1
|
Liu J, Zhang F, Shi X. The role of metal nanocarriers, liposomes and chitosan-based nanoparticles in diabetic retinopathy treatment: A review study. Int J Biol Macromol 2024:139017. [PMID: 39708854 DOI: 10.1016/j.ijbiomac.2024.139017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Diabetic Retinopathy (DR) is a significant and progressive eye complication associated with diabetes mellitus, leading to potential vision loss. The pathophysiology of DR involves complex neurovascular changes due to prolonged hyperglycemia, resulting in microangiopathy and neurodegeneration. Current treatment modalities come with limitations such as low bioavailability of therapeutic agents, risk of side effects, and surgical complications. Consequently, the prevention and management of DR, particularly in its advanced stages, present ongoing challenges. This review investigates recent advancements in nanotechnology as a novel approach to enhance the treatment of DR. A comprehensive literature review of recent studies focusing on nanocarriers for drug delivery in DR treatment and an analysis of their efficacy compared to traditional methods was conducted for this study. The findings indicate that nanotechnology can significantly enhance the bioavailability of therapeutic agents while minimizing systemic exposure and associated side effects. The novelty of this study lies in its focus on the intersection of nanotechnology and ophthalmology, exploring innovative solutions that extend beyond existing literature on DR treatments. By highlighting recent advancements in this field, the study paves the way for future research aimed at developing more effective therapeutic strategies for managing DR.
Collapse
Affiliation(s)
- Junling Liu
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| | - Feng Zhang
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China.
| | - Xiaolong Shi
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| |
Collapse
|
2
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2024:10.1007/s13346-024-01756-x. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
3
|
Formica ML, Pernochi Scerbo JM, Awde Alfonso HG, Palmieri PT, Ribotta J, Palma SD. Nanotechnological approaches to improve corticosteroids ocular therapy. Methods 2024:S1046-2023(24)00281-0. [PMID: 39675541 DOI: 10.1016/j.ymeth.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
The administration of corticosteroids is the first-line treatment of the clinical conditions with ocular inflammation. Nonetheless, ocular physiological mechanisms, anatomical barriers and corticosteroid properties prevent it from reaching the target site. Thus, frequent topical administered doses or ocular injections are required, leading to a higher risk of adverse events and poor patient compliance. Designing novel drug delivery systems based on nanotechnological tools is a useful approach to overcome disadvantages associated with the ocular delivery of corticosteroids. Nanoparticle-based drug delivery systems represent an alternative to the current dosage forms for the ocular administration of corticosteroids, since due to their particle size and the properties of their materials, they can increase their solubility, improve ocular permeability, control their release and increase bioavailability after their ocular administration. In this way, lipid and polymer-based nanoparticles have been the main strategies developed, giving rise to novel patent applications to protect these innovative drug delivery systems as a product, its preparation or administration method. Additionally, it should be noted that at least 10 clinical trials are being carried out to evaluate the ocular application of different pharmaceutical formulations based on corticosteroid-loaded nanoparticles. Through a comprehensive and extensive analysis, this review highlights the impact of nanotechnology applications in ocular inflammation therapy with corticosteroids.
