1
|
Jin X, Guo C, Huang Q, Tao X, Li X, Xie Y, Dang Z, Zhou J, Lu G. Arsenic redistribution associated with Fe(II)-induced jarosite transformation in the presence of polygalacturonic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173444. [PMID: 38788951 DOI: 10.1016/j.scitotenv.2024.173444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Jarosite exists widely in acid-sulfate soil and acid mine drainage polluted areas and acts as an important host mineral for As(V). As a metastable Fe(III)-oxyhydoxysulfate mineral, its dissolution and transformation have a significant impact on the biogeochemical cycle of As. Under reducing conditions, the trajectory and degree of abiotic Fe(II)-induced jarosite transformation may be greatly influenced by coexisting dissolved organic matter (DOM), and in turn influencing the fate of As. Here, we explored the impact of polygalacturonic acid (PGA) (0-200 mg·L-1) on As(V)-coprecipitated jarosite transformation in the presence of Fe(II) (1 mM) at pH 5.5, and investigated the repartitioning of As between aqueous and solid phase. The results demonstrated that in the system without both PGA and Fe(II), jarosite gradually dissolved, and lepidocrocite was the main transformation product by 30 d; in Fe(II)-only system, lepidocrocite appeared by 1 d and also was the mainly final product; in PGA-only systems, PGA retarded jarosite dissolution and transformation, jarosite might be directly converted into goethite; in Fe(II)-PGA systems, the presence of PGA retarded Fe(II)-induced jarosite dissolution and transformation but did not alter the pathway of mineral transformation, the final product mainly still was lepidocrocite. The retarding effect on jarosite dissolution enhanced with the increase of PGA content. The impact of PGA on Fe(II)-induced jarosite transformation mainly was related to the complexation of carboxyl groups of PGA with Fe(II). The dissolution and transformation of jarosite drove pre-incorporated As transferred into the phosphate-extractable phase, the presence of PGA retarded jarosite dissolution and maintained pre-incorporated As stable in jarosite. The released As promoted by PGA was retarded again and almost no As was released into the solution by the end of reactions in all systems. In systems with Fe(II), no As(III) was detected and As(V) was still the dominant redox species.
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Qi Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000 Foshan, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Guangdong, Chaozhou 521041, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Latta D, Rosso KM, Scherer MM. Tracking Initial Fe(II)-Driven Ferrihydrite Transformations: A Mössbauer Spectroscopy and Isotope Investigation. ACS EARTH & SPACE CHEMISTRY 2023; 7:1814-1824. [PMID: 37876661 PMCID: PMC10591510 DOI: 10.1021/acsearthspacechem.2c00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/22/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
Transformation of nanocrystalline ferrihydrite to more stable microcrystalline Fe(III) oxides is rapidly accelerated under reducing conditions with aqueous Fe(II) present. While the major steps of Fe(II)-catalyzed ferrihydrite transformation are known, processes in the initial phase that lead to nucleation and the growth of product minerals remain unclear. To track ferrihydrite-Fe(II) interactions during this initial phase, we used Fe isotopes, Mössbauer spectroscopy, and extractions to monitor the structural, magnetic, and isotope composition changes of ferrihydrite within ∼30 min of Fe(II) exposure. We observed rapid isotope mixing between aqueous Fe(II) and ferrihydrite during this initial lag phase. Our findings from Mössbauer spectroscopy indicate that a more magnetically ordered Fe(III) phase initially forms that is distinct from ferrihydrite and bulk crystalline transformation products. The signature of this phase is consistent with the early stage emergence of lepidocrocite-like lamellae observed in previous transmission electron microscopy studies. Its signature is furthermore removed by xylenol extraction of Fe(III), the same approach used to identify a chemically labile form of Fe(III) resulting from Fe(II) contact that is correlated to the ultimate emergence of crystalline product phases detectable by X-ray diffraction. Our work indicates that the mineralogical changes in the initial lag phase of Fh transformation initiated by Fe(II)-Fh electron transfer are critical to understanding ferrihydrite behavior in soils and sediments, particularly with regard to metal uptake and release.
Collapse
Affiliation(s)
- Drew Latta
- Department
of Civil and Environmental Engineering/IIHR, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kevin M. Rosso
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99345, United States
| | - Michelle M. Scherer
- Department
of Civil and Environmental Engineering/IIHR, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
3
|
Han R, Wang Z, Lv J, Zhu Z, Yu GH, Li G, Zhu YG. Multiple Effects of Humic Components on Microbially Mediated Iron Redox Processes and Production of Hydroxyl Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16419-16427. [PMID: 36223591 DOI: 10.1021/acs.est.2c03799] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbially mediated iron redox processes are of great significance in the biogeochemical cycles of elements, which are often coupled with soil organic matter (SOM) in the environment. Although the influences of SOM fractions on individual reduction or oxidation processes have been studied extensively, a comprehensive understanding is still lacking. Here, using ferrihydrite, Shewanella oneidensis MR-1, and operationally defined SOM components including fulvic acid (FA), humic acid (HA), and humin (HM) extracted from black soil and peat, we explored the SOM-mediated microbial iron reduction and hydroxyl radical (•OH) production processes. The results showed that the addition of SOM inhibited the transformation of ferrihydrite to highly crystalline iron oxides. Although FA and HA increased Fe(II) production over four times on average due to complexation and their high electron exchange capacities, HA inhibited 30-43% of the •OH yield, while FA had no significant influence on it. Superoxide (O2•-) was the predominant intermediate in •OH production in the FA-containing system, while one- and two-electron transfer processes were concurrent in HA- and HM-containing systems. These findings provide deep insights into the multiple mechanisms of SOM in regulating microbially mediated iron redox processes and •OH production.
Collapse
Affiliation(s)
- Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Notini L, ThomasArrigo LK, Kaegi R, Kretzschmar R. Coexisting Goethite Promotes Fe(II)-Catalyzed Transformation of Ferrihydrite to Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12723-12733. [PMID: 35998342 PMCID: PMC9454240 DOI: 10.1021/acs.est.2c03925] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 05/13/2023]
Abstract
In redox-affected soil environments, electron transfer between aqueous Fe(II) and solid-phase Fe(III) catalyzes mineral transformation and recrystallization processes. While these processes have been studied extensively as independent systems, the coexistence of iron minerals is common in nature. Yet it remains unclear how coexisting goethite influences ferrihydrite transformation. Here, we reacted ferrihydrite and goethite mixtures with Fe(II) for 24 h. Our results demonstrate that with more goethite initially present in the mixture more ferrihydrite turned into goethite. We further used stable Fe isotopes to label different Fe pools and probed ferrihydrite transformation in the presence of goethite using 57Fe Mössbauer spectroscopy and changes in the isotopic composition of solid and aqueous phases. When ferrihydrite alone underwent Fe(II)-catalyzed transformation, Fe atoms initially in the aqueous phase mostly formed lepidocrocite, while those from ferrihydrite mostly formed goethite. When goethite was initially present, more goethite was formed from atoms initially in the aqueous phase, and nanogoethite formed from atoms initially in ferrihydrite. Our results suggest that coexisting goethite promotes formation of more goethite via Fe(II)-goethite electron transfer and template-directed nucleation and growth. We further hypothesize that electron transfer onto goethite followed by electron hopping onto ferrihydrite is another possible pathway to goethite formation. Our findings demonstrate that mineral transformation is strongly influenced by the composition of soil solid phases.
Collapse
Affiliation(s)
- Luiza Notini
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Laurel K. ThomasArrigo
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstraße 133, CH-8600 Dübendorf, Switzerland
| | - Ruben Kretzschmar
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| |
Collapse
|