geometry of the engineered micro-channels guides endothelial cells to form patent micro-vessels which sprouted in accordance with the channel orientation. Three different in-vitro models were used to demonstrate anastomosis of these engineered micro-vessels with self-assembled vascular networks. Finally, in-vivo functionality was demonstrated by direct anastomosis with the femoral artery in a rat hindlimb model. This unique approach proposes a new micro-fabrication strategy which introduces uncompromised micro-fluidic device geometrical accuracy at the tissue-scale level. STATEMENT OF SIGNIFICANCE: This study proposes a micro-fabrication strategy suitable for processing real-scale cylindrical implants with very high accuracy, which will enable translation of the high-resolution geometry of micro-fluidic devices to clinically relevant implants containing functional multi-scale vascular networks. Moreover, this approach promises to advance the field of tissue engineering by opening new opportunities to explore the impact of well controlled and uncompromised 3D micro-geometry on cellular behavior.
Collapse
Affiliation(s)
- Barak Zohar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Lior Debbi
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Majd Machour
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Netta Nachum
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Idan Redenski
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Netanel Korin
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology.
| |
Collapse
|
13
|
Abstract
Much of the current research into immune escape from cancer is focused on molecular and cellular biology, an area of biophysics that is easily overlooked. A large number of immune drugs entering the clinic are not effective for all patients. Apart from the molecular heterogeneity of tumors, the biggest reason for this may be that knowledge of biophysics has not been considered, and therefore an exploration of biophysics may help to address this challenge. To help researchers better investigate the relationship between tumor immune escape and biophysics, this paper provides a brief overview on recent advances and challenges of the biophysical factors and strategies by which tumors acquire immune escape and a comprehensive analysis of the relevant forces acting on tumor cells during immune escape. These include tumor and stromal stiffness, fluid interstitial pressure, shear stress, and viscoelasticity. In addition, advances in biophysics cannot be made without the development of detection tools, and this paper also provides a comprehensive summary of the important detection tools available at this stage in the field of biophysics.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Shen L, Song X, Xu Y, Tian R, Wang Y, Li P, Li J, Bai H, Zhu H, Wang D. Patterned vascularization in a directional ice-templated scaffold of decellularized matrix. Eng Life Sci 2021; 21:683-692. [PMID: 34690638 PMCID: PMC8518570 DOI: 10.1002/elsc.202100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Vascularization is fundamental for large-scale tissue engineering. Most of the current vascularization strategies including microfluidics and three-dimensional (3D) printing aim to precisely fabricate microchannels for individual microvessels. However, few studies have examined the remodeling capacity of the microvessels in the engineered constructs, which is important for transplantation in vivo. Here we present a method for patterning microvessels in a directional ice-templated scaffold of decellularized porcine kidney extracellular matrix. The aligned microchannels made by directional ice templating allowed for fast and efficient cell seeding. The pure decellularized matrix without any fixatives or cross-linkers maximized the potential of tissue remodeling. Dramatical microvascular remodeling happened in the scaffold in 2 weeks, from small primary microvessel segments to long patterned microvessels. The majority of the microvessels were aligned in parallel and interconnected with each other to form a network. This method is compatible with other engineering techniques, such as microfluidics and 3D printing, and multiple cell types can be co-cultured to make complex vascularized tissue and organ models.
Collapse
Affiliation(s)
- Li Shen
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityMedical CollegeQingdao UniversityQingdaoP. R. China
- School of Basic MedicineQingdao UniversityQingdaoP. R. China
| | - Xiuyue Song
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityMedical CollegeQingdao UniversityQingdaoP. R. China
| | - Yalan Xu
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityMedical CollegeQingdao UniversityQingdaoP. R. China
| | - Runhua Tian
- Department of Clinical LaboratoryThe Affiliated Hospital of Qingdao UniversityQingdaoP. R. China
| | - Yin Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityMedical CollegeQingdao UniversityQingdaoP. R. China
| | - Peifeng Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityMedical CollegeQingdao UniversityQingdaoP. R. China
| | - Jing Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityMedical CollegeQingdao UniversityQingdaoP. R. China
| | - Hao Bai
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouP. R. China
| | - Hai Zhu
- Department of UrologyQingdao Municipal Hospital Affiliated to Qingdao UniversityQingdaoP. R. China
| | - Dong Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityMedical CollegeQingdao UniversityQingdaoP. R. China
| |
Collapse
|