1
|
Lefevre A, Brandi C, De Ninno A, Ruggiero F, Verona E, Gauthier M, Bisegna P, Bolopion A, Caselli F. Real-time impedance-activated dielectrophoretic actuation for reconfigurable manipulation of single flowing particles. LAB ON A CHIP 2024. [PMID: 39440403 DOI: 10.1039/d4lc00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This work presents an innovative all-electrical platform for selective single-particle manipulation. The platform combines microfluidic impedance cytometry for label-free particle characterization and dielectrophoresis for contactless multi-way particle separation. The microfluidic chip has a straightforward coplanar electrode layout and no particle pre-focusing mechanism is required. An original online algorithm analyzes the impedance signals of each incoming particle and regulates in real time the dielectrophoretic voltages according to a desired control logic. As a proof-of-concept, three operation modes are demonstrated on a mixture of 8, 10, and 12 μm diameter beads: (i) particle position swapping across the channel axis, irrespective of particle size, (ii) size-based particle separation, irrespective of particle position, and (iii) sorting of a selected sequence of particles. As a perspective, the versatility of impedance cytometry and dielectrophoresis, and the possibility of configuring alternative control logics, hold promise for advanced particle and cell manipulation.
Collapse
Affiliation(s)
- Alexis Lefevre
- Université de Franche-Comté, CNRS, SUPMICROTECH-ENSMM, Institute FEMTO-ST, F-25000 Besançon, France
| | - Cristian Brandi
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - Adele De Ninno
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Filippo Ruggiero
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Enrico Verona
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Michaël Gauthier
- Université de Franche-Comté, CNRS, SUPMICROTECH-ENSMM, Institute FEMTO-ST, F-25000 Besançon, France
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - Aude Bolopion
- Université de Franche-Comté, CNRS, SUPMICROTECH-ENSMM, Institute FEMTO-ST, F-25000 Besançon, France
| | - Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
2
|
Swami P, Anand S, Holani A, Gupta S. Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21907-21930. [PMID: 39385605 DOI: 10.1021/acs.langmuir.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Conventional approaches for bacterial cell analysis are hindered by lengthy processing times and tedious protocols that rely on gene amplification and cell culture. Impedance spectroscopy has emerged as a promising tool for efficient real-time bacterial monitoring, owing to its simple, label-free nature and cost-effectiveness. However, its limited practical applications in real-world scenarios pose a significant challenge. In this review, we provide a comprehensive study of impedance spectroscopy and its practical utilization in bacterial system measurements. We begin by outlining the fundamentals of impedance theory and modeling, specific to bacterial systems. We then offer insights into various strategies for bacterial cell detection and discuss the role of impedance spectroscopy in antimicrobial susceptibility testing (AST) and single-cell analysis. Additionally, we explore key aspects of impedance system design, including the influence of electrodes, media, and cell enrichment techniques on the sensitivity, specificity, detection speed, concentration accuracy, and cost-effectiveness of current impedance biosensors. By combining different biosensor design parameters, impedance theory, and detection principles, we propose that impedance applications can be expanded to point-of-care diagnostics, enhancing their practical utility. This Perspective focuses exclusively on ideally polarizable (fully capacitive) electrodes, excluding any consideration of charge transfer resulting from Faradaic reactions.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Anurag Holani
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| |
Collapse
|
3
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Jia Z, Chang C, Hu S, Li J, Ge M, Dong W, Ma H. Artificial intelligence-enabled multipurpose smart detection in active-matrix electrowetting-on-dielectric digital microfluidics. MICROSYSTEMS & NANOENGINEERING 2024; 10:139. [PMID: 39327430 PMCID: PMC11427566 DOI: 10.1038/s41378-024-00765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 09/28/2024]
Abstract
An active-matrix electrowetting-on-dielectric (AM-EWOD) system integrates hundreds of thousands of active electrodes for sample droplet manipulation, which can enable simultaneous, automatic, and parallel on-chip biochemical reactions. A smart detection system is essential for ensuring a fully automatic workflow and online programming for the subsequent experimental steps. In this work, we demonstrated an artificial intelligence (AI)-enabled multipurpose smart detection method in an AM-EWOD system for different tasks. We employed the U-Net model to quantitatively evaluate the uniformity of the applied droplet-splitting methods. We used the YOLOv8 model to monitor the droplet-splitting process online. A 97.76% splitting success rate was observed with 18 different AM-EWOD chips. A 99.982% model precision rate and a 99.980% model recall rate were manually verified. We employed an improved YOLOv8 model to detect single-cell samples in nanolitre droplets. Compared with manual verification, the model achieved 99.260% and 99.193% precision and recall rates, respectively. In addition, single-cell droplet sorting and routing experiments were demonstrated. With an AI-based smart detection system, AM-EWOD has shown great potential for use as a ubiquitous platform for implementing true lab-on-a-chip applications.
Collapse
Affiliation(s)
- Zhiqiang Jia
- College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun, Jilin Province, 130022, PR China
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Chunyu Chang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Jiahao Li
- ACX Instruments Ltd, Cambridge, CB4 0WS, UK
| | - Mingfeng Ge
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
| | - Wenfei Dong
- College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun, Jilin Province, 130022, PR China.
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China.
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China.
- ACX Instruments Ltd, Cambridge, CB4 0WS, UK.
| |
Collapse
|
5
|
Wang C, Qiu J, Liu M, Wang Y, Yu Y, Liu H, Zhang Y, Han L. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401263. [PMID: 38767182 PMCID: PMC11267386 DOI: 10.1002/advs.202401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Single-cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in-depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single-cell isolation, which is crucial for single-cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high-throughput single-cell isolation and real-time single-cell analysis on- or off-chip. Therefore, most current single-cell isolation and analysis technologies are based on the single-cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single-cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single-cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single-cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single-cell isolation and multiomic and exosome analyses.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Jiaoyan Qiu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Mengqi Liu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yihe Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yang Yu
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinan250100China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Yu Zhang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Lin Han
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence ApplicationJinan250100China
| |
Collapse
|
6
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
7
|
Brandi C, De Ninno A, Ruggiero F, Limiti E, Abbruzzese F, Trombetta M, Rainer A, Bisegna P, Caselli F. On the compatibility of single-cell microcarriers (nanovials) with microfluidic impedance cytometry. LAB ON A CHIP 2024; 24:2883-2892. [PMID: 38717432 DOI: 10.1039/d4lc00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We investigate for the first time the compatibility of nanovials with microfluidic impedance cytometry (MIC). Nanovials are suspendable crescent-shaped single-cell microcarriers that enable specific cell adhesion, the creation of compartments for undisturbed cell growth and secretion, as well as protection against wall shear stress. MIC is a label-free single-cell technique that characterizes flowing cells based on their electrical fingerprints and it is especially targeted to cells that are naturally in suspension. Combining nanovial technology with MIC is intriguing as it would represent a robust framework for the electrical analysis of single adherent cells at high throughput. Here, as a proof-of-concept, we report the MIC analysis of mesenchymal stromal cells loaded in nanovials. The electrical analysis is supported by numerical simulations and validated by means of optical analysis. We demonstrate that the electrical diameter can discriminate among free cells, empty nanovials, cell-loaded nanovials, and clusters, thus grounding the foundation for the use of nanovials in MIC. Furthermore, we investigate the potentiality of MIC to assess the electrical phenotype of cells loaded in nanovials and we draw directions for future studies.
