1
|
Goculdas T, Ramirez M, Crossley M, Sadula S, Vlachos DG. Biomass-Derived, Target Specific, and Ecologically Safer Insecticide Active Ingredients. CHEMSUSCHEM 2024; 17:e202400824. [PMID: 38924470 DOI: 10.1002/cssc.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
With the continuous increase in food production to support the growing population, ensuring agricultural sustainability using crop-protecting agents, such as pesticides, is vital. Conventional pesticides pose significant environmental risks, prompting the need for eco-friendly alternatives. This study reports the synthesis of new amide-based insecticidal active ingredients from biomass-derived monomers, specifically furfural and vanillin. The process involves reductive amination followed by carbonylation. The synthesis of the furfural-based carbamate yield reaches a cumulative 88 %, with catalysts Rh/Al2O3 and La(OTf)3 being recyclable at each stage. Insecticidal activity assessments reveal that the furfural carbamate exhibits competitive performance, achieving an LC50 of 254.22 μg/cm2, compared to 251.25 μg/cm2 for carbofuran. Ecotoxicity predictions indicate significantly lower toxicity levels toward non-target aquatic and terrestrial species. The importance of the low octanol-water partition coefficient of the biobased carbamate, attributed to the oxygen heteroatom and electron density of the furan ring, is discussed in detail. Building on these promising results, the synthesis strategy was extended to six other biobased aldehydes, resulting in a diverse portfolio of biomass-derived carbamates. A techno-economic analysis reveals a minimum selling price of 11.1 $/kg, only half that of comparable carbamates, demonstrating the economic viability of these new biobased insecticides.
Collapse
Affiliation(s)
- Tejas Goculdas
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| | - Maximus Ramirez
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| | - Michael Crossley
- Department of Entomology and Wildlife Ecology, 531 S. College Ave, University of Delaware, Newark, DE 19716, USA
| | - Sunitha Sadula
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| |
Collapse
|
2
|
Lephalala M, Vives SS, Bisetty K. Chaotic neural network algorithm with competitive learning integrated with partial Least Square models for the prediction of the toxicity of fragrances in sanitizers and disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173754. [PMID: 38844215 DOI: 10.1016/j.scitotenv.2024.173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
This study addresses the need for accurate structural data regarding the toxicity of fragrances in sanitizers and disinfectants. We compare the predictive and descriptive (model stability) potential of multiple linear regression (MLR) and partial least squares (PLS) models optimized through variable selection (VS). A novel hybrid chaotic neural network algorithm with competitive learning (CCLNNA)-PLS modeling strategy can offer specific optimization with satisfactory results, even for a limited dataset. While also exploring the preliminary comparative analysis, the goal is to introduce an adapted novel CCLNNA optimization strategy for VS, inspired by neural networks, along with exploring the influence of the percentage of significant descriptors in the optimization function to enhance the final model's capabilities. We analyzed an available dataset of 24 molecules, incorporating ADMET and PaDEL descriptors as predictor variables, to explore the relationship between the response/target variable (pLC50) and the meticulously optimized set of descriptors. The suitability of the selected PLS models (cross- and external-validated accuracy combined with percentage of significant descriptors at a level equal to or >80 %) underscores the importance of expanding the dataset to amplify the validation protocols, thus enhancing future model reliability and environmental impact.
Collapse
Affiliation(s)
- Matshidiso Lephalala
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Salvador Sagrado Vives
- Departamento de Química Analítica, Facultad de Farmacia. Universitat de València, E-46100 Burjassot, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
3
|
Daneshmand M, SalarAmoli J, BaghbanZadeh N. A QSAR study for predicting malformation in zebrafish embryo. Toxicol Mech Methods 2024; 34:743-749. [PMID: 38586962 DOI: 10.1080/15376516.2024.2338907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Developmental toxicity tests are extremely expensive, require a large number of animals, and are time-consuming. It is necessary to develop a new approach to simplify the analysis of developmental endpoints. One of these endpoints is malformation, and one group of ongoing methods for simplifying is in silico models. In this study, we aim to develop a quantitative structure-activity relationship (QSAR) model and identify the best algorithm for predicting malformations, as well as the most important and effective physicochemical properties associated with malformation. METHODS The dataset was extracted from a reliable database called COMPTOX. Physicochemical properties (descriptors) were calculated using Mordred and RDKit chemoinformatics software. The data were cleaned, preprocessed, and then split into training and testing sets. Machine learning algorithms, such as gradient boosting model (GBM) and logistic regression (LR), as well as deep learning models, including multilayer perceptron (MLP) and neural networks (NNs) trained with train set data and different sets of descriptors. The models were then validated with test set and various statistical parameters, such as Matthew's correlation coefficient (MCC) and balanced accuracy (BAC) score, were used to compare the models. RESULTS A set of descriptors containing with 78% AUC was identified as the best set of descriptors. Gradient boosting was determined to be the best algorithm with 78% predictive power. CONCLUSIONS The descriptors that were the most effective for developing models directly impact the mechanism of malformation, and GBM is the best model due to its MCC and BAC.
