1
|
Harris PWR, Siow A, Yang SH, Wadsworth AD, Tan L, Hermant Y, Mao Y, An C, Hanna CC, Cameron AJ, Allison JR, Chakraborty A, Ferguson SA, Mros S, Hards K, Cook GM, Williamson DA, Carter GP, Chan STS, Painter GA, Sander V, Davidson AJ, Brimble MA. Synthesis, Antibacterial Activity, and Nephrotoxicity of Polymyxin B Analogues Modified at Leu-7, d-Phe-6, and the N-Terminus Enabled by S-Lipidation. ACS Infect Dis 2022; 8:2413-2429. [PMID: 36413173 DOI: 10.1021/acsinfecdis.1c00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew D Wadsworth
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Lyndia Tan
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yann Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yubing Mao
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Chalice An
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Cameron C Hanna
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Jane R Allison
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Aparajita Chakraborty
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Kiel Hards
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Gavin A Painter
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Crystal Chan SH, Griffin JM, Clemett CA, Brimble MA, O’Carroll SJ, Harris PWR. Synthesis and Biological Evaluation of Termini-Modified and Cyclic Variants of the Connexin43 Inhibitor Peptide5. Front Chem 2022; 10:877618. [PMID: 36176893 PMCID: PMC9513234 DOI: 10.3389/fchem.2022.877618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Peptide5 is a 12–amino acid mimetic peptide that corresponds to a region of the extracellular loop 2 (EL2) of connexin43. Peptide5 regulates both cellular communication with the cytoplasm (hemichannels) and cell-to-cell communication (gap junctions), and both processes are implicated in neurological pathologies. To address the poor in vivo stability of native peptide5 and to improve its activity, twenty-five novel peptide5 mimetics were designed and synthesized. All the analogues underwent biological evaluation as a hemichannel blocker and as a gap junction disruptor, and several were assessed for stability in human serum. From this study, it was established that several acylations on the N-terminus were tolerated in the hemichannel assay. However, the replacement of the L-Lys with an N-methylated L-Lys to give H-VDCFLSRPTE-N-MeKT-OH showed good hemichannel and gap junction activity and was more stable in human serum. The cyclic peptide variants generally were not tolerated in either the hemichannel and gap junction assay although several possessed outstanding stability in human serum.
Collapse
Affiliation(s)
| | - Jarred M. Griffin
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor A. Clemett
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Simon J. O’Carroll
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Simon J. O’Carroll, ; Paul W. R. Harris,
| | - Paul W. R. Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simon J. O’Carroll, ; Paul W. R. Harris,
| |
Collapse
|
3
|
King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, Isakson BE, Johnstone SR. Mechanisms of Connexin Regulating Peptides. Int J Mol Sci 2021; 22:ijms221910186. [PMID: 34638526 PMCID: PMC8507914 DOI: 10.3390/ijms221910186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.
Collapse
Affiliation(s)
- D. Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xinyan Leng
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Jianxiang Xue
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|
5
|
Rani A, De Leon-Rodriguez LM, Kavianinia I, McGillivray DJ, Williams DE, Brimble MA. Synthesis and characterization of mono S-lipidated peptide hydrogels: a platform for the preparation of reactive oxygen species responsive materials. Org Biomol Chem 2021; 19:3665-3677. [PMID: 33908574 DOI: 10.1039/d1ob00355k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we report the synthesis of mono lipidated peptides containing a 3-mercaptopropionate linker in the N-terminus by means of a photoinitiated thiol-ene reaction (S-lipidation). We evaluate the self-assembling and hydrogelation properties of a library of mono S-lipidated peptides containing lipid chains of various lengths and demonstrate that hydrogelation was driven by a balance between the lipid chain's hydrophobicity and the peptide's facial hydrophobicity. We further postulate that a simple calculation using estimated values of log D could be used as a predictor of hydrogelation when designing similar systems. A mono S-lipidated peptide containing a short lipid chain that formed hydrogels was fully characterized and a mechanism for the peptide hydrogelation developed. Finally, we demonstrate that the presence of the thioether group in the mono S-lipidated peptide hydrogels, which is a feature lacking in conventional N-acyl lipidated systems, enables the controlled disassembly of the gel via oxidation to the sulfoxide by reactive oxygen species in accordance with a hydrophobicity-modulated strategy. Thus, we conclude that mono S-lipidated peptide hydrogels constitute a novel and simple tool for the development of tissue engineering and targeted drug delivery applications of diseases with overexpression of reactive oxygen species (e.g. degenerative and metabolic diseases, and cancers).
Collapse
Affiliation(s)
- Aakanksha Rani
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Luis M De Leon-Rodriguez
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| |
Collapse
|
7
|
Abstract
Lipidation of polypeptides with a fatty acid to form N-linked lipopeptides can be a time consuming process due to the need to mask other reactive function groups present on the side chains of amino acids. Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology enables the direct lipidation of unprotected peptides containing a free thiol group to afford S-lipidated lipopeptides. A generalized procedure for the synthesis of S-lipopeptides is described which facilities rapid preparation of tens of analogs of lipopeptides from a single thiolated polypeptide precursor.
Collapse
Affiliation(s)
- Victor Yim
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|