Collapse
Affiliation(s)
- Cristian Brandi
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - Adele De Ninno
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Filippo Ruggiero
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Emanuele Limiti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Franca Abbruzzese
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Marcella Trombetta
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
- National Research Council - Institute of Nanotechnology (CNR-NANOTEC), c/o Campus Ecotekne, 73100 Lecce, Italy
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
8
|
Kokabi M, Tayyab M, Rather GM, Pournadali Khamseh A, Cheng D, DeMauro EP, Javanmard M. Integrating optical and electrical sensing with machine learning for advanced particle characterization. Biomed Microdevices 2024; 26:25. [PMID: 38780704 PMCID: PMC11116188 DOI: 10.1007/s10544-024-00707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Particle classification plays a crucial role in various scientific and technological applications, such as differentiating between bacteria and viruses in healthcare applications or identifying and classifying cancer cells. This technique requires accurate and efficient analysis of particle properties. In this study, we investigated the integration of electrical and optical features through a multimodal approach for particle classification. Machine learning classifier algorithms were applied to evaluate the impact of combining these measurements. Our results demonstrate the superiority of the multimodal approach over analyzing electrical or optical features independently. We achieved an average test accuracy of 94.9% by integrating both modalities, compared to 66.4% for electrical features alone and 90.7% for optical features alone. This highlights the complementary nature of electrical and optical information and its potential for enhancing classification performance. By leveraging electrical sensing and optical imaging techniques, our multimodal approach provides deeper insights into particle properties and offers a more comprehensive understanding of complex biological systems.
Collapse
Affiliation(s)
- Mahtab Kokabi
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Muhammad Tayyab
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Gulam M Rather
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - Daniel Cheng
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Edward P DeMauro
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
10
|
Dahal N, Peak C, Ehrett C, Osterberg J, Cao M, Divan R, Wang P. Microwave Flow Cytometric Detection and Differentiation of Escherichia coli. SENSORS (BASEL, SWITZERLAND) 2024; 24:2870. [PMID: 38732977 PMCID: PMC11086155 DOI: 10.3390/s24092870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Label-free measurement and analysis of single bacterial cells are essential for food safety monitoring and microbial disease diagnosis. We report a microwave flow cytometric sensor with a microstrip sensing device with reduced channel height for bacterial cell measurement. Escherichia coli B and Escherichia coli K-12 were measured with the sensor at frequencies between 500 MHz and 8 GHz. The results show microwave properties of E. coli cells are frequency-dependent. A LightGBM model was developed to classify cell types at a high accuracy of 0.96 at 1 GHz. Thus, the sensor provides a promising label-free method to rapidly detect and differentiate bacterial cells. Nevertheless, the method needs to be further developed by comprehensively measuring different types of cells and demonstrating accurate cell classification with improved machine-learning techniques.
Collapse
Affiliation(s)
- Neelima Dahal
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (N.D.); (J.O.)
| | - Caroline Peak
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| | - Carl Ehrett
- Watt Family Innovation Center, Clemson University, Clemson, SC 29634, USA;
| | - Jeffrey Osterberg
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (N.D.); (J.O.)
| | - Min Cao
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Ralu Divan
- Argonne National Laboratory, Chicago, IL 60439, USA;
| | - Pingshan Wang
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (N.D.); (J.O.)
| |
Collapse
|
11
|
Wu G, Zhang Z, Du M, Wu D, Zhou J, Hao T, Xie X. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design. BIOSENSORS 2024; 14:204. [PMID: 38667197 PMCID: PMC11048680 DOI: 10.3390/bios14040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Microfluidic impedance cytometry (MIC) has emerged as a popular technique for single-cell analysis. Traditional MIC electrode designs consist of a pair of (or three) working electrodes, and their detection performance needs further improvements for microorganisms. In this study, we designed an 8-electrode MIC device in which the center pair was defined as the working electrode, and the connection status of bypass electrodes could be changed. This allowed us to compare the performance of layouts with no bypasses and those with floating or grounding electrodes by simulation and experiment. The results of detecting Φ 5 μm beads revealed that both the grounding and the floating electrode outperformed the no bypass electrode, and the grounding electrode demonstrated the best signal-to-noise ratio (SNR), coefficient of variation (CV), and detection sensitivity. Furthermore, the effects of different bypass grounding areas (numbers of grounding electrodes) were investigated. Finally, particles passing at high horizontal positions can be detected, and Φ 1 μm beads can be measured in a wide channel (150 μm) using a fully grounding electrode, with the sensitivity of bead volume detection reaching 0.00097%. This provides a general MIC electrode optimization technology for detecting smaller particles, even macromolecular proteins, viruses, and exosomes in the future.
Collapse
Affiliation(s)
- Guangzu Wu
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Zhiwei Zhang
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Dan Wu
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Junting Zhou
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Tianteng Hao
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Xinwu Xie
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| |
Collapse
|
12
|
Jyoti TP, Chandel S, Singh R. Flow cytometry: Aspects and application in plant and biological science. JOURNAL OF BIOPHOTONICS 2024; 17:e202300423. [PMID: 38010848 DOI: 10.1002/jbio.202300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Flow cytometry is a potent method that enables the quick and concurrent investigation of several characteristics of single cells in solution. Photodiodes or photomultiplier tubes are employed to detect the dispersed and fluorescent light signals that are produced by the laser beam as it passes through the cells. Photodetectors transform the light signals produced by the laser into electrical impulses. A computer then analyses these electrical impulses to identify and measure the various cell populations depending on their fluorescence or light scattering characteristics. Based on their fluorescence or light scattering properties, cell populations can be examined and/or isolated. This review covers the basic principle, components, working and specific biological applications of flow cytometry, including studies on plant, cell and molecular biology and methods employed for data processing and interpretation as well as the potential future relevance of this methodology in light of retrospective analysis and recent advancements in flow cytometry.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
13
|
Secme A, Kucukoglu B, Pisheh HS, Alatas YC, Tefek U, Uslu HD, Kaynak BE, Alhmoud H, Hanay MS. Dielectric Detection of Single Nanoparticles Using a Microwave Resonator Integrated with a Nanopore. ACS OMEGA 2024; 9:7827-7834. [PMID: 38405444 PMCID: PMC10882703 DOI: 10.1021/acsomega.3c07506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024]
Abstract
The characterization of individual nanoparticles in a liquid constitutes a critical challenge for the environmental, material, and biological sciences. To detect nanoparticles, electronic approaches are especially desirable owing to their compactness and lower costs. While electronic detection in the form of resistive-pulse sensing has enabled the acquisition of geometric properties of various analytes, impedimetric measurements to obtain dielectric signatures of nanoparticles have scarcely been reported. To explore this orthogonal sensing modality, we developed an impedimetric sensor based on a microwave resonator with a nanoscale sensing gap surrounding a nanopore built on a 220 nm silicon nitride membrane. The microwave resonator has a coplanar waveguide configuration with a resonance frequency of approximately 6.6 GHz. The approach of single nanoparticles near the sensing region and their translocation through the nanopores induced sudden changes in the impedance of the structure. The impedance changes, in turn, were picked up by the phase response of the microwave resonator. We worked with 100 and 50 nm polystyrene nanoparticles to observe single-particle events. Our current implementation was limited by the nonuniform electric field at the sensing region. This work provides a complementary sensing modality for nanoparticle characterization, where the dielectric response, rather than ionic current, determines the signal.