Collapse
Affiliation(s)
- Mahsa Daneshmand
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jamileh SalarAmoli
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
4
|
Krishnan SR, Roy A, Gromiha MM. Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning. Brief Bioinform 2024; 25:bbae002. [PMID: 38261341 PMCID: PMC10805179 DOI: 10.1093/bib/bbae002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Ribonucleic acids (RNAs) play important roles in cellular regulation. Consequently, dysregulation of both coding and non-coding RNAs has been implicated in several disease conditions in the human body. In this regard, a growing interest has been observed to probe into the potential of RNAs to act as drug targets in disease conditions. To accelerate this search for disease-associated novel RNA targets and their small molecular inhibitors, machine learning models for binding affinity prediction were developed specific to six RNA subtypes namely, aptamers, miRNAs, repeats, ribosomal RNAs, riboswitches and viral RNAs. We found that differences in RNA sequence composition, flexibility and polar nature of RNA-binding ligands are important for predicting the binding affinity. Our method showed an average Pearson correlation (r) of 0.83 and a mean absolute error of 0.66 upon evaluation using the jack-knife test, indicating their reliability despite the low amount of data available for several RNA subtypes. Further, the models were validated with external blind test datasets, which outperform other existing quantitative structure-activity relationship (QSAR) models. We have developed a web server to host the models, RNA-Small molecule binding Affinity Predictor, which is freely available at: https://web.iitm.ac.in/bioinfo2/RSAPred/.
Collapse
Affiliation(s)
- Sowmya R Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - Arijit Roy
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Department of Computer Science, National University of Singapore, Singapore 117543
| |
Collapse
|
5
|
Yin Y, Yang Z, Li N, Yu X, Chen ML, Wang M, Ren XL. Least Absolute Shrinkage and Selection Operator-Based Prediction of the Binding Constant of p-Sulfonatocalix[6]/[8]arenes with Alkaloids. J Chem Inf Model 2024; 64:359-377. [PMID: 38164000 DOI: 10.1021/acs.jcim.3c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
p-Sulfonatocalix[n]arenes (SCnA) have demonstrated great potential for drug encapsulation through host-guest complexation to improve solubility, stability, and bioavailability. In this study, the solubilization effect of SCnA (n = 4, 6, 8) on 95 active compounds derived from traditional Chinese medicine (TCM) was investigated. Based on the significant solubilization effect on alkaloids, SC6A/SC8A and 76 alkaloids were selected as the host and guest, respectively, to determine the binding constant by competitive fluorescence titration. LASSO regression was adopted to investigate the mechanism of the complex of SCnA with alkaloids. The binding constant of alkaloids-SC6A and alkaloids-SC8A was related to the alkaloid alkalinity. Also, the electronegativity, polarization, first ionization potential, hydrogen bond potential, the molecular size, and shape of alkaloids are critical properties to determine alkaloids-SC6A binding constant as well as electronegativity, polarization, hydrophobicity, and the molecular size and shape of alkaloids play an important role for the alkaloids-SC8A binding constant.