Collapse
Affiliation(s)
- María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Juan Matías Pernochi Scerbo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Pablo Tomás Palmieri
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Julieta Ribotta
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
4
|
Pardeshi SR, Gholap AD, Hatvate NT, Gharat KD, Naik JB, Omri A. Advances in dorzolamide hydrochloride delivery: harnessing nanotechnology for enhanced ocular drug delivery in glaucoma management. DISCOVER NANO 2024; 19:199. [PMID: 39656411 PMCID: PMC11631835 DOI: 10.1186/s11671-024-04154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Dorzolamide hydrochloride (DRZ) is a carbonic anhydrase inhibitor utilized in managing elevated intraocular pressure (IOP) associated with glaucoma. However, its clinical effectiveness is hindered by a short half-life, low residence time, and the need for frequent dosing, highlighting the necessity for innovative delivery systems. This work reviews recent advancements in DRZ delivery, particularly focusing on cyclodextrin complexation and nanotechnology applications. It explores the potential of cyclodextrin derivatives to enhance DRZ's bioavailability. DRZ cyclodextrin complexes or nanoparticulate systems maintain high drug concentrations in the eye while minimizing irritation and viscosity-related issues. Nanotechnology introduces nanoparticle-based carriers such as polymeric nanoparticles, solid lipid nanoparticles, liposomes, niosomes, and nanoemulsions. These formulations enable sustained drug release, improved corneal permeation, and enhanced patient compliance. Clinical trials have shown that DRZ nanoparticle eye drops and nanoliposome formulations offer efficacy comparable to conventional therapies, with the potential for better tolerability. Overall, this review highlights significant progress in DRZ delivery systems, suggesting their potential to transform glaucoma treatment by addressing current limitations and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Sagar R Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India
| | - Navnath T Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna, Maharashtra, 431203, India
| | - Khushmita D Gharat
- Department of Quality Assurance, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India
| | - Jitendra B Naik
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, Maharashtra, 425001, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
5
|
Nordin NA, Sadikan MZ, Lambuk L, Hashim S, Airuddin S, Mohd Nasir NA, Mohamud R, Ibrahim J, Kadir R. Liposomal topical drug administration surpasses alternative methods in glaucoma therapeutics: a novel paradigm for enhanced treatment. J Pharm Pharmacol 2024:rgae129. [PMID: 39579384 DOI: 10.1093/jpp/rgae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/01/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVES Glaucoma is a leading cause of permanent blindness. Despite therapeutic advancements, glaucoma management remains challenging due to limitations of conventional drug delivery, primarily topical eye drops, resulting in suboptimal outcomes and a global surge in cases. To address these issues, liposomal drug delivery has emerged as a promising approach. KEY FINDINGS This review explores the potential of liposomal-based medications, with a particular focus on topical administration as a superior alternative to enhance therapeutic efficacy and improve patient compliance compared to existing treatments. This writing delves into the therapeutic prospects of liposomal formulations across different administration routes, as evidenced by ongoing clinical trials. Additionally, critical aspects of liposomal production and market strategies are discussed herein. SUMMARY By overcoming ocular barriers and optimizing drug delivery, liposomal topical administration holds the key to significantly improving glaucoma treatment outcomes.
Collapse
Affiliation(s)
- Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), 75150 Bukit Baru, Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Syahira Airuddin
- Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Nur-Azida Mohd Nasir
- Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jamal Ibrahim
- Maths, Science and IT Curriculum Area, Oxford Sixth Form College, 12-13 King Edward St, Oxford, OX1 4HT, United Kingdom
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
6
|
Verma P, Rajpurohit R, Yadav KS. Quality by design steered approach for co-encapsulation of timolol maleate and dorzolamide hydrochloride in injectable liposomes. Int J Pharm 2024; 664:124566. [PMID: 39154918 DOI: 10.1016/j.ijpharm.2024.124566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Glaucoma is caused by high intraocular pressure, which can causes blindness. Combinations of timolol and dorzolamide are used for its treatment with a requirement of multiple dosing with dosing being twice or four times a day. Conventional eye drops have poor pre-corneal retention and is thus less available for action. This study utilizes principles of Quality by Design for formulation of injectable liposomes coloaded with timolol maleate and dorzolamide HCl, which overcomes limitations of conventional eye drops. For implementation of Quality by Design principles a systematic approach involving defining Quality Target Product Profile, identification of Critical Quality Attributes, mapping Critical Quality Attributes to Critical Process Parameters and Critical Material Attributes, Failure Mode and Effect Analysis based risk assessment, Taguchi screening, and 32 full factorial Design of Experiments design were utilized. A robust model for formulation of coloaded liposomes was successfully developed. Design of Experiments approach allowed to obtain optimized batch having particle size of 116.1 nm, encapsulation efficiency of dorzolamide HCl of 72.12 % and encapsulation efficiency of timolol maleate of 71.94 %. In-vitro drug release showed a sustained release for 4 days. The prepared formulation was in the desired osmolarity range. Biosafety was proved using histopathological characterization. In-vivo studies for assessing the Intra Ocular Pressure reduction showed that there was no significant difference in Intra Ocular Pressure reduction between prepared liposomes and marketed formulation but were superior than marketed formulation because of less fluctuations in Intra Ocular Pressure. Prepared coloaded injectable liposomes lays the foundation for further research in the area and can be translated from to bench side for commercial clinical use.