Collapse
Affiliation(s)
- Arda Secme
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Berk Kucukoglu
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Hadi S. Pisheh
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Yagmur Ceren Alatas
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Uzay Tefek
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Hatice Dilara Uslu
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Batuhan E. Kaynak
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Hashim Alhmoud
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - M. Selim Hanay
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
14
|
Wang T, Fang Q, Huang L. Investigation of geometry-dependent sensing characteristics of microfluidic for single-cell 3D localization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:014102. [PMID: 38197766 DOI: 10.1063/5.0172520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Flow cytometry-based measurement techniques have been widely used for single-cell characterizations, such as impedance, size, and dielectric properties. However, in the measurement process, the reliability of the output measurement signal directly affects the ability of the microsystem to judge the characteristics of single cells. Here, we designed a multiple nonparallel electrode structure for single-cell 3D localization. The performance of the structures was studied by analyzing the changes in electric field strength and the output differential current. The effects of microchannel height, sensing electrode distance, electrode inclination angle, and electrode width on output signals are investigated by analyzing the current change and electric field strength of single cells passing from the center of the microchannel. The numerical simulation results indicate that, when the microchannel height is 20 µm, the distance of the sensing electrodes is 100 µm, the inclination angle is 30°, the electrode width is 20 µm, and the optimal signal quality can be obtained. Reducing the height of the flow channel and shortening the sensing electrode spacing can significantly improve the signal amplitude. When the channel height is 20 µm, the signal intensity increases by 80% than that of 30 µm. The signal intensity of induced current with the sensing electrode spacing of 100 µm is 42% higher than that with the spacing of 120 µm. We analyzed the presence of multiple independent cells and adherent cells in the detection area and demonstrated through simulation that the signal changes caused by multi-cells can be superimposed by multiple single-cell signals. The induced current signal intensity of the same volume of cells with an ellipticity of 1 is 49% lower than that of cells with an ellipticity of 4. Based on the numerical investigation, we expect that the optimal geometry structure design will aid in the development of better performance signal cell impedance cytometry microsystems.
Collapse
Affiliation(s)
- Tan Wang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Fang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Tan H, Chen X, Huang X, Chen D, Qin X, Wang J, Chen J. Electrical micro flow cytometry with LSTM and its application in leukocyte differential. Cytometry A 2024; 105:54-61. [PMID: 37715355 DOI: 10.1002/cyto.a.24791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
This paper developed an electrical micro flow cytometry to realize leukocyte differentials leveraging a constrictional microchannel and a deep neural network. Firstly, purified granulocytes, lymphocytes or monocytes traveled through the constrictional microchannel with a cross-sectional area marginally larger than individual cells and produced large impedance variations by blocking focused electric field lines. By optimizing key elements (e.g., normalization, learning rate, batch size and neuron number) of the recurrent neural network (RNN), electrical results of purified leukocytes were analyzed to establish a leukocyte differential system with a classification accuracy of 95.2%. Then the leukocyte mixtures were forced to travel through the same constrictional microchannel, producing mixed impedance profiles which were classified into granulocytes, lymphocytes and monocytes based on the aforementioned differential system. As to the classification results, two leukocyte mixtures from the same donor were processed, producing comparable classification results, which were 57% versus 59% of granulocytes, 37% versus 34% of lymphocytes and 6% versus 7% of monocytes. These results validated the established classification system based on the constrictional microchannel and the recurrent neural network, providing a new perspective of differentiating white blood cells by electrical flow cytometry.
Collapse
Affiliation(s)
- Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xukun Huang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuzhen Qin
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Zhao W, Shang X, Zhang B, Yuan D, Nguyen BTT, Wu W, Zhang JB, Peng N, Liu AQ, Duan F, Chin LK. Squeezed state in the hydrodynamic focusing regime for Escherichia coli bacteria detection. LAB ON A CHIP 2023; 23:5039-5046. [PMID: 37909299 DOI: 10.1039/d3lc00434a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Flow cytometry is an essential technique in single particle analysis and cell sorting for further downstream diagnosis, exhibiting high-throughput and multiplexing capabilities for many biological and biomedical applications. Although many hydrodynamic focusing-based microfluidic cytometers have been demonstrated with reduced size and cost to adapt to point-of-care settings, the operating conditions are not characterized systematically. This study presents the flow transition process in the hydrodynamic focusing mechanism when the flow rate or the Reynolds number increases. The characteristics of flow fields and mass transport were studied under various operating conditions, including flow rates and microchannel heights. A transition from the squeezed focusing state to the over-squeezed anti-focusing state in the hydrodynamic focusing regime was observed when the Reynolds number increased above 30. Parametric studies illustrated that the focusing width increased with the Reynolds number but decreased with the microchannel height in the over-squeezed state. The microfluidic cytometric analyses using microbeads and E. coli show that the recovery rate was maintained by limiting the Reynolds number to 30. The detailed analysis of the flow transition will provide new insight into microfluidic cytometric analyses with a broad range of applications in food safety, water monitoring and healthcare sectors.
Collapse
Affiliation(s)
- Wenhan Zhao
- Institute State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Xiaopeng Shang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Boran Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Dan Yuan
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Binh Thi Thanh Nguyen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Wenshuai Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Jing Bo Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Niancai Peng
- Institute State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
- Institute of Quantum Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Fei Duan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Lip Ket Chin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
17
|
Mosquera-Ortega M, Rodrigues de Sousa L, Susmel S, Cortón E, Figueredo F. When microplastics meet electroanalysis: future analytical trends for an emerging threat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5978-5999. [PMID: 37921647 DOI: 10.1039/d3ay01448g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Microplastics are a major modern challenge that must be addressed to protect the environment, particularly the marine environment. Microplastics, defined as particles ≤5 mm, are ubiquitous in the environment. Their small size for a relatively large surface area, high persistence and easy distribution in water, soil and air require the development of new analytical methods to monitor their presence. At present, the availability of analytical techniques that are easy to use, automated, inexpensive and based on new approaches to improve detection remains an open challenge. This review aims to outline the evolution and novelties of classical and advanced methods, in particular the recently reported electroanalytical detectors, methods and devices. Among all the studies reviewed here, we highlight the great advantages of electroanalytical tools over spectroscopic and thermal analysis, especially for the rapid and accurate detection of microplastics in the sub-micron range. Finally, the challenges faced in the development of automated analytical methods are discussed, highlighting recent trends in artificial intelligence (AI) in microplastics analysis.
Collapse
Affiliation(s)
- Mónica Mosquera-Ortega
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Basic Science Department, Faculty Regional General Pacheco, National Technological University, Argentina
| | - Lucas Rodrigues de Sousa
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiania, Brazil
| | - Sabina Susmel
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Eduardo Cortón
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Department of Biosciences and Bioengineering, Indian Institute of Technology at Guwahati, Assam, India
| | - Federico Figueredo
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
| |
Collapse
|
18
|
Tang T, Julian T, Ma D, Yang Y, Li M, Hosokawa Y, Yalikun Y. A review on intelligent impedance cytometry systems: Development, applications and advances. Anal Chim Acta 2023; 1269:341424. [PMID: 37290859 DOI: 10.1016/j.aca.2023.341424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Impedance cytometry is a well-established technique for counting and analyzing single cells, with several advantages, such as convenience, high throughput, and no labeling required. A typical experiment consists of the following steps: single-cell measurement, signal processing, data calibration, and particle subtype identification. At the beginning of this article, we compared commercial and self-developed options extensively and provided references for developing reliable detection systems, which are necessary for cell measurement. Then, a number of typical impedance metrics and their relationships to biophysical properties of cells were analyzed with respect to the impedance signal analysis. Given the rapid advances of intelligent impedance cytometry in the past decade, this article also discussed the development of representative machine learning-based approaches and systems, and their applications in data calibration and particle identification. Finally, the remaining challenges facing the field were summarized, and potential future directions for each step of impedance detection were discussed.