Collapse
Affiliation(s)
- Yu Yin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuan Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mei-Ling Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao-Liang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Kelleci Çeli K F, Karaduman G. Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach. J Chem Inf Model 2023; 63:4602-4614. [PMID: 37494070 DOI: 10.1021/acs.jcim.3c00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Drug-induced hepatotoxicity, also known as drug-induced liver injury (DILI), is among the possible adverse effects of pharmacotherapy. This clinical condition is accepted as one of the factors leading to patient mortality and morbidity. The LiverTox database was built by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) to predict potential liver damage from medications and take appropriate precautions. The database has classified medicines into seven risk categories (A, B, C, D, E, E*, and X) to avoid medicine-induced liver toxicity. The hepatic damage risk decreases from group A to group E. This study did not include the E* and X classes because they contained unverified and unknown data groups. Our study aims to predict potential liver damage of new drug molecules without using experimental animals. We predict which of the LiverTox risk category drugs with unknown liver toxicity potential will fall into using our one-vs-all quantitative structure-toxicity relationship (OvA-QSTR) model. Our dataset, consisting of 678 organic drug molecules from different pharmacological classes, was collected from LiverTox. The OvA-QSTR models implemented by Bayesian Network (BayesNet) performed well based on the selected descriptors, with the precision-recall curve (PRC) areas ranging from 0.718 to 0.869. Our OvA-QSTR models provide a reliable premarketing risk evaluation of pharmaceutical-induced liver damage potential and offer predictions for different risk levels in DILI.
Collapse
Affiliation(s)
- Feyza Kelleci Çeli K
- Vocational School of Health Services, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey
| | - Gül Karaduman
- Vocational School of Health Services, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019-0408, United States
| |
Collapse
|
7
|
Zhang F, Wang Z, Peijnenburg WJGM, Vijver MG. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles. ENVIRONMENT INTERNATIONAL 2023; 177:108025. [PMID: 37329761 DOI: 10.1016/j.envint.2023.108025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Research on theoretical prediction methods for the mixture toxicity of engineered nanoparticles (ENPs) faces significant challenges. The application of in silico methods based on machine learning is emerging as an effective strategy to address the toxicity prediction of chemical mixtures. Herein, we combined toxicity data generated in our lab with experimental data reported in the literature to predict the combined toxicity of seven metallic ENPs for Escherichia coli at different mixing ratios (22 binary combinations). We thereafter applied two machine learning (ML) techniques, support vector machine (SVM) and neural network (NN), and compared the differences in the ability to predict the combined toxicity by means of the ML-based methods and two component-based mixture models: independent action and concentration addition. Among 72 developed quantitative structure-activity relationship (QSAR) models by the ML methods, two SVM-QSAR models and two NN-QSAR models showed good performance. Moreover, an NN-based QSAR model combined with two molecular descriptors, namely enthalpy of formation of a gaseous cation and metal oxide standard molar enthalpy of formation, showed the best predictive power for the internal dataset (R2test = 0.911, adjusted R2test = 0.733, RMSEtest = 0.091, and MAEtest = 0.067) and for the combination of internal and external datasets (R2test = 0.908, adjusted R2test = 0.871, RMSEtest = 0.255, and MAEtest = 0.181). In addition, the developed QSAR models performed better than the component-based models. The estimation of the applicability domain of the selected QSAR models showed that all the binary mixtures in training and test sets were in the applicability domain. This study approach could provide a methodological and theoretical basis for the ecological risk assessment of mixtures of ENPs.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands.
