1
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
2
|
Liu C, Ma Y, Lian R, Chen J, Yang M, Cheng J. Regulation of Photogenerated Redox Species through High Crystallinity Carbon Nitride for Improved C-S Coupling Reactions. CHEMSUSCHEM 2024; 17:e202301882. [PMID: 38242851 DOI: 10.1002/cssc.202301882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
A novel and efficient approach for the synthesis of α, β-unsaturated sulfones through heterogeneous photocatalyzed C-S coupling reactions have been developed. The use of molten-salt method derived carbon nitride (MCN), a transition metal-free polymeric photocatalyst, combined with enhanced crystallinity and potassium iodide as an additive, effectively modulates photogenerated reactive redox species, markedly increasing the overall reaction selectivity. This method achieves the shortest reaction time (2 h) with high yield (up to 95 %) among the reported heterogeneous catalytic C-S bond formation reactions, matching the efficiency of the homogeneous photocatalysts. Furthermore, the application to challenging alkyne substrates has been demonstrated, underscoring the potential for a broad range of applications in pharmaceutical research and synthetic chemistry.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Yukun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Ronghong Lian
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiayin Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
3
|
Song ZJ, Bao Y, Sun YJ, Yan S, Zhang Y, Li G, Wang JY. Photoinduced Alkylsulfonylation and Cyanoalkylsulfonylation of Morita-Baylis-Hillman Adducts via Multicomponent Insertion of Sulfur Dioxide. J Org Chem 2024; 89:4877-4887. [PMID: 38457276 DOI: 10.1021/acs.joc.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
General and convenient visible-light-promoted alkylsulfonylation and cyanoalkylsulfonylation of MBH adducts have been developed through the multicomponent insertion of sulfur dioxide, enabling the assembly of two C-S bonds to generate structurally diverse allylic alkylsulfones (43 examples in total). The reaction of MBH adducts with potassium alkyltrifluoroborates and 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct afforded sulfones with generally good yields. Notably, the addition of N,N,N',N'-tetramethylethylenediamine as a base into the photocatalytic system led to yielding an alkyl sulfonyl unit and cyano group-anchored trisubstituted alkenes by utilizing cycloketone oxime esters as C-radical precursors. Both of these reactions have constructed two C-S bonds, and all desired products were obtained in moderate to excellent yields with complete stereospecificity.
Collapse
Affiliation(s)
- Zhi-Jie Song
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yu Bao
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yun-Jia Sun
- Jiangsu CheeShine Performance Materials Company with Limited Liability, Huaian, Jiangsu 223001, China
| | - Shenghu Yan
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yue Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
4
|
Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts 2023. [DOI: 10.3390/catal13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
This review describes the recent advances in photocatalyzed reactions to form new carbon–sulfur and carbon–selenium bonds. With a total of 136 references, of which 81 articles are presented, the authors introduce in five sections an updated picture of the state of the art in the light-promoted synthesis of organochalcogen compounds (from 2019 to present). The light-promoted synthesis of sulfides by direct sulfenylation of C–C π-bonds; synthesis of sulfones; the activation of Csp2–N bond in the formation of Csp2–S bonds; synthesis of thiol ester, thioether and thioacetal; and the synthesis of organoselenium compounds are discussed, with detailed reaction conditions and selected examples for each protocol.
Collapse
|
5
|
Ma H, Li Y, Wang P, Ye J, Zhang J, Liu G, Wu J. Photoredox-catalyzed intermolecular azidosulfonylation of alkenes with DABCO·(SO 2) 2, trimethylsilyl azide and thianthrenium salts. Org Chem Front 2023. [DOI: 10.1039/d2qo01706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synthesis of β-azido alkylsulfones through a photoredox-catalyzed azido sulfonylation of alkenes with DABCO·(SO2)2, trimethylsilyl azide and alkyl thianthrenium salts is developed.