Collapse
Affiliation(s)
- Piyush Verma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Rahul Rajpurohit
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India.
| |
Collapse
|
7
|
Singh M, Negi R, Alka, Vinayagam R, Kang SG, Shukla P. Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1647. [PMID: 39459435 PMCID: PMC11509623 DOI: 10.3390/medicina60101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
The most prevalent reason for vision impairment in aging inhabitants is age-related macular degeneration (AMD), a posterior ocular disease with a poor understanding of the anatomic, genetic, and pathophysiological progression of the disease. Recently, new insights exploring the role of atrophic changes in the retinal pigment epithelium, extracellular drusen deposits, lysosomal lipofuscin, and various genes have been investigated in the progression of AMD. Hence, this review explores the incidence and risk factors for AMD, such as oxidative stress, inflammation, the complement system, and the involvement of bioactive lipids and their role in angiogenesis. In addition to intravitreal anti-vascular endothelial growth factor (VEGF) therapy and other therapeutic interventions such as oral kinase inhibitors, photodynamic, gene, and antioxidant therapy, as well as their benefits and drawbacks as AMD treatment options, strategic drug delivery methods, including drug delivery routes with a focus on intravitreal pharmacokinetics, are investigated. Further, the recent advancements in nanoformulations such as polymeric and lipid nanocarriers, liposomes, etc., intended for ocular drug delivery with pros and cons are too summarized. Therefore, the purpose of this review is to give new researchers an understanding of AMD pathophysiology, with an emphasis on angiogenesis, inflammation, the function of bioactive lipids, and therapy options. Additionally, drug delivery options that focus on the development of drug delivery system(s) via several routes of delivery can aid in the advancement of therapeutic choices.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Riyakshi Negi
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Alka
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Prashant Shukla
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| |
Collapse
|
8
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F, Liang Y. Nanomedicine in glaucoma treatment; Current challenges and future perspectives. Mater Today Bio 2024; 28:101229. [PMID: 39296355 PMCID: PMC11409099 DOI: 10.1016/j.mtbio.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.
Collapse
Affiliation(s)
- Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Dengming Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiangtao Lou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Run Xiao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fu Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
9
|
Luhar M, Viradiya R, Panjabi S, Patel G. Nanotechnology in Ocular Drug Delivery: The Potential of Polymeric Micelles as a Drug Delivery Vehicle. J Ocul Pharmacol Ther 2024. [PMID: 39263975 DOI: 10.1089/jop.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Affiliation(s)
- Mehul Luhar
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, India
| | - Ravi Viradiya
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Sanjay Panjabi
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Gayatri Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, India
| |
Collapse
|
10
|
Wang T, Yu T, Liu Q, Sung TC, Higuchi A. Lipid nanoparticle technology-mediated therapeutic gene manipulation in the eyes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102236. [PMID: 39005878 PMCID: PMC11245926 DOI: 10.1016/j.omtn.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Millions of people worldwide have hereditary genetic disorders, trauma, infectious diseases, or cancer of the eyes, and many of these eye diseases lead to irreversible blindness, which is a major public health burden. The eye is a relatively small and immune-privileged organ. The use of nucleic acid-based drugs to manipulate malfunctioning genes that target the root of ocular diseases is regarded as a therapeutic approach with great promise. However, there are still some challenges for utilizing nucleic acid therapeutics in vivo because of certain unfavorable characteristics, such as instability, biological carrier-dependent cellular uptake, short pharmacokinetic profiles in vivo (RNA), and on-target and off-target side effects (DNA). The development of lipid nanoparticles (LNPs) as gene vehicles is revolutionary progress that has contributed the clinical application of nucleic acid therapeutics. LNPs have the capability to entrap and transport various genetic materials such as small interfering RNA, mRNA, DNA, and gene editing complexes. This opens up avenues for addressing ocular diseases through the suppression of pathogenic genes, the expression of therapeutic proteins, or the correction of genetic defects. Here, we delve into the cutting-edge LNP technology for ocular gene therapy, encompassing formulation designs, preclinical development, and clinical translation.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD, Jhongli, Taoyuan 32001, Taiwan
| |
Collapse
|
11
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
12
|
Chen S, Deng Z, Ji D. Advances in the development of lipid nanoparticles for ophthalmic therapeutics. Biomed Pharmacother 2024; 178:117108. [PMID: 39067162 DOI: 10.1016/j.biopha.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024] Open
Abstract
Previously, researchers have employed Lipid nanoparticles (LNPs) to directly encapsulate medicines. In the realm of gene therapy, researchers have begun to employ lipid nanoparticles to encapsulate nucleic acids such as messenger RNA, small interfering RNA, and plasmid DNA, which are known as nucleic acid lipid nanoparticles. Recent breakthroughs in LNP-based medicine have provided significant prospects for the treatment of ocular disorders, such as corneal, choroidal, and retinal diseases. The use of LNP as a delivery mechanism for medicines and therapeutic genes can increase their effectiveness while avoiding undesired immune reactions. However, LNP-based medicines may pose ocular concerns. In this review, we discuss the general framework of LNP. Additionally, we review adjustable approaches and evaluate their possible risks. In addition, we examine newly described ocular illnesses in which LNP was utilized as a delivery mechanism. Finally, we provide perspectives for solving these potential issues.