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| |
Collapse
|
8
|
Zhu T, Chen Y, Tao C. Multiple machine learning algorithms assisted QSPR models for aqueous solubility: Comprehensive assessment with CRITIC-TOPSIS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159448. [PMID: 36252662 DOI: 10.1016/j.scitotenv.2022.159448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
As an essential environmental property, the aqueous solubility quantifies the hydrophobicity of a compound. It could be further utilized to evaluate the ecological risk and toxicity of organic pollutants. Concerned about the proliferation of organic contaminants in water and the associated technical burden, researchers have developed QSPR models to predict aqueous solubility. However, there are no standard procedures or best practices on how to comprehensively evaluate models. Hence, the CRITIC-TOPSIS comprehensive assessment method was first-ever proposed according to a variety of statistical parameters in the environmental model research field. 39 models based on 13 ML algorithms (belonged to 4 tribes) and 3 descriptor screening methods, were developed to calculate aqueous solubility values (log Kws) for organic chemicals reliably and verify the effectiveness of the comprehensive assessment method. The evaluations were carried out for exhibiting better predictive accuracy and external competitiveness of the MLR-1, XGB-1, DNN-1, and kNN-1 models in contrast to other prediction models in each tribe. Further, XGB model based on SRM (XGB-1, C = 0.599) was selected as an optimal pathway for prediction of aqueous solubility. We hope that the proposed comprehensive evaluation approach could act as a promising tool for selecting the optimum environmental property prediction methods.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ying Chen
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
9
|
Zhu T, Tao C, Cheng H, Cong H. Versatile in silico modelling of microplastics adsorption capacity in aqueous environment based on molecular descriptor and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157455. [PMID: 35863580 DOI: 10.1016/j.scitotenv.2022.157455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
To comprehensively evaluate the hazards of microplastics and their coexisting organic pollutants, the sorption capacity of microplastics is a major issue that is quantified through the microplastic-aqueous sorption coefficient (Kd). Almost all quantitative structure-property relationship (QSPR) models that describe Kd apply only to narrow, relatively homogeneous groups of reactants. Herein, non-hybrid QSPR-based models were developed to predict PE-water (KPE-w), PE-seawater (KPE-sw), PVC-water (KPVC-w) and PP-seawater (KPP-sw) sorption coefficients at different temperatures, with eight machine learning algorithms. Moreover, novel hybrid intelligent models for predicting Kd more accurately were innovatively developed by applying GA, PSO and AdaBoost algorithms to optimize MLP and ELM models. The results indicated that all three optimization algorithms could improve the robustness and predictability of the standalone MLP and ELM models. In all models trained with KPE-w, KPE-sw, KPVC-w and KPP-sw data sets, GBDT-1 and XGBoost-1 models, MLP-GA-2 and MLP-PSO-2 models, MLR-3 and MLR-4 models performed better in terms of goodness of fit (Radj2: 0.907-0.999), robustness (QBOOT2: 0.900-0.937) and predictability (Rext2: 0.889-0.970), respectively. Analyzing the descriptors revealed that temperature, lipophilicity, ionization potential and molecular size were correlated closely with the adsorption capacity of microplastics to organic pollutants. The proposed QSPR models may assist in initial environmental exposure assessments without imposing heavy costs in the early experimental phase.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Haomiao Cheng
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Haibing Cong
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
10
|
Shavalieva G, Papadokonstantakis S, Peters G. Prior Knowledge for Predictive Modeling: The Case of Acute Aquatic Toxicity. J Chem Inf Model 2022; 62:4018-4031. [PMID: 35998659 PMCID: PMC9472271 DOI: 10.1021/acs.jcim.1c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Early assessment of the potential impact of chemicals on health and the environment requires toxicological properties of the molecules. Predictive modeling is often used to estimate the property values in silico from pre-existing experimental data, which is often scarce and uncertain. One of the ways to advance the predictive modeling procedure might be the use of knowledge existing in the field. Scientific publications contain a vast amount of knowledge. However, the amount of manual work required to process the enormous volumes of information gathered in scientific articles might hinder its utilization. This work explores the opportunity of semiautomated knowledge extraction from scientific papers and investigates a few potential ways of its use for predictive modeling. The knowledge extraction and predictive modeling are applied to the field of acute aquatic toxicity. Acute aquatic toxicity is an important parameter of the safety assessment of chemicals. The extensive amount of diverse information existing in the field makes acute aquatic toxicity an attractive area for investigation of knowledge use for predictive modeling. The work demonstrates that the knowledge collection and classification procedure could be useful in hybrid modeling studies concerning the model and predictor selection, addressing data gaps, and evaluation of models' performance.