Collapse
Affiliation(s)
- Huiling Ma
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanzhi Li
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Peiqi Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jiamin Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jun Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Wang X, Zhou W, Xie W, Chen Q, Wu J. Generation of (E)-β-trifluoromethyl vinylsulfonohydrazides under photocatalysis and their anti-bacteria activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Liu G, Gao Y, Su W. Photocatalytic Decarboxylative Coupling of Arylacetic Acids with Aromatic Aldehydes. J Org Chem 2022; 88:6322-6332. [PMID: 36173738 DOI: 10.1021/acs.joc.2c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient protocol was proposed for the preparation of secondary alcohols in good to excellent yields via photoredox-catalyzed decarboxylative couplings between readily available arylacetic acids and a variety of less reactive (hetero)aromatic aldehydes. The formation of carbanion is the key intermediate in this reaction. Various substituted arylacetic acids and aldehydes were all compatible with this transformation under mild reaction conditions. Furthermore, the current protocol was successfully applied to the direct alcoholization of several drug acids.
Collapse
Affiliation(s)
- Ge Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.,State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
8
|
Yadav P, Varma AA, A J P, Gopinath P. Photoredox mediated multicomponent reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pooja Yadav
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - A Anagha Varma
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Punnya A J
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Tirupati Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
9
|
A copper-catalyzed three-component reaction of alkenes, cycloketone oximes and DABCO·(SO2)2: Direct C(sp2)-H cyanoalkylsulfonylation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
He FS, Bao P, Tang Z, Yu F, Deng WP, Wu J. Photoredox-Catalyzed α-Sulfonylation of Ketones from Sulfur Dioxide and Thianthrenium Salts. Org Lett 2022; 24:2955-2960. [PMID: 35416676 DOI: 10.1021/acs.orglett.2c01132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A photoredox-catalyzed sulfonylation of silyl enol ethers with DABCO·(SO2)2 and thianthrenium salts is achieved, providing diverse β-keto sulfones in moderate to good yields. This protocol features easily accessible starting materials and good functional group compatibility, enabling the introduction of various functionalized sulfonyl groups into ketones. Furthermore, as one of the important industrial raw materials, methanol can be employed as the methyl source to prepare α-methylsulfonated ketones through a methyl thianthrenium intermediate for the first time.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Ping Bao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China.,School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Feiyan Yu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chem Soc Rev 2022; 51:2313-2382. [PMID: 35244107 DOI: 10.1039/d1cs00510c] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
Collapse
Affiliation(s)
- Guglielmo A Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| |
Collapse
|
12
|
Zhen J, Du X, Xu X, Li Y, Yuan H, Xu D, Xue C, Luo Y. Visible-Light-Mediated Late-Stage Sulfonylation of Boronic Acids via N–S Bond Activation of Sulfonamides. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingsong Zhen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xian Du
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaohong Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yihui Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Han Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Dejing Xu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yong Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
13
|
Li Q, Huang J, Cao Z, Zhang J, Wu J. Photoredox-catalyzed reaction of thianthrenium salts, sulfur dioxide and hydrazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00768a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A photoredox-catalyzed reaction of thianthrenium salts, hydrazines and DABCO·(SO2)2 is accomplished, providing diverse arenesulfonohydrazides in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Qiangwei Li
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiapian Huang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zenghui Cao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
14
|
Golagani D, Ghouse AM, Ajmeera S, Akondi SM. Divergent cyanoalkylation/cyanoalkylsulfonylation of enamides under organophotoredox catalytic conditions. Org Biomol Chem 2022; 20:8599-8604. [DOI: 10.1039/d2ob01775j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An organophotoredox catalyzed divergent cyanoalkylation/cyanoalkylsulfonylation of enamides is described.
Collapse
Affiliation(s)
- Durga Golagani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abuthayir Mohamathu Ghouse
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sriram Ajmeera
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
He C, Zhong Y, Han H, Wang Q, Xu L, Zhang T, Hu Y, Huang Q, Liu J, Yang M. Photoinduced decarboxylative 1,6-addition of para-quinone methides with α-keto acids: an eco-friendly approach to α,α′-diarylated ketones. NEW J CHEM 2022. [DOI: 10.1039/d2nj04562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The photoinduced decarboxylative 1,6-addition of para-quinone methides with α-keto acids in an eco-friendly approach to α,α′-diarylated ketones is developed.
