1
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
2
|
Wagner LS, Prymak O, Schaller T, Beuck C, Loza K, Niemeyer F, Gumbiowski N, Kostka K, Bayer P, Heggen M, Oliveira CLP, Epple M. The Molecular Footprint of Peptides on the Surface of Ultrasmall Gold Nanoparticles (2 nm) Is Governed by Steric Demand. J Phys Chem B 2024; 128:4266-4281. [PMID: 38640461 DOI: 10.1021/acs.jpcb.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by 1H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). 1H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative 1H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm2.
Collapse
Affiliation(s)
- Lisa-Sofie Wagner
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Christine Beuck
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Peter Bayer
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
3
|
Li Y, Stec GJ, Thorarinsdottir AE, McGillicuddy RD, Zheng SL, Mason JA. The role of metal accessibility on carbon dioxide electroreduction in atomically precise nanoclusters. Chem Sci 2023; 14:12283-12291. [PMID: 37969596 PMCID: PMC10631301 DOI: 10.1039/d3sc04085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023] Open
Abstract
Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Grant J Stec
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Agnes E Thorarinsdottir
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Ryan D McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Jarad A Mason
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
4
|
Wang Z, Gupta RK, Alkan F, Han BL, Feng L, Huang XQ, Gao ZY, Tung CH, Sun D. Dicarboxylic Acids Induced Tandem Transformation of Silver Nanocluster. J Am Chem Soc 2023; 145:19523-19532. [PMID: 37646485 DOI: 10.1021/jacs.3c01119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Structural transformation of metal nanoclusters (NCs) is of great ongoing interest regarding their synthesis, stability, and reactivity. Although sporadic examples of cluster transformations have been reported, neither the underlying transformation mechanism nor the intermediates are unambiguous. Herein, we have synthesized a flexible 54-nuclei silver cluster (Ag54) by combining soft (tBuC≡C-) and hard (nPrCOO-) ligands. The existence of weakly coordinated nPrCOO- enhances the reactivity of Ag54, thus facilitating the dicarboxylic acid to induce structural transformation. X-ray structural analyses reveal that Ag54 transforms to Ag28 cluster-based 2D networks (Ag28a and Ag28b) induced by H2suc (succinic acid) and H2glu (glutaric acid), whereas with H2pda (2,2'-(1,2-phenylene)diacetic acid), a discrete Ag28 cluster (Ag28c) is isolated. The key intermediate Ag17 that emerges during the self-dissociation of Ag54 was isolated by using cryogenic recrystallization and characterized by X-ray crystallography. The "tandem transformation" mechanism for the structure evolution from Ag54 to Ag28a is established by time-dependent electrospray ionization mass spectrometry (ESI-MS) and UV-vis spectroscopy. In addition, the catalytic activity in the 4-nitrophenol reduction follows the sequence Ag28c > Ag28b > Ag28a > Ag54 due to more bare silver sites on the surface of the Ag28 cluster unit. Our findings not only open new avenues to the synthesis of silver NCs but also shed light on a better understanding of the structural transformation mechanism from one cluster to another or cluster-based metal-organic networks induced by dicarboxylates.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Rakesh Kumar Gupta
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Fahri Alkan
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, 38080, Turkey
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
5
|
Maman MP, Nida Nahan E, Suresh G, Das A, Nair AS, Pathak B, Mandal S. Control over product formation and thermodynamic stability of thiolate-protected gold nanoclusters through tuning of surface protecting ligands. NANOSCALE 2023; 15:13102-13109. [PMID: 37501634 DOI: 10.1039/d3nr02617e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Surface-protecting ligands can regulate the structure of a cluster's core either through electronic or steric effects. However, the influence of the steric effect along with the electronic effect over controlling the structure during ligand exchange reactions remains elusive. To understand this, we have carried out ligand exchange on [Au23(CHT)16]- (CHT: cyclohexane thiol) using aromatic thiolates where we have tuned the bulkiness at the para position of the thiolate group on the incoming ligands. The outcome of the experiments reveals that each of the ligands in the chosen series is precisely selective towards the parent cluster transformation through specific intermediates. The ligand with more steric crowding directed the reaction pathway to have Au28 nanocluster as the major product while Au36 was the final product obtained with the gradual decrease of bulkiness over the ligand. The combined experimental and theoretical results elucidated the mechanism of the reaction pathways, product formation, and their stability. Indeed, this study with the series of ligands will add up to the ligand library, where we can decide on the ligand to obtain our desired cluster for specific applications through the ligand exchange reaction.