Collapse
Affiliation(s)
- Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan; Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Trisna Julian
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan
| | - Doudou Ma
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, PR China
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2109, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan; Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Troiano C, De Ninno A, Casciaro B, Riccitelli F, Park Y, Businaro L, Massoud R, Mangoni ML, Bisegna P, Stella L, Caselli F. Rapid Assessment of Susceptibility of Bacteria and Erythrocytes to Antimicrobial Peptides by Single-Cell Impedance Cytometry. ACS Sens 2023. [PMID: 37421371 PMCID: PMC10391704 DOI: 10.1021/acssensors.3c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Antimicrobial peptides (AMPs) represent a promising class of compounds to fight antibiotic-resistant infections. In most cases, they kill bacteria by making their membrane permeable and therefore exhibit low propensity to induce bacterial resistance. In addition, they are often selective, killing bacteria at concentrations lower than those at which they are toxic to the host. However, clinical applications of AMPs are hindered by a limited understanding of their interactions with bacteria and human cells. Standard susceptibility testing methods are based on the analysis of the growth of a bacterial population and therefore require several hours. Moreover, different assays are required to assess the toxicity to host cells. In this work, we propose the use of microfluidic impedance cytometry to explore the action of AMPs on both bacteria and host cells in a rapid manner and with single-cell resolution. Impedance measurements are particularly well-suited to detect the effects of AMPs on bacteria, due to the fact that the mechanism of action involves perturbation of the permeability of cell membranes. We show that the electrical signatures of Bacillus megaterium cells and human red blood cells (RBCs) reflect the action of a representative antimicrobial peptide, DNS-PMAP23. In particular, the impedance phase at high frequency (e.g., 11 or 20 MHz) is a reliable label-free metric for monitoring DNS-PMAP23 bactericidal activity and toxicity to RBCs. The impedance-based characterization is validated by comparison with standard antibacterial activity assays and absorbance-based hemolytic activity assays. Furthermore, we demonstrate the applicability of the technique to a mixed sample of B. megaterium cells and RBCs, which paves the way to study AMP selectivity for bacterial versus eukaryotic cells in the presence of both cell types.
Collapse
Affiliation(s)
- Cassandra Troiano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, 00133 Rome, Italy
| | - Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Riccitelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yoonkyung Park
- Department of Biomedical Science, College of Natural science, Chosun University, Gwangju 61452, Republic of Korea
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, 00133 Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
20
|
Fang Q, Feng Y, Zhu J, Huang L, Wang W. Floating-Electrode-Enabled Impedance Cytometry for Single-Cell 3D Localization. Anal Chem 2023; 95:6374-6382. [PMID: 36996369 DOI: 10.1021/acs.analchem.2c05822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
As a label-free, low-cost, and noninvasive tool, impedance measurement has been widely used in single-cell characterization analysis. However, due to the tiny volume of cells, the uncertainty of the spatial position in the microchannel will bring measurement errors in single-cell electrical parameters. To overcome the issue, we designed a novel microdevice configured with a coplanar differential electrode structure to accurately resolve the spatial position of single cells without constraining techniques such as additional sheath fluids or narrow microchannels. The device precisely localizes single cells by measuring the induced current generated by the combined action of the floating electrode and the differential electrodes when single cells flow through the electrode-sensing area. The device was experimentally validated by measuring 6 μm yeast cells and 10 μm particles, achieving spatial localization with a resolution down to 2.1 μm (about 5.3% of the channel width) in lateral direction and 1.2 μm (about 5.9% of the channel height) in the vertical direction at a flow rate of 1.2 μL/min. In addition, by comparing measurement of yeast cells and particles, it was demonstrated that the device not only localizes the single cells or particles but also simultaneously characterizes their status properties such as velocity and size. The device offers a competitive electrode configuration in impedance cytometry with the advantages of simple structure, low cost, and high throughput, promising cell localization and thus electrical characterization.
Collapse
Affiliation(s)
- Qiang Fang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongxiang Feng
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Junwen Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wenhui Wang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Nguyen TH, Nguyen HA, Tran Thi YV, Hoang Tran D, Cao H, Chu Duc T, Bui TT, Do Quang L. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Analyst 2023; 148:1912-1929. [PMID: 36928639 DOI: 10.1039/d2an02027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Microfluidic cytometry (MC) and electrical impedance spectroscopy (EIS) are two important techniques in biomedical engineering. Microfluidic cytometry has been utilized in various fields such as stem cell differentiation and cancer metastasis studies, and provides a simple, label-free, real-time method for characterizing and monitoring cellular fates. The impedance microdevice, including impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS), is integrated into MC systems. IFC measures the impedance of individual cells as they flow through a microfluidic device, while EIS measures impedance changes during binding events on electrode regions. There have been significant efforts to improve and optimize these devices for both basic research and clinical applications, based on the concepts, electrode configurations, and cell fates. This review outlines the theoretical concepts, electrode engineering, and data analytics of these devices, and highlights future directions for development.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | | | - Y-Van Tran Thi
- University of Science, Vietnam National University, Hanoi, Vietnam.
| | | | - Hung Cao
- University of California, Irvine, USA
| | - Trinh Chu Duc
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Tung Thanh Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Loc Do Quang
- University of Science, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
22
|
Recent advances in non-optical microfluidic platforms for bioparticle detection. Biosens Bioelectron 2023; 222:114944. [PMID: 36470061 DOI: 10.1016/j.bios.2022.114944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.
Collapse
|
23
|
Yang B, Wang C, Liang X, Li J, Li S, Wu JJ, Su T, Li J. Label-Free Sensing of Cell Viability Using a Low-Cost Impedance Cytometry Device. MICROMACHINES 2023; 14:407. [PMID: 36838107 PMCID: PMC9963508 DOI: 10.3390/mi14020407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/20/2023]
Abstract
Cell viability is an essential physiological status for drug screening. While cell staining is a conventional cell viability analysis method, dye staining is usually cytotoxic. Alternatively, impedance cytometry provides a straightforward and label-free sensing approach for the assessment of cell viability. A key element of impedance cytometry is its sensing electrodes. Most state-of-the-art electrodes are made of expensive metals, microfabricated by lithography, with a typical size of ten microns. In this work, we proposed a low-cost microfluidic impedance cytometry device with 100-micron wide indium tin oxide (ITO) electrodes to achieve a comparable performance to the 10-micron wide Au electrodes. The effectiveness was experimentally verified as 7 μm beads can be distinguished from 10 μm beads. To the best of our knowledge, this is the lowest geometry ratio of the target to the sensing unit in the impedance cytometry technology. Furthermore, a cell viability test was performed on MCF-7 cells. The proposed double differential impedance cytometry device has successfully differentiated the living and dead MCF-7 cells with a throughput of ~1000 cells/s. The label-free and low-cost, high-throughput impedance cytometry could benefit drug screening, fundamental biological research and other biomedical applications.
Collapse
Affiliation(s)
- Bowen Yang
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chao Wang
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinyi Liang
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jinchao Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shanshan Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300132, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37919, USA
| | - Tanbin Su
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
24
|
Eades J, Audiffred JF, Fincher M, Choi JW, Soper SA, Monroe WT. A Simple Micromilled Microfluidic Impedance Cytometer with Vertical Parallel Electrodes for Cell Viability Analysis. MICROMACHINES 2023; 14:283. [PMID: 36837983 PMCID: PMC9959585 DOI: 10.3390/mi14020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 05/18/2023]
Abstract
Microfluidic impedance cytometry has been demonstrated as an effective platform for single cell analysis, taking advantage of microfabricated features and dielectric cell sensing methods. In this study, we present a simple microfluidic device to improve the sensitivity, accuracy, and throughput of single suspension cell viability analysis using vertical sidewall electrodes fabricated by a widely accessible negative manufacturing method. A microchannel milled through a 75 µm platinum wire, which was embedded into poly-methyl-methacrylate (PMMA), created a pair of parallel vertical sidewall platinum electrodes. Jurkat cells were interrogated in a custom low-conductivity buffer (1.2 ± 0.04 mS/cm) to reduce current leakage and increase device sensitivity. Confirmed by live/dead staining and electron microscopy, a single optimum excitation frequency of 2 MHz was identified at which live and dead cells were discriminated based on the disruption in the cell membrane associated with cell death. At this frequency, live cells were found to exhibit changes in the impedance phase with no appreciable change in magnitude, while dead cells displayed the opposite behavior. Correlated with video microscopy, a computational algorithm was created that could identify cell detection events and determine cell viability status by application of a mathematical correlation method.