Collapse
Affiliation(s)
- Chen He
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yingfang Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Huiqi Han
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Qi Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Lijing Xu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Ting Zhang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yaqiong Hu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Qitong Huang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Jun Liu
- Department of Neurosurgery, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, 341000, China
| | - Min Yang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
16
|
He FS, Su L, Yu F, Tang Z, Wu J. Construction of sulfonated spiro[5,5]trienones from sulfur dioxide via iron-catalyzed dearomative spirocyclization of biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron-catalyzed dearomative spirocyclization of biaryl ynones with sodium metabisulfite and cycloketone oxime esters is developed. By using sodium metabisulfite as the source of sulfur dioxide, this approach enables the...
Collapse
|
17
|
Xue Q, Sun Q, Zhang TT, Li Y, Li JH. Electrochemical oxygenation of sulfides with molecular oxygen or water: switchable preparation of sulfoxides and sulfones. Org Biomol Chem 2021; 19:10314-10318. [PMID: 34783815 DOI: 10.1039/d1ob01756j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A practical and eco-friendly method for the controllable aerobic oxygenation of sulfides by electrochemical catalysis was developed. The switchable preparation of sulfoxides and sulfones was effectively controlled by reaction time, in which both molecular oxygen and water can be used as the oxygen source under catalyst and external oxidant-free conditions. The electrochemical protocol features a broad substrate scope and excellent site selectivity and is successfully applied to the modification of some sulfide-containing pharmaceuticals and their derivatives.
Collapse
Affiliation(s)
- Qi Xue
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ting-Ting Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
18
|
He FS, Yao Y, Tang Z, Qiu Y, Xie W, Wu J. Synthesis of β-cyanoalkylsulfonylated vinyl selenides through a four-component reaction. Chem Commun (Camb) 2021; 57:12603-12606. [PMID: 34761780 DOI: 10.1039/d1cc05690e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild copper-catalyzed four-component selenosulfonylation of alkynes, cycloketone oxime esters, DABCO (SO2)2 and diselenides has been developed. This method enables the rapid assembly of β-cyanoalkylsulfonylated vinyl selenides in moderate to good yields. Advantages of this protocol include a broad substrate scope, good functional group tolerance and the late-stage functionalization of complex molecules. Moreover, the potential utility of this methodology is demonstrated through simple oxidation of the products to access synthetically important alkynyl sulfones. Mechanistic studies suggest that a cyanoalkylsulfonyl radical intermediate is involved in this process.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Yanfang Yao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China. .,School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Yanjie Qiu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
19
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
20
|
Yang M, Han H, Jiang H, Ye S, Fan X, Wu J. Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1,6-addition. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Patel BK, Sahoo AK, Dahiya A, Rakshit A. The Renaissance of Alkali Metabisulfites as SO2 Surrogates. SYNOPEN 2021. [DOI: 10.1055/a-1577-9755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractThe upsurge of interest in the development of methodologies for the construction of sulfur-containing compounds via the use of expedient reagents has established sustainable tools in organic chemistry. This review focuses on sulfonylation reactions using inorganic sulfites (Na2S2O5 or K2S2O5) as the sulfur dioxide surrogates. Compared to the bis-adduct with DABCO, which is an excellent surrogate of gaseous SO2, the use of sodium or potassium metabisulfites as SO2 surrogates are equally efficient. The objective of the current review is to exemplify recent sulfonylation reactions using inorganic sulfites. For better understanding, the review is categorized according to the mode of reactions: transition-metal-catalyzed SO2 insertion, metal-free SO2 insertion, and visible-light-mediated SO2 insertion. All the reactions in each of the sections are illustrated with selected examples with a pertinent explanation of the proposed mechanism.1 Introduction2 Outlines of the Reactions Involving SO2 Insertion2.1 Transition-Metal-Catalyzed SO2 Insertion2.2 Transition-Metal-Free SO2 Insertion2.3 Visible-Light-Mediated SO2 Insertion3 Conclusion and Outlook
Collapse
|
22
|
Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Advances in photochemical and electrochemical incorporation of sulfur dioxide for the synthesis of value-added compounds. Chem Commun (Camb) 2021; 57:8236-8249. [PMID: 34319313 DOI: 10.1039/d1cc03018c] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic photochemistry and electrochemistry currently receive tremendous attention in organic synthesis as both techniques enable the reagent-less activation of organic molecules without using expensive and hazardous redox reagents. The incorporation of SO2 into organic molecules is a relatively modern research topic, which likewise gains immense popularity since the discovery of the SO2 surrogate DABSO. Sulfur-containing organic molecules are omnipresent in pharmaceuticals and agrochemicals. This review covers the recent progress in electrochemical and photochemical methodologies for the incorporation and uses of SO2 in the synthesis of value-added compounds. Additionally, different work techniques are demonstrated for the synthetic application of SO2.