Collapse
Affiliation(s)
- Manju P Maman
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Eyyakkandy Nida Nahan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Greeshma Suresh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Arunendu Das
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Akhil S Nair
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
6
|
Shao P, Zhang H, Ding LP, He QL, Zhao YR, Kuang FG, Kang SY. Effect of Ligand Structures on Ligand-Protected Gold Clusters: [Au-( p-/ m-/ o-MBT)] 1-8 Clusters. J Phys Chem A 2022; 126:7193-7201. [PMID: 36194534 DOI: 10.1021/acs.jpca.2c05267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controllable preparation of ligand-protected clusters is still an unresolved problem, which may be due to that their formation mechanism is unclear. We propose that the ligand is the key to solve the above problems. Here, by using p-, m-, and o-methylbenzenethiol ligand protected gold clusters as examples, we try to explore the effect of ligand structures on ligand-protected gold clusters. The geometrical structures, relative stabilities and surface properties of small-sized ligand-protected gold clusters [Au-SR]1-8 (SR = p-/m-/o-MBT) have been systematically studied based on the density functional theory. The results show that the ground state structures of [Au-SR]1-8 clusters tend to form closed rings except for [Au-SR]1,2. The different structures of ligand have significant effect on the structures and stabilities of ligand-protected clusters. By analyzing their surface properties and possible growth patterns, it is found that [Au-SR]1,2 clusters serve as the basic building blocks, and the larger clusters can be regarded as the combinations of them. This study provides some insights into the effect of ligands on ligand-protected clusters, which is useful for understanding the formation mechanism of ligand-protected clusters.
Collapse
Affiliation(s)
- Peng Shao
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Hui Zhang
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Li-Ping Ding
- Department of Optoelectronic Science & Technology, School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Qi-Long He
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Ya-Ru Zhao
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji721016, China
| | - Fang-Guang Kuang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou341000, China
| | - Shu-Ying Kang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou341000, China
| |
Collapse
|
7
|
Li L, Wang P, Pei Y. A theoretical study of the monolayer-protected gold cluster Au 317(SR) 110. NANOSCALE 2022; 14:5694-5700. [PMID: 35377381 DOI: 10.1039/d2nr00114d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Significant efforts have been made to uncover the structures of monolayer-protected gold nanoclusters. However, the synthesis, crystallization, and structural analysis of gold nanoclusters with over 300 metal atoms is a grand challenge. In this work, a new gold nanocluster containing 317 gold atoms and 110 thiolate (SH) ligands (referred to as Au317(SH)110) is theoretically studied, which is larger in size than the formerly reported Au279(SR)84 cluster. The stability of the Au317(SH)110 cluster is studied based on calculations of the averaged cluster formation energy (Eave), indicating that Au317(SH)110 has good structural stability and that the SPhCOOH (p-MBA) ligand is a good candidate for stabilizing the cluster. The calculation of density of state and the time-dependent density functional theory (TD-DFT) calculations of the optical absorption properties show that Au317(SH)110 is in a metallic state.