Collapse
Affiliation(s)
- Gulnara Shavalieva
- Department
of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Stavros Papadokonstantakis
- Department
of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Gregory Peters
- Department
of Technology Management and Economics, Chalmers University of Technology, SE-411 33 Gothenburg, Sweden
| |
Collapse
|
11
|
Wang X, Li F, Chen J, Teng Y, Ji C, Wu H. Critical features identification for chemical chronic toxicity based on mechanistic forecast models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119584. [PMID: 35688391 DOI: 10.1016/j.envpol.2022.119584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Facing billions of tons of pollutants entering the ocean each year, aquatic toxicity is becoming a crucial endpoint for evaluating chemical adverse effects on ecosystems. Notably, huge amount of toxic chemicals at environmental relevant doses can cause potential adverse effects. However, chronic aquatic toxicity effects of chemicals are much scarcer, especially at population level. Rotifers are highly sensitive to toxicants even at chronic low-doses and their communities are usually considered as effective indicators for assessing the status of aquatic ecosystems. Therefore, the no observed effect concentration (NOEC) for population abundance of rotifers were selected as endpoints to develop machine learning models for the prediction of chemical aquatic chronic toxicity. In this study, forty-eight binary models were built by eight types of chemical descriptors combined with six machine learning algorithms. The best binary model was 1D & 2D molecular descriptors - random trees model (RT) with high balanced accuracy (BA) (0.83 for training and 0.83 for validation set), and Matthews correlation coefficient (MCC) (0.72 for training set and 0.67 for validation set). Moreover, the optimal model identified the primary factors (SpMAD_Dzp, AMW, MATS2v) and filtered out three high alerting substructures [c1cc(Cl)cc1, CNCO, CCOP(=S)(OCC)O] influencing the chronic aquatic toxicity. These results showed that the compounds with low molecular volume, high polarity and molecular weight could contribute to adverse effects on rotifers, facilitating the deeper understanding of chronic toxicity mechanisms. In addition, forecast models had better performances than the common models embedded into ECOSAR software. This study provided insights into structural features responsible for the toxicity of different groups of chemicals and thereby allowed for the rational design of green and safer alternatives.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| |
Collapse
|
12
|
Kumar P, Kumar A. Unswerving modeling of hepatotoxicity of cadmium containing quantum dots using amalgamation of quasiSMILES, index of ideality of correlation, and consensus modeling. Nanotoxicology 2021; 15:1199-1214. [PMID: 34961428 DOI: 10.1080/17435390.2021.2008039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Liver toxicity of quantum dots varies with size, concentration, and other structural as well as experimental parameters. For modeling hepatotoxicity, the eclectic data associated with cadmium containing quantum dots have been used in the creation of quasiSMILES for their representation. The core diameter is normalized for wider applicability and the index of the ideality of correlation is applied to construct the better quantitative features toxicity relationship models. Total eight splits are created and the best model is obtained through split 1 with better prediction criteria of validation set objects. The values of all statistical criteria used in the quality determination of a QSAR model are within the specified range for all the eight toxicity models developed here. Factors like TGA ligand and 0.6-0.7 nm diameter are favorable for liver toxicity while L-cysteine ligand and 0.5-0.6 nm core diameter are helpful in the reduction of toxicity. Further, the intelligent consensus modeling process forms a total of 40 individual and 20 consensus models and the best individual and consensus models are 'Good' in MAE-based criteria. The consensus modeling enhances the prediction ability as well as the accuracy of the developed models and increases the applicability space of the built models for hepatotoxicity prediction of quantum dots.
Collapse
Affiliation(s)
- Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
13
|
Gajewicz-Skretna A, Furuhama A, Yamamoto H, Suzuki N. Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. CHEMOSPHERE 2021; 280:130681. [PMID: 34162070 DOI: 10.1016/j.chemosphere.2021.130681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
There has been an increase in the use of non-animal approaches, such as in silico and/or in vitro methods, for assessing the risks of hazardous chemicals. A number of machine learning algorithms link molecular descriptors that interpret chemical structural properties with their biological activity. These computer-aided methods encounter several challenges, the most significant being the heterogeneity of datasets; more efficient and inclusive computational methods that are able to process large and heterogeneous chemical datasets are needed. In this context, this study verifies the utility of similarity-based machine learning methods in predicting the acute aquatic toxicity of diverse organic chemicals on Daphnia magna and Oryzias latipes. Two similarity-based methods were tested that employ a limited training dataset, most similar to a given fitting point, instead of using the entire dataset that encompasses a wide range of chemicals. The kernel-weighted local polynomial approach had a number of advantages over the distance-weighted k-nearest neighbor (k-NN) algorithm. The results highlight the importance of lipophilicity, electrophilic reactivity, molecular polarizability, and size in determining acute toxicity. The rigorous model validation ensures that this approach is an important tool for estimating toxicity in new or untested chemicals.