Collapse
Affiliation(s)
- Shen Chen
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Deng
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Dan Ji
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Department of Ophthalmology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Ophthalmology, Changsha, China.
| |
Collapse
|
13
|
Hajinezhad MR, Roostaee M, Nikfarjam Z, Rastegar S, Sargazi G, Barani M, Sargazi S. Exploring the potential of silymarin-loaded nanovesicles as an effective drug delivery system for cancer therapy: in vivo, in vitro, and in silico experiments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7017-7036. [PMID: 38630254 DOI: 10.1007/s00210-024-03099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
We aimed to perform a comprehensive study on the development and characterization of silymarin (Syl)-loaded niosomes as potential drug delivery systems. The results demonstrate significant novelty and promising outcomes in terms of morphology, size distribution, encapsulation efficiency, in vitro release behavior, free energy profiles of Syl across the niosome bilayer, hydrogen bonding interactions, antimicrobial properties, cytotoxicity, and in vivo evaluations. The physical appearance, size, and morphology assessment of free niosomes and Syl-loaded niosomes indicated stable and well-formed vesicular structures suitable for drug delivery. Transmission electron microscopy (TEM) analysis revealed spherical shapes with distinct sizes for each formulation, confirming uniform distribution. Dynamic light scattering (DLS) analysis confirmed the size distribution results with higher polydispersity index for Syl-loaded niosomes. The encapsulation efficiency of Syl in the niosomes was remarkable at approximately 91%, ensuring protection and controlled release of the drug. In vitro release studies showed a sustained release profile for Syl-loaded niosomes, enhancing therapeutic efficacy over time. Free energy profiles analysis identified energy barriers hindering Syl permeation through the niosome bilayer, emphasizing challenges in drug delivery system design. Hydrogen bonding interactions between Syl and niosome components contributed to energy barriers, impacting drug permeability. Antimicrobial assessments revealed significant differences in inhibitory effects against S. aureus and E. coli. Cytotoxicity evaluations demonstrated the superior tumor-killing potential of Syl-loaded niosomes compared to free Syl. In vivo studies indicated niosome formulations' safety profiles in terms of liver and kidney parameters compared to bulk Syl, showcasing potential for clinical applications. Overall, this research highlights the promising potential of Syl-loaded niosomes as effective drug delivery systems with enhanced stability, controlled release, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Zahra Nikfarjam
- Department of Physical & Computational Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
14
|
Krawczyk A, Stadler SM, Strzalka-Mrozik B. Nanomedicines for Dry Eye Syndrome: Targeting Oxidative Stress with Modern Nanomaterial Strategies. Molecules 2024; 29:3732. [PMID: 39202812 PMCID: PMC11357096 DOI: 10.3390/molecules29163732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Dry eye syndrome (DES) is a dynamic, chronic disease of the ocular surface and ocular appendages caused by inflammation. The most common symptoms include redness, itching, and blurred vision, resulting from dysfunction of the meibomian glands and impaired tear-film production. Factors contributing to the development of DES include environmental elements, such as UV radiation, and internal elements, such as hormonal imbalances. These factors increase oxidative stress, which exacerbates inflammation on the surface of the eye and accelerates the development of DES. In recent years, the incidence of DES has risen, leading to a greater need to develop effective treatments. Current treatments for dry eye are limited and primarily focus on alleviating individual symptoms, such as reducing inflammation of the ocular surface. However, it is crucial to understand the pathomechanism of the disease and tailor treatment to address the underlying causes to achieve the best possible therapeutic outcomes. Therefore, in this review, we analyzed the impact of oxidative stress on the development of DES to gain a better understanding of its pathomechanism and examined recently developed nanosystems that allow drugs to be delivered directly to the disease site.