Collapse
Affiliation(s)
- Lanyan Li
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Guangdong Province, 5283311, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
| |
Collapse
|
8
|
Wang Y, Bürgi T. Evidence for stereoelectronic effects in ligand exchange reactions on Au 25 nanoclusters. NANOSCALE 2022; 14:2456-2464. [PMID: 35099491 PMCID: PMC8830761 DOI: 10.1039/d1nr07602g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 06/01/2023]
Abstract
Ligand exchange reaction (LER) is an important post-synthesis strategy and has been studied widely. The mechanism of this dynamic process for gold nanoclusters proved to be associative (SN2). Many factors affect the LER of clusters, including stability, solubility, chirality, electronic properties and so on. Some of these factors are not well understood and need further exploration. Here, we use a chiral fluoro-substituted ligand (R)-5,5',6,6',7,7',8,8'-octafluoro-[1,1'-binaphthalene]-2,2'-dithiol (8F-R-BINAS) to investigate the stereoelectronic and stereospecific effects during LER on achiral Au25 cluster. It is demonstrated that the fluorine-substituted BINAS significantly decreases the LER reactivity both at the molecule and the related cluster level. The stereoelectronic effect is global and can be transmitted to the cluster surface. In contrast, the stereospecific effect is marginal.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland. thomas.buergi@unige
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland. thomas.buergi@unige
| |
Collapse
|
9
|
Li Y, Zhou M, Jin R. Programmable Metal Nanoclusters with Atomic Precision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006591. [PMID: 33984169 DOI: 10.1002/adma.202006591] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1-3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X-ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum-confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold-thiolate nanoclusters (Aun (SR)m ) are revealed to contain an inner kernel, Au-S interface (motifs), and surface ligand (-R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg ) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smaller Eg . Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
10
|
Kolay S, Maity S, Bain D, Chakraborty S, Patra A. Self-assembly of copper nanoclusters: isomeric ligand effect on morphological evolution. NANOSCALE ADVANCES 2021; 3:5570-5575. [PMID: 36133258 PMCID: PMC9419071 DOI: 10.1039/d1na00446h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/08/2021] [Indexed: 06/15/2023]
Abstract
Tailoring the hierarchical self-assembly of metal nanoclusters (NCs) is an emergent area of research owing to their precise structure and flexible surface environment. Herein, the morphological evolution from rods to platelets to ribbon-like structures through self-assembly of Cu7 NCs is dictated by the positional isomerism of the surface capping ligand, dimethylbenzenethiol (DMBT). Besides cuprophilic interaction, the interplay between π-π stacking and agostic interaction (Cu⋯H-C) directs the inter-NC organization into different ordered architectures. The excited-state relaxation dynamics of the red phosphorescent assembled structures has been correlated with their compactness and the degree of bonding interactions present.
Collapse
Affiliation(s)
- Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India +91-33-2473-2805 +91-33-2473-4971
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India +91-33-2473-2805 +91-33-2473-4971
| | - Dipankar Bain
- School of Materials Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India +91-33-2473-2805 +91-33-2473-4971
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India +91-33-2473-2805 +91-33-2473-4971
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India +91-33-2473-2805 +91-33-2473-4971
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali 140306 India
| |
Collapse
|
11
|
|
12
|
Kawawaki T, Ebina A, Hosokawa Y, Ozaki S, Suzuki D, Hossain S, Negishi Y. Thiolate-Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005328. [PMID: 33522090 DOI: 10.1002/smll.202005328] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Metal nanoclusters (NCs), which are composed of about 250 or fewer metal atoms, possess great potential as novel functional materials. Fundamental research on metal NCs gradually started in the 1960s, and since 2000, thiolate (SR)-protected metal NCs have been the main metal NCs actively studied. The precise and systematic isolation of SR-protected metal NCs has been achieved in 2005. Since then, research on SR-protected metal NCs for both basic science and practical application has rapidly expanded. This review describes this recent progress in the field of SR-protected metal NCs in three areas: synthesis, understanding, and application. Specifically, the recent study of alloy NCs and connected structures composed of NCs is highlighted in the "synthesis" section, recent knowledge on the reactivity of NCs in solution is highlighted in the "understanding" section, and the applications of NCs in the energy and environmental field are highlighted in the "application" section. This review provides insight on the current state of research on SR-protected metal NCs and discusses the challenges to be overcome for further development in this field as well as the possibilities that these materials can contribute to solving the problems facing modern society.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yasunaga Hosokawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shuhei Ozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Daiki Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
13
|
Ma X, Tang Y, Ma G, Qin L, Tang Z. Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: recent advances, grand challenges, and great opportunities. NANOSCALE 2021; 13:602-614. [PMID: 33410856 DOI: 10.1039/d0nr07499c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the past decade, atomically precise coinage metal nanoclusters have been a subject of major interest in nanoscience and nanotechnology because of their determined compositions and well-defined molecular structures, which are beneficial for establishing structure-property relationships. Recently ligand engineering has been extended to alkynyl molecules. Homoleptic alkynyl-protected Au nanoclusters (Au NCs) have emerged as a hotspot of research interest, mainly due to their unique optical properties, molecular configuration, and catalytic functionalities, and more importantly, they are used as a counterpart object for fundamental study to compare with the well-established thiolate Au NCs. In this review, we first summarize the recently reported various controllable synthetic strategies for atomically precise homoleptic-alkynyl-protected Au NCs, with particular emphasis on the ligand exchange method, direct reduction of the precursor, one-pot synthesis, and the synchronous nucleation and passivation strategy. After that, we switch our focus to the formation mechanism and structure evolution process of homoleptic alkynyl-protected Au NCs, where Au144(PA)60 and Au36(PA)24 (PA = phenylacetylide) are given as examples, along with the prediction of the possible formation mechanism of some other cluster molecules. In the end of this review, the outlook and perspective of this rapidly developing field including grand challenges and great opportunities are discussed. This review can stimulate more research efforts towards developing new synthetic strategies to enrich the limited examples and unravel the formation/growth mechanism of homoleptic alkynyl-protected Au NCs.