Collapse
Affiliation(s)
- Stephan P Blum
- Department of Chemistry, Johannes Gutenberg University Mainz, D-55128 Mainz, Germany.
| | | | | | | |
Collapse
|
23
|
Luo Y, Ding H, Zhen JS, Du X, Xu XH, Yuan H, Li YH, Qi WY, Liu BZ, Lu SM, Xue C, Ding Q. Catalyst-free arylation of sulfonamides via visible light-mediated deamination. Chem Sci 2021; 12:9556-9560. [PMID: 34349930 PMCID: PMC8279011 DOI: 10.1039/d1sc02266k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
A novel arylation of sulfonamides with boronic acids to afford numerous diaryl sulfones via a visible light-mediated N–S bond cleavage other than the typical transition-metal-catalyzed C(O)–N bond activation is described. This methodology, which represents the first catalyst-free protocol for the sulfonylation of boronic acids, is characterized by its simple reaction conditions, good functional group tolerance and high efficiency. Several successful examples for the late-stage functionalization of diverse sulfonamides indicate the high potential utility of this method in pharmaceutical science and organic synthesis. The simple, catalyst-free sulfonylation of boronic acids with sulfonamides via a visible light-mediated N–S bond cleavage is described, affording diaryl sulfones with high efficiency. Late-stage functionalization of sulfonamide drugs was shown.![]()
Collapse
Affiliation(s)
- Yong Luo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Hao Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University Nanchang 330022 China
| | - Jing-Song Zhen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Xian Du
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Xiao-Hong Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Han Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Yi-Hui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Wan-Ying Qi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Bing-Zhe Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Shi-Man Lu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University Guangzhou 510275 China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University Nanchang 330022 China
| |
Collapse
|
24
|
Worch JC, Stubbs CJ, Price MJ, Dove AP. Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry. Chem Rev 2021; 121:6744-6776. [PMID: 33764739 PMCID: PMC8227514 DOI: 10.1021/acs.chemrev.0c01076] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The 1,4-conjugate addition reaction between activated alkynes or acetylenic Michael acceptors and nucleophiles (i.e., the nucleophilic Michael reaction) is a historically useful organic transformation. Despite its general utility, the efficiency and outcomes can vary widely and are often closely dependent upon specific reaction conditions. Nevertheless, with improvements in reaction design, including catalyst development and an expansion of the substrate scope to feature more electrophilic alkynes, many examples now present with features that are congruent with Click chemistry. Although several nucleophilic species can participate in these conjugate additions, ubiquitous nucleophiles such as thiols, amines, and alcohols are commonly employed and, consequently, among the most well developed. For many years, these conjugate additions were largely relegated to organic chemistry, but in the last few decades their use has expanded into other spheres such as bioorganic chemistry and polymer chemistry. Within these fields, they have been particularly useful for bioconjugation reactions and step-growth polymerizations, respectively, due to their excellent efficiency, orthogonality, and ambient reactivity. The reaction is expected to feature in increasingly divergent application settings as it continues to emerge as a Click reaction.