Collapse
Affiliation(s)
- Jason Eades
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Julianne F. Audiffred
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Micah Fincher
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jin-Woo Choi
- Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, Lawrence, KS 66044, USA
- Center of Biomodular Multiscale Systems for Precision Medicine, University of Kansas, Lawrence, KS 66044, USA
| | - William Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
26
|
Xiang N, Ni Z. Inertial microfluidics: current status, challenges, and future opportunities. LAB ON A CHIP 2022; 22:4792-4804. [PMID: 36263793 DOI: 10.1039/d2lc00722c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inertial microfluidics uses the hydrodynamic effects induced at finite Reynolds numbers to achieve passive manipulation of particles, cells, or fluids and offers the advantages of high-throughput processing, simple channel geometry, and label-free and external field-free operation. Since its proposal in 2007, inertial microfluidics has attracted increasing interest and is currently widely employed as an important sample preparation protocol for single-cell detection and analysis. Although great success has been achieved in the inertial microfluidics field, its performance and outcome can be further improved. From this perspective, herein, we reviewed the current status, challenges, and opportunities of inertial microfluidics concerning the underlying physical mechanisms, available simulation tools, channel innovation, multistage, multiplexing, or multifunction integration, rapid prototyping, and commercial instrument development. With an improved understanding of the physical mechanisms and the development of novel channels, integration strategies, and commercial instruments, improved inertial microfluidic platforms may represent a new foundation for advancing biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
27
|
Priyadarshi N, Abbasi U, Kumaran V, Chowdhury P. A new approach for accurate determination of particle sizes in microfluidic impedance cytometry. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In microfluidic impedance cytometry, the change in impedance is recorded as an individual cell passes through a channel between electrodes deposited on its walls, and the particle size is inferred from the amplitude of the impedance signal using calibration. However, because the current density is nonuniform between electrodes of finite width, there could be an error in the particle size measurement because of uncertainty about the location of the particle in the channel cross section. Here, a correlation is developed relating the particle size to the signal amplitude and the velocity of the particle through the channel. The latter is inferred from the time interval between the two extrema in the impedance curve as the particle passes through a channel with cross-sectional dimensions of 50 μm (width) × 30 μm (height) with two pairs of parallel facing electrodes. The change in impedance is predicted using 3D COMSOL finite-element simulations, and a theoretical correlation that is independent of particle size is formulated to correct the particle diameter for variations in the cross-sectional location. With this correlation, the standard deviation in the experimental data is reduced by a factor of two to close to the standard deviation reported in the manufacturer specifications.
Collapse
Affiliation(s)
- N. Priyadarshi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - U. Abbasi
- Pratimesh Laboratory, Indian Institute of Science, Bangalore 560012, India
| | - V. Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - P. Chowdhury
- Nanomaterials Research Laboratory, Surface Engineering Division, CSIR–National Aerospace Laboratories, Bangalore 560017, India
| |
Collapse
|
28
|
Han J, Liu S, Wang Z, Wu Y. Micro/nanofluidic-electrochemical biosensors for in situ tumor cell analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Liu X, Tang T, Yi PW, Yuan Y, Lei C, Li M, Tanaka Y, Hosokawa Y, Yalikun Y. Identification of Single Yeast Budding Using Impedance Cytometry with a Narrow Electrode Span. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207743. [PMID: 36298094 PMCID: PMC9609181 DOI: 10.3390/s22207743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/10/2023]
Abstract
Impedance cytometry is wildly used in single-cell detection, and its sensitivity is essential for determining the status of single cells. In this work, we focus on the effect of electrode gap on detection sensitivity. Through comparing the electrode span of 1 µm and 5 µm, our work shows that narrowing the electrode span could greatly improve detection sensitivity. The mechanism underlying the sensitivity improvement was analyzed via numerical simulation. The small electrode gap (1 µm) allows the electric field to concentrate near the detection area, resulting in a high sensitivity for tiny particles. This finding is also verified with the mixture suspension of 1 µm and 3 µm polystyrene beads. As a result, the electrodes with 1 µm gap can detect more 1 µm beads in the suspension than electrodes with 5 µm gap. Additionally, for single yeast cells analysis, it is found that impedance cytometry with 1 µm electrodes gap can easily distinguish budding yeast cells, which cannot be realized by the impedance cytometry with 5 µm electrodes gap. All experimental results support that narrowing the electrode gap is necessary for tiny particle detection, which is an important step in the development of submicron and nanoscale impedance cytometry.
Collapse
Affiliation(s)
- Xun Liu
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| | - Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| | - Po-Wei Yi
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yapeng Yuan
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2109, Australia
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| |
Collapse
|
30
|
Label-Free Microfluidic Impedance Cytometry for Acrosome Integrity Assessment of Boar Spermatozoa. BIOSENSORS 2022; 12:bios12090679. [PMID: 36140064 PMCID: PMC9496365 DOI: 10.3390/bios12090679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Microfluidics and lab-on-chip technologies have been used in a wide range of biomedical applications. They are known as versatile, rapid, and low-cost alternatives for expensive equipment and time-intensive processing. The veterinary industry and human fertility clinics could greatly benefit from label-free and standardized methods for semen analysis. We developed a tool to determine the acrosome integrity of spermatozoa using microfluidic impedance cytometry. Spermatozoa from boars were treated with the calcium ionophore A23187 to induce acrosome reaction. The magnitude, phase and opacity of individual treated and non-treated (control) spermatozoa were analyzed and compared to conventional staining for acrosome integrity. The results show that the opacity at 19 MHz over 0.5 MHz is associated with acrosome integrity with a cut-off threshold at 0.86 (sensitivity 98%, specificity 97%). In short, we have demonstrated that acrosome integrity can be determined using opacity, illustrating that microfluidic impedance cytometers have the potential to become a versatile and efficient alternative in semen analysis and for fertility treatments in the veterinary industry and human fertility clinics.
Collapse
|
31
|
DiSalvo M, Patrone PN, Kearsley AJ, Cooksey GA. Serial flow cytometry in an inertial focusing optofluidic microchip for direct assessment of measurement variations. LAB ON A CHIP 2022; 22:3217-3228. [PMID: 35856829 DOI: 10.1039/d1lc01169c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flow cytometry is an invaluable technology in biomedical research, but confidence in single-cell measurements remains limited due to a lack of appropriate techniques for uncertainty quantification (UQ). It is particularly challenging to evaluate the potential for different instrumentation designs or operating parameters to influence the measurement physics in ways that change measurement repeatability. Here, we report a direct experimental approach to UQ using a serial flow cytometer that measured each particle more than once along a flow path. The instrument was automated for real-time characterization of measurement precision and operated with particle velocities exceeding 1 m s-1, throughputs above 100 s-1, and analysis yields better than 99.9%. These achievements were enabled by a novel hybrid inertial and hydrodynamic particle focuser to tightly control particle positions and velocities. The cytometer identified ideal flow conditions with fluorescence area measurement precision on the order of 1% and characterized tradeoffs between precision, throughput, and analysis yield. The serial cytometer is anticipated to improve single-cell measurements through estimation (and subsequent control) of uncertainty contributions from various other instrument parameters leading to overall improvements in the ability to better classify sample composition and to find rare events.