Collapse
Affiliation(s)
- Xiaoshuang Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China.
| | - Yun Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China.
| | - Guanyu Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China.
| | - Lubing Qin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China.
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China. and Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
14
|
Maman MP, Nair AS, Abdul Hakkim Nazeeja AM, Pathak B, Mandal S. Synergistic Effect of Bridging Thiolate and Hub Atoms for the Aromaticity Driven Symmetry Breaking in Atomically Precise Gold Nanocluster. J Phys Chem Lett 2020; 11:10052-10059. [PMID: 33179940 DOI: 10.1021/acs.jpclett.0c02996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The symmetry of atomically precise nanoclusters is influenced by the specific geometry of the kernel and the arrangement of staple motifs. To understanding the role of ligand and its effect on the breaking of symmetry during ligand exchange transformation, it is necessary to have a mechanism of transformation in an atomically precise manner. Herein, we report the structural transformation from bipyramidal kernel to icosahedral kernel via ligand exchange. The transformation of [Au23(CHT)16]- to [Au25(2-NPT)18]- through ligand (aromatic) exchange revealed two important principles. First, the combined effort of experimental and theoretical study on structural analysis elucidated the mechanism of this structural transformation where "bridging thiolate" and "hub" gold atoms play a crucial role. Second, we have found that the higher crystal symmetry of the Au23 cluster is broken to lower crystal symmetry during the ligand exchange process. This showed that during ligand exchange, the hub atoms and μ3-S atoms get distorted and contributed to the ligand-staple motif formation. These phenomena specified that the ligand effects might be the pivotal factor to impose lower symmetry of the crystal system in the product clusters.
Collapse
Affiliation(s)
- Manju P Maman
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O, Trivandrum 695551, India
| | - Akhil S Nair
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India
| | | | - Biswarup Pathak
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O, Trivandrum 695551, India
| |
Collapse
|
15
|
Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem Rev 2020; 121:567-648. [DOI: 10.1021/acs.chemrev.0c00495] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Sachil Sharma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Li Y, Jin R. Seeing Ligands on Nanoclusters and in Their Assemblies by X-ray Crystallography: Atomically Precise Nanochemistry and Beyond. J Am Chem Soc 2020; 142:13627-13644. [DOI: 10.1021/jacs.0c05866] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Okhrimenko L, Cibaka Ndaya C, Fateeva A, Ledoux G, Demessence A. Post-synthetic functionalization and ligand exchange reactions in gold( i) phenylthiolate-based coordination polymers. NEW J CHEM 2020. [DOI: 10.1039/d0nj03833d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-modification and ligand exchange reactions from 1D or 2D gold thiolate coordination polymers occur through a dissolution–recrystallization pathway.
Collapse
Affiliation(s)
- Larysa Okhrimenko
- Univ. Lyon, Université Claude Bernard Lyon 1
- Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON)
- Villeurbanne
- France
| | - Cynthia Cibaka Ndaya
- Univ. Lyon, Université Claude Bernard Lyon 1
- Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON)
- Villeurbanne
- France
| | - Alexandra Fateeva
- Univ. Lyon, Université Claude Bernard Lyon 1
- Institut Lumière Matière (ILM)
- Villeurbanne
- France
| | - Gilles Ledoux
- Univ. Lyon, Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces (LMI)
- Villeurbanne
- France
| | - Aude Demessence
- Univ. Lyon, Université Claude Bernard Lyon 1
- Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON)
- Villeurbanne
- France
| |
Collapse
|