Collapse
Affiliation(s)
| | | | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (A.K.); (S.M.S.)
| |
Collapse
|
15
|
Rajan PB, Koilpillai J, Narayanasamy D. Advancing Ocular Medication Delivery with Nano-Engineered Solutions: A Comprehensive Review of Innovations, Obstacles, and Clinical Impact. Cureus 2024; 16:e66476. [PMID: 39247042 PMCID: PMC11381103 DOI: 10.7759/cureus.66476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Recent advancements in ocular drug delivery have led to the introduction of a range of nanotechnology-based systems, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, inorganic nanoparticles, niosomes, liposomes, nanosuspensions, dendrimers, nanoemulsions, and microemulsions. These systems enhance drug retention, penetration, bioavailability, and targeted delivery, promising prolonged drug release, and improved patient compliance. However, their interactions with biological systems pose potential toxicity risks, necessitating a careful evaluation of nanoparticle size, shape, surface charge, and coating. Traditional ocular drug delivery methods, like topical applications and injections, face challenges due to anatomical and physiological barriers, leading to frequent dosing and systemic toxicity risks. Nanocarriers offer solutions by improving drug permeation and targeted delivery, yet translating these innovations from research to clinical practice involves overcoming hurdles related to manufacturing scale-up, quality control, regulatory approval, and cost-effectiveness. The quality by design (QbD) framework provides a systematic approach to optimize nanocarrier formulation and process design, ensuring safety and efficacy. Assessing the safety of nanocarriers through in vivo and in vitro studies is crucial for their clinical application. This review explores the use of various nanomedicines in ocular drug delivery, highlighting the current state of ocular medication delivery and considering critical aspects such as scaling up and clinical applications.
Collapse
|
16
|
Kumbhar P, Kolekar K, Vishwas S, Shetti P, Kumbar V, Andreoli Pinto TDJ, Paiva-Santos AC, Veiga F, Gupta G, Singh SK, Dua K, Disouza J, Patravale V. Treatment avenues for age-related macular degeneration: Breakthroughs and bottlenecks. Ageing Res Rev 2024; 98:102322. [PMID: 38723753 DOI: 10.1016/j.arr.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Age-related macular degeneration (AMD) is a significant factor contributing to serious vision loss in adults above 50. The presence of posterior segment barriers serves as chief roadblocks in the delivery of drugs to treat AMD. The conventional treatment strategies use is limited due to its off-targeted distribution in the eye, shorter drug residence, poor penetration and bioavailability, fatal side effects, etc. The above-mentioned downside necessitates drug delivery using some cutting-edge technology including diverse nanoparticulate systems and microneedles (MNs) which provide the best therapeutic delivery alternative to treat AMD efficiently. Furthermore, cutting-edge treatment modalities including gene therapy and stem cell therapy can control AMD effectively by reducing the boundaries of conventional therapies with a single dose. This review discusses AMD overview, conventional therapies for AMD and their restrictions, repurposed therapeutics and their anti-AMD activity through different mechanisms, and diverse barriers in drug delivery for AMD. Various nanoparticulate-based approaches including polymeric NPs, lipidic NPs, exosomes, active targeted NPs, stimuli-sensitive NPs, cell membrane-coated NPs, inorganic NPs, and MNs are explained. Gene therapy, stem cell therapy, and therapies in clinical trials to treat AMD are also discussed. Further, bottlenecks of cutting-edge (nanoparticulate) technology-based drug delivery are briefed. In a nutshell, cutting-edge technology-based therapies can be an effective way to treat AMD.
Collapse
Affiliation(s)
- Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416 113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416 113, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India
| | - Priya Shetti
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education & Research, Belagavi, India
| | - Vijay Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education & Research, Belagavi, India.