Collapse
Affiliation(s)
- Matthew DiSalvo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Paul N Patrone
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Anthony J Kearsley
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gregory A Cooksey
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| |
Collapse
|
32
|
Sheng F, Jia RP. The design basis and application in urology of the tumor-on-a-chip platform. Urol Oncol 2022; 40:331-342. [DOI: 10.1016/j.urolonc.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
33
|
Caselli F, Reale R, De Ninno A, Spencer D, Morgan H, Bisegna P. Deciphering impedance cytometry signals with neural networks. LAB ON A CHIP 2022; 22:1714-1722. [PMID: 35353108 DOI: 10.1039/d2lc00028h] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.
Collapse
Affiliation(s)
- Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - Riccardo Reale
- Center for Life Nano Science@Sapienza, Italian Institute of Technology (IIT), Rome, Italy
| | - Adele De Ninno
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Daniel Spencer
- School of Electronics and Computing Science, and, Institute for Life Sciences, University of Southampton, Highfield, Southampton, UK
| | - Hywel Morgan
- School of Electronics and Computing Science, and, Institute for Life Sciences, University of Southampton, Highfield, Southampton, UK
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
34
|
Petchakup C, Yang H, Gong L, He L, Tay HM, Dalan R, Chung AJ, Li KHH, Hou HW. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104822. [PMID: 35253966 DOI: 10.1002/smll.202104822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The intrinsic biophysical states of neutrophils are associated with immune dysfunctions in diseases. While advanced image-based biophysical flow cytometers can probe cell deformability at high throughput, it is nontrivial to couple different sensing modalities (e.g., electrical) to measure other critical cell attributes including cell viability and membrane integrity. Herein, an "optics-free" impedance-deformability cytometer for multiparametric single cell mechanophenotyping is reported. The microfluidic platform integrates hydrodynamic cell pinching, and multifrequency impedance quantification of cell size, deformability, and membrane impedance (indicative of cell viability and activation). A newly-defined "electrical deformability index" is validated by numerical simulations, and shows strong correlations with the optical cell deformability index of HL-60 experimentally. Human neutrophils treated with various biochemical stimul are further profiled, and distinct differences in multimodal impedance signatures and UMAP analysis are observed. Overall, the integrated cytometer enables label-free cell profiling at throughput of >1000 cells min-1 without any antibodies labeling to facilitate clinical diagnostics.
Collapse
Affiliation(s)
- Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haoning Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rinkoo Dalan
- Endocrinology Department, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng Road, Singapore, 308433, Singapore
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
| |
Collapse
|
35
|
Microfluidic aptasensor POC device for determination of whole blood potassium. Anal Chim Acta 2022; 1203:339722. [DOI: 10.1016/j.aca.2022.339722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
|
36
|
Zhang Z, Huang X, Liu K, Lan T, Wang Z, Zhu Z. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. BIOSENSORS 2021; 11:470. [PMID: 34821686 PMCID: PMC8615761 DOI: 10.3390/bios11110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 05/10/2023]
Abstract
Cellular heterogeneity is of significance in cell-based assays for life science, biomedicine and clinical diagnostics. Electrical impedance sensing technology has become a powerful tool, allowing for rapid, non-invasive, and label-free acquisition of electrical parameters of single cells. These electrical parameters, i.e., equivalent cell resistance, membrane capacitance and cytoplasm conductivity, are closely related to cellular biophysical properties and dynamic activities, such as size, morphology, membrane intactness, growth state, and proliferation. This review summarizes basic principles, analytical models and design concepts of single-cell impedance sensing devices, including impedance flow cytometry (IFC) to detect flow-through single cells and electrical impedance spectroscopy (EIS) to monitor immobilized single cells. Then, recent advances of both electrical impedance sensing systems applied in cell recognition, cell counting, viability detection, phenotypic assay, cell screening, and other cell detection are presented. Finally, prospects of impedance sensing technology in single-cell analysis are discussed.
Collapse
Affiliation(s)
- Zhao Zhang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Xiaowen Huang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Department of Orthopedics, Nanjing 210029, China;
| | - Ke Liu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Tiancong Lan
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou 510275, China;
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| |
Collapse
|
37
|
Ashley BK, Mukerji I, Hassan U. Investigating Cell-Particle Conjugate Orientations in a Microfluidic Channel to Ameliorate Impedance-based Signal Acquisition and Detection . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7233-7236. [PMID: 34892768 PMCID: PMC8767423 DOI: 10.1109/embc46164.2021.9630171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many biomedical experimental assays rely on cell-to-microparticle conjugation and their subsequent detection to quantify disease-related biomarkers. In this report, we investigated the effect of particle attachment position on a cell's surface to a signal acquired using impedance cytometry. We also present a novel configuration of independent coplanar microelectrodes positioned at the bottom and top of the microfluidic channel. In simulation results, our configuration accurately identifies different particle positions around the cell. We implemented a channel design with focusing regions between electrodes, and considered external factors around the channel such as polydimethylsiloxane (PDMS) interacting with the electric field and physical constraints of top electrodes placed farther away from the channel which improves detection accuracy.
Collapse
|
38
|
Thorne N, Flores-Olazo L, Egoávil-Espejo R, Vela EA, Noel J, Valdivia-Silva J, van Noort D. Systematic Review: Microfluidics and Plasmodium. MICROMACHINES 2021; 12:mi12101245. [PMID: 34683295 PMCID: PMC8538353 DOI: 10.3390/mi12101245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Malaria affects 228 million people worldwide each year, causing severe disease and worsening the conditions of already vulnerable populations. In this review, we explore how malaria has been detected in the past and how it can be detected in the future. Our primary focus is on finding new directions for low-cost diagnostic methods that unspecialized personnel can apply in situ. Through this review, we show that microfluidic devices can help pre-concentrate samples of blood infected with malaria to facilitate the diagnosis. Importantly, these devices can be made cheaply and be readily deployed in remote locations.
Collapse
Affiliation(s)
- Nicolas Thorne
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru; (L.F.-O.); (R.E.-E.); (E.A.V.); (J.N.); (J.V.-S.)
- Correspondence: (N.T.); (D.v.N.)
| | - Luis Flores-Olazo
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru; (L.F.-O.); (R.E.-E.); (E.A.V.); (J.N.); (J.V.-S.)
| | - Rocío Egoávil-Espejo
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru; (L.F.-O.); (R.E.-E.); (E.A.V.); (J.N.); (J.V.-S.)
| | - Emir A. Vela
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru; (L.F.-O.); (R.E.-E.); (E.A.V.); (J.N.); (J.V.-S.)
- Department of Mechanical Engineering, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru
| | - Julien Noel
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru; (L.F.-O.); (R.E.-E.); (E.A.V.); (J.N.); (J.V.-S.)
- Department of Mechanical Engineering, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru
| | - Julio Valdivia-Silva
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru; (L.F.-O.); (R.E.-E.); (E.A.V.); (J.N.); (J.V.-S.)
| | - Danny van Noort
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru; (L.F.-O.); (R.E.-E.); (E.A.V.); (J.N.); (J.V.-S.)