Collapse
Affiliation(s)
- Joshua C. Worch
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Connor J. Stubbs
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Matthew J. Price
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrew P. Dove
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
25
|
Zheng X, Zhong T, Yi X, Shen Q, Yin C, Zhang L, Zhou J, Chen J, Yu C. Iron‐Catalyzed Three‐Component Cyanoalkylsulfonylation of 2,3‐Allenoic Acids, Sulfur Dioxide, and Cycloketone Oxime Esters: Access to Cyanoalkylsulfonylated Butenolides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiangyun Zheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xiao Yi
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Qitao Shen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Lei Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jian Zhou
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Junyu Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
26
|
Donabauer K, König B. Strategies for the Photocatalytic Generation of Carbanion Equivalents for Reductant-Free C-C Bond Formations. Acc Chem Res 2021; 54:242-252. [PMID: 33325678 PMCID: PMC7871440 DOI: 10.1021/acs.accounts.0c00620] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/18/2022]
Abstract
ConspectusThe use of photocatalysis in organic chemistry has encountered a surge of novel transformations since the start of the 21st century. The majority of these transformations are driven by the generation and subsequent reaction of radicals, owing to the intrinsic property of common photocatalysts to transfer single electrons from their excited state. While this is a powerful and elegant method to develop novel transformations, several research groups recently sought to further extend the toolbox of photocatalysis into the realm of polar ionic reactivity by the formation of cationic as well as anionic key reaction intermediates to furnish a desired product.Our group became especially interested in the photocatalytic formation of anionic carbon nucleophiles, as the overall transformation resembles classical organometallic reactions like Grignard, Barbier, and Reformatsky reactions, which are ubiquitous in organic synthesis with broad applications especially in the formation of valuable C-C bonds. Although these classical reactions are frequently applied, their use still bears certain disadvantages; one is the necessity of an (over)stoichiometric amount of a reducing metal. The reducing, low-valent, metal is solely applied to activate the starting material to form the organometallic carbanion synthon, while the final reaction product does generally not contain a metal species. Hence, a stoichiometric amount of metal salt is bound to be generated at the end of each reaction, diminishing the atom economy. The use of visible light as mild and traceless activation agent to drive chemical reactions can be a means to arrive at a more atom economic transformation, as a reducing metal source is avoided. Beyond this, the vast pool of photocatalytic activation methods offers the potential to employ easily available starting materials, as simple as unfunctionalized alkanes, to open novel and more facile retrosynthetic pathways. However, as mentioned above, photocatalysis is dominated by open-shell radical reactivity. With neutral radicals showing an intrinsically different reactivity than ionic species, novel strategies to form intermediates expressing a polar behavior need to be developed in order to achieve this goal.In the last couple of years, several methods toward this aim have been reported by our group and others. This Account aims to give an overview of the different existing strategies to photocatalytically form carbon centered anions or equivalents of those in order to form C-C bonds. As the main concept is to omit a stoichiometric reductant source (like a low-valent metal in classical organometallic reactions), only redox-neutral and reductant-free transformations were taken into closer consideration. We present selected examples of important strategies and try to illustrate the intentions and concepts behind the methods developed by our group and others.
Collapse
Affiliation(s)
- Karsten Donabauer
- Institute for Organic Chemistry, University of
Regensburg, Universitätsstraße 31, 93053 Regensburg,
Germany
| | - Burkhard König
- Institute for Organic Chemistry, University of
Regensburg, Universitätsstraße 31, 93053 Regensburg,
Germany
| |
Collapse
|
27
|
Bao P, Yu F, He FS, Tang Z, Deng WP, Wu J. Visible-light-induced remote C(sp3)–H sulfonylvinylation: assembly of cyanoalkylated vinyl sulfones. Org Chem Front 2021. [DOI: 10.1039/d1qo00732g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoinduced three-component sulfonylvinylation reaction of propargyl alcohols, potassium metabisulfite and cycloketone oxime esters is developed, affording cyanoalkylated vinyl sulfones in moderate to good yields.
Collapse
Affiliation(s)
- Ping Bao
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Feiyan Yu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, China
| |
Collapse
|
28
|
Yao Y, Yin Z, He FS, Qin X, Xie W, Wu J. Photoinduced intramolecular carbosulfonylation of alkynes: access to sulfone-containing dibenzazepines from sulfur dioxide. Chem Commun (Camb) 2021; 57:2883-2886. [DOI: 10.1039/d0cc07927h] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-driven three-component carbosulfonylation of terminal alkynes, DABCO (SO2)2 and aryldiazonium tetrafluoroborates is developed, leading to sulfone-containing dibenzazepines in moderate to good yields under mild conditions.