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo 05508-000, Brazil
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Guarav Gupta
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416 113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
17
|
Faria MJ, González-Méijome JM, Real Oliveira MECD, Carracedo G, Lúcio M. Recent advances and strategies for nanocarrier-mediated topical therapy and theranostic for posterior eye disease. Adv Drug Deliv Rev 2024; 210:115321. [PMID: 38679293 DOI: 10.1016/j.addr.2024.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Posterior eye disorders, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, have a significant impact on human quality of life and are the primary cause of age-related retinal diseases among adults. There is a pressing need for innovative topical approaches to treat posterior eye disorders, as current methods often rely on invasive procedures with inherent risks. Limited success was attained in the realm of topical ophthalmic delivery through non-invasive means. Additionally, there exists a dearth of literature that delves into the potential of this approach for drug delivery and theranostic purposes, or that offers comprehensive design strategies for nanocarrier developers to surmount the significant physiological ocular barriers. This review offers a thorough and up-to-date state-of-the-art overview of 40 studies on therapeutic loaded nanocarriers and theranostic devices that, to the best of our knowledge, represent all successful works that reached posterior eye segments through a topical non-invasive administration. Most importantly, based on the successful literature studies, this review provides a comprehensive summary of the potential design strategies that can be implemented during nanocarrier development to overcome each ocular barrier.
Collapse
Affiliation(s)
- Maria João Faria
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - José M González-Méijome
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CEORLab - Clinical and Experimental Optometry Research Lab, Centre of Physics, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - M Elisabete C D Real Oliveira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, University Complutense of Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain.
| | - Marlene Lúcio
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CBMA - Centre of Molecular and Environmental Biology, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
18
|
Santos Porto D, da Costa Bernardo Port B, Conte J, Fretes Argenta D, Pereira Balleste M, Amadeu Micke G, Machado Campos Â, Silva Caumo K, Caon T. Development of ophthalmic nanoemulsions of β-caryophyllene for the treatment of Acanthamoeba keratitis. Int J Pharm 2024; 659:124252. [PMID: 38782149 DOI: 10.1016/j.ijpharm.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Although rare, amoebic keratitis (AK) is a disease caused by Acanthamoeba spp. that can lead to blindness. The drugs currently available for its treatment are very toxic, which has motivated the investigation for more effective and safe therapeutic options. In this study, the in vitro activity of ß-caryophyllene (BCP) was exploited taking into account its action against other protozoans as well as its well-known healing and anti-inflammatory properties (aspects relevant for the AK pathogenesis). On the other hand, high volatilization and oxidation phenomena are found for this compound, which led to its incorporation into nanoemulsions (NEs). Two emulsifying agents were tested, resulting in monodisperse systems with reduced droplet size (<265 nm) and high surface charge (positive and negative for NEs prepared with cetrimonium bromide -CTAB and Phosal® 50+, respectively). NEs prepared with CTAB were shown to be more stable after long-term storage at 4 and 25 °C than those prepared with Phosal®. Pure BCP, at the highest concentration (500 µM), resulted in a level of inhibition of Acanthamoeba trophozoites equivalent to that of reference drug (chlorhexidine). This activity was even greater after oil nanoencapsulation. The reduced droplet size could improve the interaction of the oil with the microorganism, justifying this finding. Changes in surface charge did not impact the activity. Positively charged NEs improved the interaction and retention of BCP in the cornea and thus should be prioritized for further studies.