- Biotechnology, Linköping University, 581 83 Linköping, Sweden
- Correspondence: (N.T.); (D.v.N.)
| |
Collapse
|
39
|
Zhou Z, Chen Y, Zhu S, Liu L, Ni Z, Xiang N. Inertial microfluidics for high-throughput cell analysis and detection: a review. Analyst 2021; 146:6064-6083. [PMID: 34490431 DOI: 10.1039/d1an00983d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since it was first proposed in 2007, inertial microfluidics has been extensively studied in terms of theory, design, fabrication, and application. In recent years, with the rapid development of microfabrication technologies, a variety of channel structures that can focus, concentrate, separate, and capture bioparticles or fluids have been designed and manufactured to extend the range of potential biomedical applications of inertial microfluidics. Due to the advantages of high throughput, simplicity, and low device cost, inertial microfluidics is a promising candidate for rapid sample processing, especially for large-volume samples with low-abundance targets. As an approach to cellular sample pretreatment, inertial microfluidics has been widely employed to ensure downstream cell analysis and detection. In this review, a comprehensive summary of the application of inertial microfluidics for high-throughput cell analysis and detection is presented. According to application areas, the recent advances can be sorted into label-free cell mechanical phenotyping, sheathless flow cytometric counting, electrical impedance cytometer, high-throughput cellular image analysis, and other methods. Finally, the challenges and prospects of inertial microfluidics for cell analysis and detection are summarized.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Linbo Liu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
40
|
Lu YJ, Hsieh HY, Kuo WC, Wei PK, Sheen HJ, Tahara H, Chiu TW, Fan YJ. Nanoplasmonic Structure of a Polycarbonate Substrate Integrated with Parallel Microchannels for Label-Free Multiplex Detection. Polymers (Basel) 2021; 13:polym13193294. [PMID: 34641110 PMCID: PMC8512492 DOI: 10.3390/polym13193294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, a multiplex detection system was proposed by integrating a localized surface plasmon resonance (LSPR) sensing array and parallel microfluidic channels. The LSPR sensing array was fabricated by nanoimprinting and gold sputter on a polycarbonate (PC) substrate. The polydimethylsiloxane (PDMS) microfluidic channels and PC LSPR sensing array were bound together through (3-aminopropyl)triethoxysilane (APTES) surface treatment and oxygen plasma treatment. The resonant spectrum of the LSPR sensing device was obtained by broadband white-light illumination and polarized wavelength measurements with a spectrometer. The sensitivity of the LSPR sensing device was measured using various ratios of glycerol to water solutions with different refractive indices. Multiplex detection was demonstrated using human immunoglobulin G (IgG), IgA, and IgM. The anti-IgG, anti-IgA, and anti-IgM were separately modified in each sensing region. Various concentrations of human IgG, IgA, and IgM were prepared to prove the concept that the parallel sensing device can be used to detect different targets.
Collapse
Affiliation(s)
- Yi-Jung Lu
- Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Han-Yun Hsieh
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Chang Kuo
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan;
| | - Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- Correspondence: (T.-W.C.); (Y.-J.F.); Tel.: +886-2-2736-1661 (ext. 7722) (Y.-J.F.)
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-W.C.); (Y.-J.F.); Tel.: +886-2-2736-1661 (ext. 7722) (Y.-J.F.)
| |
Collapse
|
41
|
Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry. BIOSENSORS-BASEL 2021; 11:bios11100353. [PMID: 34677309 PMCID: PMC8533872 DOI: 10.3390/bios11100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Microfluidic impedance flow cytometers enable high-throughput, non-invasive, and label-free detection of single-cells. Cytometers with coplanar electrodes are easy and cheap to fabricate, but are sensitive to positional differences of passing particles, owing to the inhomogeneous electric field. We present a novel particle height compensation method, which employs the dependence of measured electrical opacity on particle height. The measured electrical opacity correlates with the particle height as a result of the constant electrical double layer series capacitance of the electrodes. As an alternative to existing compensation methods, we use only two coplanar electrodes and multi-frequency analysis to determine the particle size of a mixture of 5, 6, and 7 µm polystyrene beads with an accuracy (CV) of 5.8%, 4.0%, and 2.9%, respectively. Additionally, we can predict the bead height with an accuracy of 1.5 µm (8% of channel height) using the measured opacity and we demonstrate its application in flow cytometry with yeast. The use of only two electrodes is of special interest for simplified, easy-to-use chips with a minimum amount of instrumentation and of limited size.
Collapse
|
42
|
DaOrazio M, Reale R, De Ninno A, Brighetti MA, Mencattini A, Businaro L, Martinelli E, Bisegna P, Travaglini A, Caselli F. Electro-optical classification of pollen grains via microfluidics and machine learning. IEEE Trans Biomed Eng 2021; 69:921-931. [PMID: 34478361 DOI: 10.1109/tbme.2021.3109384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In aerobiological monitoring and agriculture there is a pressing need for accurate, label-free and automated analysis of pollen grains, in order to reduce the cost, workload and possible errors associated to traditional approaches. Methods: We propose a new multimodal approach that combines electrical sensing and optical imaging to classify pollen grains flowing in a microfluidic chip at a throughput of 150 grains per second. Electrical signals and synchronized optical images are processed by two independent machine learning-based classifiers, whose predictions are then combined to provide the final classification outcome. Results: The applicability of the method is demonstrated in a proof-of-concept classification experiment involving eight pollen classes from different taxa. The average balanced accuracy is 78.7 % for the electrical classifier, 76.7 % for the optical classifier and 84.2 % for the multimodal classifier. The accuracy is 82.8 % for the electrical classifier, 84.1 % for the optical classifier and 88.3 % for the multimodal classifier. Conclusion: The multimodal approach provides better classification results with respect to the analysis based on electrical or optical features alone. Significance: The proposed methodology paves the way for automated multimodal palynology. Moreover, it can be extended to other fields, such as diagnostics and cell therapy, where it could be used for label-free identification of cell populations in heterogeneous samples.
Collapse
|
43
|
Zhong J, Liang M, Ai Y. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes. LAB ON A CHIP 2021; 21:2869-2880. [PMID: 34236057 DOI: 10.1039/d1lc00481f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Submicron-precision particle characterization is crucial for counting, sizing and identifying a variety of biological particles, such as bacteria and apoptotic bodies. Microfluidic impedance cytometry has been attractive in current research for microparticle characterization due to its advantages of label-free detection, ease of miniaturization and affordability. However, conventional electrode configurations of three electrodes and floating electrodes have not yet demonstrated the capability of probing submicron particles or microparticles with a submicron size difference. In this study, we present a label-free high-throughput (∼800 particles per second) impedance-based microfluidic flow cytometry system integrated with a novel design of a double differential electrode configuration, enabling submicron particle detection (down to 0.4 μm) with a minimum size resolution of 200 nm. The signal-to-noise ratio has been boosted from 13.98 dB to 32.64 dB compared to a typical three-electrode configuration. With the proposed microfluidic impedance cytometry, we have shown results of sizing microparticles that accurately correlate with manufacturers' datasheets (R2 = 0.99938). It also shows that population ratios of differently sized beads in mixture samples are consistent with the results given by commercial fluorescence-based flow cytometry (within ∼1% difference). This work provides a label-free approach with submicron precision for sizing and counting microscale and submicron particles, and a new avenue of designing electrode configurations with a feature of suppressing the electrical noise for accomplishing a high signal-to-noise ratio in a wide range of frequencies. This novel double differential impedance sensing system paves a new pathway for real-time analysis and accurate particle screening in pathological and pharmacological research.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| |
Collapse
|
44
|
Yoon JS, Park J, Ahn HR, Yoo SJ, Kim YJ. Microfluidic Airborne Metal Particle Sensor Using Oil Microcirculation for Real-Time and Continuous Monitoring of Metal Particle Emission. MICROMACHINES 2021; 12:mi12070825. [PMID: 34357235 PMCID: PMC8303531 DOI: 10.3390/mi12070825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022]
Abstract
Airborne metal particles (MPs; particle size > 10 μm) in workplaces result in a loss in production yield if not detected in time. The demand for compact and cost-efficient MP sensors to monitor airborne MP generation is increasing. However, contemporary instruments and laboratory-grade sensors exhibit certain limitations in real-time and on-site monitoring of airborne MPs. This paper presents a microfluidic MP detection chip to address these limitations. By combining the proposed system with microcirculation-based particle-to-liquid collection and a capacitive sensing method, the continuous detection of airborne MPs can be achieved. A few microfabrication processes were realized, resulting in a compact system, which can be easily replaced after contamination with a low-priced microfluidic chip. In our experiments, the frequency-dependent capacitive changes were characterized using MP (aluminum) samples (sizes ranging from 10 μm to 40 μm). Performance evaluation of the proposed system under test-bed conditions indicated that it is capable of real-time and continuous monitoring of airborne MPs (minimum size 10 μm) under an optimal frequency, with superior sensitivity and responsivity. Therefore, the proposed system can be used as an on-site MP sensor for unexpected airborne MP generation in precise manufacturing facilities where metal sources are used.