Collapse
Affiliation(s)
- Yanfang Yao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Ziqing Yin
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Xuwei Qin
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| |
Collapse
|
29
|
Zheng M, Gao K, Zhang Y, Lu H. Visible-light photoredox-catalyzed aryl radical in situ SO 2-capture reactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00099c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An aryl radical in situ SO2-capture reaction is developed for the synthesis of various β-keto, allyl and alkynyl arylsulfone derivatives.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yanhu Zhang
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
30
|
Tu X, Huang J, Xie W, Zhu T, Wu J. Generation of (E)-β-sulfonyl enamines from sulfur dioxide via a radical process. Org Chem Front 2021. [DOI: 10.1039/d0qo01551b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An iron(ii)-catalyzed three-component reaction of O-acyl oximes, sulfur dioxide, and N-vinylacetamides is accomplished. Diverse (E)-β-sulfonyl enamines are obtained in moderate to good yields by using this protocol with excellent stereoselectivity and regioselectivity.
Collapse
Affiliation(s)
- Xiaodong Tu
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Jiapian Huang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
31
|
Wang X, Liu R, Ding Q, Xiao W, Wu J. Synergistic photoredox and tertiary amine catalysis: generation of allylic sulfones from Morita–Baylis–Hillman acetates and sulfur dioxide. Org Chem Front 2021. [DOI: 10.1039/d1qo00344e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first example of the synthesis of allylic sulfones through synergistic photoredox and tertiary amine catalysis, starting from MBH acetates, DABCO·(SO2)2 and 4-substituted Hantzsch esters or potassium alkyltrifluoroborates via a radical pathway, is reported.
Collapse
Affiliation(s)
- Xinhua Wang
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Ruixiu Liu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou
- China
| | - Qiuping Ding
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Wei Xiao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
32
|
Zhou K, Huang J, Wu J, Qiu G. An unexpected iron(II)-promoted reaction of N-arylprop-2-yn-1-imines with water: Facile assembly of multi-substituted pyrroles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
He FS, Yao Y, Tang Z, Xie W, Wu J. Copper-catalyzed regio- and chemoselective selenosulfonylation of 1,6-enynes from sulfur dioxide. Org Chem Front 2021. [DOI: 10.1039/d1qo01258d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient copper-catalyzed multicomponent reaction of 1,6-enynes, diselenides, DABCO·(SO2)2, and cycloketone oxime esters was achieved, providing cyanoalkylsulfonated pyrrolidines in moderate to good yields.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yanfang Yao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
34
|
Ji M, Xu L, Luo X, Jiang M, Wang S, Chen JQ, Wu J. Alkoxycarbonyl radicals from alkyloxalyl chlorides: photoinduced synthesis of isoquinolinediones under visible light irradiation. Org Chem Front 2021. [DOI: 10.1039/d1qo01368h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alkyloxalyl chlorides, generated from alcohols and oxalyl chlorides, are used as alkoxycarbonyl radicals in the reaction of N-acryloyl benzamides under photocatalysis at room temperature.
Collapse
Affiliation(s)
- Mingjuan Ji
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Liang Xu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiangxiang Luo
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Minghui Jiang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Siyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jian-Qiang Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
35
|
Zhang J, Wang X, Kuang Y, Wu J. Generation of Sulfonylated Tetrazoles through an Iron-Catalyzed Multicomponent Reaction Involving Sulfur Dioxide. iScience 2020; 23:101872. [PMID: 33336165 PMCID: PMC7733023 DOI: 10.1016/j.isci.2020.101872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
As a privileged motif, tetrazoles can be widely found in pharmaceuticals and materials science. Herein, a five-component reaction of cycloketone oxime esters, alkynes, DABCO·(SO2)2, and two molecules of trimethylsilyl azide under iron catalysis is developed, giving rise to a range of cyano-containing sulfonylated tetrazoles in moderate to good yields. This multicomponent reaction exhibits excellent selectivity and enables the formation of multiple new chemical bonds in one pot. A possible mechanism involving azidosulfonylation of alkynes, C-C bond cleavage of both cycloketone oxime esters and alkynes, and [3 + 2] cycloaddition of trimethylsilyl azide and the nitrilium cation intermediate is proposed. Additionally, the potential of terminal alkynes acting as powerful synthons for the synthesis of tetrazoles in a radical initiated process is demonstrated for the first time. High-value tetrazole motifs were synthesized via a five-component reaction Fixing sulfur dioxide into tetrazole molecules under mild conditions Low-cost iron catalyst initiated the transformation Excellent selectivity with the formation of multiple new chemical bonds