Collapse
Affiliation(s)
- Douglas Santos Porto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | - Júlia Conte
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Debora Fretes Argenta
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Maira Pereira Balleste
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Gustavo Amadeu Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ângela Machado Campos
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Karin Silva Caumo
- Department of Clinical Analyses, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
19
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
20
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
21
|
Sufian MA, Abbas G, Rasul A, Irfan M, Khan HU. Moxifloxacin-loaded nanoparticles of thiolated xyloglucan for ocular drug delivery: Permeation, mucoadhesion and pharmacokinetic evaluation. Int J Biol Macromol 2024; 270:132522. [PMID: 38768922 DOI: 10.1016/j.ijbiomac.2024.132522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
The current study goal was to improve mucoadhesive potential and ocular pharmacokinetics of nanoparticles of thiolated xyloglucan (TXGN) containing moxifloxacin (MXF). Thiolation of xyloglucan (XGN) was achieved with esterification with 3-mercaptopropionic acid. TXGN was characterized by NMR and FTIR analysis. The nanoparticles of TXGN were prepared using ionic-gelation method and evaluate the antibacterial properties. TXGN and nanoparticles were determined to possess 0.06 and 0.08 mmol of thiol groups/mg of polymer by Ellman's method. The ex-vivo bioadhesion time of TXGN and nanoparticles was higher than XGN in a comparative assessment of their mucoadhesive properties. The creation of a disulfide link between mucus and TXGN is responsible for the enhanced mucoadhesive properties of TXGN (1-fold) and nanoparticles (2-fold) over XGN. Improved MXF penetration in nanoparticulate formulation (80 %) based on TXGN was demonstrated in an ex-vivo permeation research utilizing rabbit cornea. Dissolution study showed 95 % release of MXF from nanoparticles. SEM images of nanoparticles showed spherical shape and cell viability assay showed nontoxic behavior when tested on RPE cell line. Antibacterial analysis revealed a zone of inhibition of 31.5 ± 0.5 mm for MXF, while NXM3 exhibited an expanded zone of 35.5 ± 0.4 mm (p < 0.001). In conclusion, thiolation of XGN improves its bioadhesion, permeation, ocular-retention and pharmacokinetics of MXF.
Collapse
Affiliation(s)
- Muhammad Abu Sufian
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Hafeez Ullah Khan
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
22
|
Sarmento C, Duarte ARC, Rita Jesus A. Can (Natural) deep eutectic systems increase the efficacy of ocular therapeutics? Eur J Pharm Biopharm 2024; 198:114276. [PMID: 38582179 DOI: 10.1016/j.ejpb.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The eye is one of the most complex organs in the human body, with a unique anatomy and physiology, being divided into anterior and posterior segments. Ocular diseases can occur in both segments, but different diseases affect different segments. Glaucoma and cataracts affect the anterior segment, while macular degeneration and diabetic retinopathy occur in the posterior segment. The easiest approach to treat ocular diseases, especially in the anterior segment, is through the administration of topical eye drops, but this route presents many constraints, namely precorneal dynamic and static ocular barriers. On the other hand, the delivery of drugs to the posterior segment of the eye is far more challenging and is mainly performed by the intravitreal route. However, it can lead to severe complications such as retinal detachment, endophthalmitis, increased intraocular pressure and haemorrhage. The design of new drug delivery systems for the anterior segment is very challenging, but targeting the posterior one is even more difficult and little progress has been made. In this review we will discuss various strategies including the incorporation of additives in the formulations, such as viscosity, permeability, and solubility enhancers, namely based on Deep eutectic systems (DES). Natural deep eutectic systems (NADES) have emerged to solve several problems encountered in pharmaceutical industry, regarding the pharmacokinetic and pharmacodynamic properties of drugs. NADES can contribute to the design of advanced technologies for ocular therapeutics, including hydrogels and nanomaterials. Here in, we revise some applications of (NA)DES in the development of new drug delivery systems that can be translated into the ophthalmology field.
Collapse
Affiliation(s)
- Célia Sarmento
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita C Duarte
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal.
| |
Collapse
|
23
|
Talarico L, Clemente I, Gennari A, Gabbricci G, Pepi S, Leone G, Bonechi C, Rossi C, Mattioli SL, Detta N, Magnani A. Physiochemical Characterization of Lipidic Nanoformulations Encapsulating the Antifungal Drug Natamycin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:726. [PMID: 38668220 PMCID: PMC11053702 DOI: 10.3390/nano14080726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Natamycin is a tetraene polyene that exploits its antifungal properties by irreversibly binding components of fungal cell walls, blocking the growth of infections. However, topical ocular treatments with natamycin require frequent application due to the low ability of this molecule to permeate the ocular membrane. This limitation has limited the use of natamycin as an antimycotic drug, despite it being one of the most powerful known antimycotic agents. In this work, different lipidic nanoformulations consisting of transethosomes or lipid nanoparticles containing natamycin are proposed as carriers for optical topical administration. Size, stability and zeta potential were characterized via dynamic light scattering, the supramolecular structure was investigated via small- and wide-angle X-ray scattering and 1H-NMR, and the encapsulation efficiencies of the four proposed formulations were determined via HPLC-DAD.