Collapse
Affiliation(s)
- Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Ayako Furuhama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences (NIHS), 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Hiroshi Yamamoto
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Noriyuki Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| |
Collapse
|
14
|
Mombelli E, Pandard P. Evaluation of the OECD QSAR toolbox automatic workflow for the prediction of the acute toxicity of organic chemicals to fathead minnow. Regul Toxicol Pharmacol 2021; 122:104893. [PMID: 33587933 DOI: 10.1016/j.yrtph.2021.104893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
Regulatory frameworks require information on acute fish toxicity to ensure environmental protection. The experimental assessment of this property relies on a substantial number of fish to be tested and it is in conflict with the current drive to replace in vivo testing. For this reason, alternatives to in vivo testing have been proposed during the past years. Among these alternatives, there are Quantitative Structure-Activity Relationships (QSAR) that require the sole knowledge of chemical structure to yield predictions of toxicities. In this context, the OECD QSAR Toolbox is one of the leading QSAR tools for regulatory purposes that enables the prediction of fish toxicities. The aim of this work is to provide evidence about the predictive reliability of the automated workflow for predicting acute toxicity in fish which is embedded within this toolbox. The results herein presented show that the logic underpinning this automated workflow can predict with a reliability that, in the majority of cases, is comparable to inter-laboratory variability and, in a significant number of cases, is also comparable with intra-laboratory variability. Moreover, considerations on the toxic mode of action provided by the OECD tool proved to be helpful in refining predictions and reducing the number of prediction outliers.
Collapse
Affiliation(s)
- Enrico Mombelli
- Institut National de l'Environnement Industriel et des Risques (INERIS), 60550, Verneuil en Halatte, France.
| | - Pascal Pandard
- Institut National de l'Environnement Industriel et des Risques (INERIS), 60550, Verneuil en Halatte, France
| |
Collapse
|
15
|
Wang Y, Chen X. QSPR model for Caco-2 cell permeability prediction using a combination of HQPSO and dual-RBF neural network. RSC Adv 2020; 10:42938-42952. [PMID: 35514900 PMCID: PMC9058322 DOI: 10.1039/d0ra08209k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
The Caco-2 cell model is widely used to evaluate the in vitro human intestinal permeability of drugs due to its morphological and functional similarity to human enterocytes. Although it is safe and relatively economic, it is time-consuming. A rapid and accurate quantitative structure-property relationship (QSPR) model of Caco-2 permeability is helpful to improve the efficiency of oral drug development. The aim of our study is to explore the predictive ability of the QSPR model, to study its permeation mechanism, and to develop a potential permeability prediction model, for Caco-2 cells. In our study, a relatively large data set was collected and the abnormal data were eliminated using the Monte Carlo regression and hybrid quantum particle swarm optimization (HQPSO) algorithm. Then, the remaining 1827 compounds were used to establish QSPR models. To generate multiple chemically diverse training and test sets, we used a combination of principal component analysis (PCA) and self-organizing mapping (SOM) neural networks to split the modeling data set characterized by PaDEL-descriptors. After preliminary selection of descriptors by the mean decrease impurity (MDI) method, the HQPSO algorithm was used to select the key descriptors. Six different methods, namely, multivariate linear regression (MLR), support vector machine regression (SVR), xgboost, radial basis function (RBF) neural networks, dual-SVR and dual-RBF were employed to develop QSPR models. The best dual-RBF model was obtained finally with R 2 = 0.91, and R cv5 2 = 0.77, for the training set, and R T 2 = 0.77, for the test set. A series of validation methods were used to assess the robustness and predictive ability of the dual-RBF model under OECD principles. A new application domain (AD) definition method based on the descriptor importance-weighted and distance-based (IWD) method was proposed, and the outliers were analyzed carefully. Combined with the importance of the descriptors used in the dual-RBF model, we concluded that the "H E-state" and hydrogen bonds are important factors affecting the permeability of drugs passing through the Caco-2 cell. Compared with the reported studies, our method exhibits certain advantages in data size, transparency of modeling process and prediction accuracy to some extent, and is a promising tool for virtual screening in the early stage of drug development.
Collapse
Affiliation(s)
- Yukun Wang
- School of Chemical Engineering, University of Science and Technology Liaoning No. 185, Qianshan Anshan 114051 Liaoning China
- School of Electronic and Information Engineering, University of Science and Technology Liaoning No. 185, Qianshan Anshan 114051 Liaoning China +864125928367
| | - Xuebo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning No. 185, Qianshan Anshan 114051 Liaoning China +864125928367
| |
Collapse
|