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xuefeng Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yunyan Kuang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
36
|
Yao Y, Yin Z, Chen W, Xie W, He F, Wu J. A Concise Route to 2‐Sulfonylacetonitriles from Sodium Metabisulfite. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yanfang Yao
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Ziqing Yin
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Weiyun Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Fu‐Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
37
|
Assembly of 3-sulfonated 2H-pyrrol-2-ones through the insertion of sulfur dioxide with allenoic amides. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
He Y, Yang J, Liu Q, Zhang X, Fan X. Synthesis of β-Methylsulfonylated N-Heterocycles from Saturated Cyclic Amines with the Insertion of Sulfur Dioxide. J Org Chem 2020; 85:15600-15609. [DOI: 10.1021/acs.joc.0c02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jintao Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
39
|
He F, Yao Y, Xie W, Wu J. Metal‐Free Synthesis of (
E
)‐Vinyl Sulfones
via
An Insertion of Sulfur Dioxide/1,5‐Hydrogen Atom Transfer Sequence. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000778] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fu‐Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Yanfang Yao
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
40
|
Wang HY, Zhong LJ, Lv GF, Li Y, Li JH. Photocatalytic dual decarboxylative alkenylation mediated by triphenylphosphine and sodium iodide. Org Biomol Chem 2020; 18:5589-5593. [PMID: 32677630 DOI: 10.1039/d0ob01242d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An efficient photocatalytic dual decarboxylative alkenylation of α,β-unsaturated carboxylic acids and alkyl N-hydroxyphthalimide (NHP) esters mediated by triphenylphosphine and sodium iodide has been developed. This protocol proceeds under 456-nanometer irradiation by visible blue light in the absence of transition metals or organic dye based photoredox catalysts. The reaction is successfully applied to a wide range of redox-active esters derived from aliphatic carboxylic acids (1°, 2° and 3°) and α-amino acids, enabling transformations of diverse α,β-unsaturated carboxylic acids to α,β-alkylated styrenes with high efficiency and excellent selectivity under mild conditions.
Collapse
Affiliation(s)
- Hong-Yu Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | | | | | | | | |
Collapse
|
41
|
Ye S, Yang M, Wu J. Recent advances in sulfonylation reactions using potassium/sodium metabisulfite. Chem Commun (Camb) 2020; 56:4145-4155. [PMID: 32242574 DOI: 10.1039/d0cc01775b] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, sulfonylation reactions using potassium/sodium metabisulfite as the sulfur dioxide surrogate have been developed rapidly. In most cases, the transformations go through radical processes with the insertion of sulfur dioxide under mild conditions. Additionally, transition metal catalysis is applied in the reactions for the synthesis of sulfonyl-containing compounds. Among the approaches, photoinduced conversions under visible light or ultraviolet irradiation are also involved. In this updated report, the insertion of sulfur dioxide from potassium metabisulfite or sodium metabisulfite is summarized.
Collapse
Affiliation(s)
- Shengqing Ye
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Min Yang
- School of Basic Medicine, Gannan Medical University, 1 Yixueyuan Road, Ganzhou 341000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
He FS, Yao Y, Xie W, Wu J. Photoredox-catalyzed sulfonylation of difluoroenoxysilanes with the insertion of sulfur dioxide. Chem Commun (Camb) 2020; 56:9469-9472. [DOI: 10.1039/d0cc03591b] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoredox-catalyzed three-component reaction of aryldiazonium tetrafluoroborates with sodium metabisulfite and 2,2-difluoro enol silyl ethers is described, providing α,α-difluoro-β-ketosulfones in moderate to good yields under mild conditions.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Yanfang Yao
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| |
Collapse
|
43
|
Zhu T, Rojsitthisak P, Wu J. Generation of (Z)-β-alkenyl alkylsulfones via a copper-catalyzed decarboxylative alkylsulfonylation. Org Chem Front 2020. [DOI: 10.1039/d0qo01094d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A copper-catalyzed three-component reaction of acrylamides, sulfur dioxide and phenyliodine(iii) dicarboxylates is developed. The conversion using phenyliodine dicarboxylates as alkyl radical precursors provides diverse (Z)-β-alkenyl alkylsulfones.
Collapse
Affiliation(s)
- Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Patumwan
- Thailand
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|