Collapse
|
45
|
Wu C, Wei X, Men X, Zhang X, Yu YL, Xu ZR, Chen ML, Wang JH. Two-Dimensional Cytometry Platform for Single-Particle/Cell Analysis with Laser-Induced Fluorescence and ICP-MS. Anal Chem 2021; 93:8203-8209. [PMID: 34077198 DOI: 10.1021/acs.analchem.1c00484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A two-dimensional cytometry platform (CytoLM) with high sensitivity and high temporal resolution is developed for single-particle and single-cell sampling and analysis. First, a Dean flow-assisted vortex capillary cell sampling (VCCS) unit confines the sample stream in curved flow and drives to focus and align the particles or cells in a small probe volume. By coupling VCCS to a laser-induced fluorescence (LIF) detector with data acquisition and processing capability, a high-throughput single-particle/cell analysis system (VCCS-LIF) was established. The particle analysis throughput of 119.42/s and a detection recovery of 78.20 ± 1.75% were achieved at a density of 9.16 × 104/mL for fluorescent particles, and the cell analysis throughput is 48.20/s at a density of 1.5 × 105/mL. Second, the CytoLM platform is constructed by hyphenating VCCS-LIF with inductively coupled plasma mass spectrometry (ICP-MS). In the analysis of HepG2 cells by Ag+ incubation and AO staining, 10,760 fluorescence bursts and 3068 MS events were observed in 240 s. Invalid signals due to undispersed cells were controlled at 3.80% for LIF and 1.01% for MS, with a proportion of effective signal of >96.20%. After peak identification and integral processing of the original data, the statistical results including peak area, height, width, and spacing are obtained concurrently and the information on concentration and elemental quantification of single cells is evaluated. CytoLM facilitates high-throughput, multi-dimensional, and multi-parameter characterization of particles and cells, and it may provide vast potential in life science analysis.
Collapse
Affiliation(s)
- Chengxin Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xue Men
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
46
|
Zhu S, Zhang X, Zhou Z, Han Y, Xiang N, Ni Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021; 233:122571. [PMID: 34215067 DOI: 10.1016/j.talanta.2021.122571] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Single-cell analysis has gained considerable attention for disease diagnosis, drug screening, and differentiation monitoring. Compared to the well-established flow cytometry, which uses fluorescent-labeled antibodies, microfluidic impedance cytometry (MIC) offers a simple, label-free, and noninvasive method for counting, classifying, and monitoring cells. Superior features including a small footprint, low reagent consumption, and ease of use have also been reported. The MIC device detects changes in the impedance signal caused by cells passing through the sensing/electric field zone, which can extract information regarding the size, shape, and dielectric properties of these cells. According to recent studies, electrode configuration has a remarkable effect on detection accuracy, sensitivity, and throughput. With the improvement in microfabrication technology, various electrode configurations have been reported for improving detection accuracy and throughput. However, the various electrode configurations of MIC devices have not been reviewed. In this review, the theoretical background of the impedance technique for single-cell analysis is introduced. Then, two-dimensional, three-dimensional, and liquid electrode configurations are discussed separately; their sensing mechanisms, fabrication processes, advantages, disadvantages, and applications are also described in detail. Finally, the current limitations and future perspectives of these electrode configurations are summarized. The main aim of this review is to offer a guide for researchers on the ongoing advancement in electrode configuration designs.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zheng Zhou
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
47
|
Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. LAB ON A CHIP 2021; 21:1433-1453. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lab-on-paper, or microfluidic paper-based analytical devices (μPADs), use paper as a substrate material, and are patterned with a system of microchannels, reaction zones and sensing elements to perform analysis and detection. The sample transfer in such devices is performed by capillary action. As a result, external driving forces are not required, and hence the size and cost of the device are significantly reduced. Lab-on-paper devices have thus attracted significant attention for point-of-care medical diagnostic purposes in recent years, particularly in less-developed regions of the world lacking medical resources and infrastructures. This review discusses the major advances in lab-on-paper technology for blood analysis and diagnosis in the past five years. The review focuses particularly on the many clinical applications of lab-on-paper devices, including diabetes diagnosis, acute myocardial infarction (AMI) detection, kidney function diagnosis, liver function diagnosis, cholesterol and triglyceride (TG) analysis, sickle-cell disease (SCD) and phenylketonuria (PKU) analysis, virus analysis, C-reactive protein (CRP) analysis, blood ion analysis, cancer factor analysis, and drug analysis. The review commences by introducing the basic transmission principles, fabrication methods, structural characteristics, detection techniques, and sample pretreatment process of modern lab-on-paper devices. A comprehensive review of the most recent applications of lab-on-paper devices to the diagnosis of common human diseases using blood samples is then presented. The review concludes with a brief summary of the main challenges and opportunities facing the lab-on-paper technology field in the coming years.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
48
|
Gong L, Ding W, Chen Y, Yu K, Guo C, Zhou B. Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW
8
O
30
} Determined by Single‐Cell Proteomics Analysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lige Gong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| | - Wenqiao Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Ying Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Kai Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Baibin Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
49
|
Gong L, Ding W, Chen Y, Yu K, Guo C, Zhou B. Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW 8 O 30 } Determined by Single-Cell Proteomics Analysis. Angew Chem Int Ed Engl 2021; 60:8344-8351. [PMID: 33491871 DOI: 10.1002/anie.202100297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/21/2022]
Abstract
The 10-nuclear heteroatom cluster modified {SbW8 O30 } was successfully synthesized and exhibited inhibitory activity (IC50 =0.29 μM). Based on proteomics analysis, Na4 Ni2 Sb2 W2 -SbW8 inhibited ATP production by affecting the expression of 16 related proteins, hindering metabolic functions in vivo and cell proliferation due to reactive oxygen species (ROS) stress. In particular, the low expression of FAD/FMN-binding redox enzymes (relative expression ratio of the experimental group to the control=0.43843) could be attributed to the redox mechanism of Na4 Ni2 Sb2 W2 -SbW8 , which was consistent with the effect of polyoxometalates (POMs) and FMN-binding proteins on ATP formation. An electrochemical study showed that Na4 Ni2 Sb2 W2 -SbW8 combined with FMN to form Na4 Ni2 Sb2 W2 -SbW8 -2FMN complex through a one-electron process of the W atoms. Na4 Ni2 Sb2 W2 -SbW8 acted as catalase and glutathione peroxidase to protect the cell from ROS stress, and the inhibition rates were 63.3 % at 1.77 μM of NADPH and 86.06 % at 10.62 μM of 2-hydroxyterephthalic acid. Overall, our results showed that POMs can be specific oxidative/antioxidant regulatory agents.
Collapse
Affiliation(s)
- Lige Gong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| | - Wenqiao Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Kai Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Baibin Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| |
Collapse
|
50
|
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. LAB ON A CHIP 2021; 21:22-54. [PMID: 33331376 PMCID: PMC7909465 DOI: 10.1039/d0lc00840k] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|