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Ilaria Clemente
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Alessandro Gennari
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
| | - Giulia Gabbricci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Simone Pepi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gemma Leone
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudia Bonechi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Simone Luca Mattioli
- Dompé Farmaceutici S.p.A, Via Campo di Pile SNC, 67100 L’Aquila, Italy; (S.L.M.); (N.D.)
| | - Nicola Detta
- Dompé Farmaceutici S.p.A, Via Campo di Pile SNC, 67100 L’Aquila, Italy; (S.L.M.); (N.D.)
| | - Agnese Magnani
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Hadipour Jahromy M, Qomi M, Fazelipour S, Sami N, Faali F, Karimi M, Adhami Moghadam F. Evaluation of curcumin-based ophthalmic nano-emulsion on atropine-induced dry eye in mice. Heliyon 2024; 10:e29009. [PMID: 38601632 PMCID: PMC11004198 DOI: 10.1016/j.heliyon.2024.e29009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Background One of the most efficient treatments for dry eye syndrome (DES) is to use nanocarriers as a potential delivery system. We aim to evaluate curcumin in a nano emulsion formulation. Methods A new formulation containing 5.5% curcuminoid was used. DLS, Zeta potential, TEM, and HPLC tests were performed to determine the size and morphology. First, 30 mice were selected as atropine-induced dry eye models. Next, 25 mice in 5 groups were treated with the nano emulsion at different doses, and corneal tissues were separated for evaluation. Results The DLS test results were indicative of the particles' stability. Nano curcumin appeared to be thoroughly effective in all groups, with the highest dose showing the most similarity to the healthy control group. Conclusions Curcumin-based nano emulsion eye drop is a promising candidate for DES management. However, further investigation is required to evaluate the possible risks in humans.
Collapse
Affiliation(s)
- Mahsa Hadipour Jahromy
- Herbal Pharmacology Research Center, School of Medicine, Dept of Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahnaz Qomi
- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Fazelipour
- School of Medicine, Dept of Histology & Anatomy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Sami
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Faali
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Karimi
- Department of Nanotechnology, School of Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- School of Medicine, Dept of Ophthalmology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Klézlová A, Bulíř P, Klápšťová A, Netuková M, Šenková K, Horáková J, Studený P. Novel Biomaterials in Glaucoma Treatment. Biomedicines 2024; 12:813. [PMID: 38672168 PMCID: PMC11048501 DOI: 10.3390/biomedicines12040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Glaucoma is a significant cause of blindness worldwide, and its treatment remains challenging. The disease progressively leads to damage to the optic disc and thus loss of visual acuity and visual field. High intraocular pressure (IOP) is a common risk factor. There are three major methods to treat this disease: topical, laser, and surgical. None of these are completely satisfactory; therefore, alternatives using new biomaterials are being sought. Since biomaterial engineering has experienced significant growth in recent decades, its products are gradually being introduced to various branches of medicine, with the exception of ophthalmology. Biomaterials, such as glaucoma drainage implants, have been successfully used to treat glaucoma. There is significant ongoing research on biomaterials as drug delivery systems that could overcome the disadvantages of topical glaucoma treatment, such as poor intraocular penetration or frequent drug administration. This article summarizes the use of novel biomaterials for glaucoma treatment presented in the literature. The literature search was based on articles published in English on PubMed.gov, Cochranelibrary.com, and Scopus.com between 2018 and 2023 using the following term "biomaterials in glaucoma." A total of 103 published articles, including twenty-two reviews, were included. Fifty-nine articles were excluded on the basis of their titles and abstracts.
Collapse
Affiliation(s)
- Adéla Klézlová
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
| | - Petr Bulíř
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
- Department of Ophthalmology, Regional Hospital Liberec, 460 01 Liberec, Czech Republic
| | - Andrea Klápšťová
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.K.); (J.H.)
| | - Magdaléna Netuková
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
| | - Kateřina Šenková
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
| | - Jana Horáková
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.K.); (J.H.)
| | - Pavel Studený
- Ophthalmology Department, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Ruská 87, Praha 10, 100 00 Prague, Czech Republic; (P.B.); (M.N.); (K.Š.); (P.S.)
| |
Collapse
|
26
|
Zhang Y, Chu B, Fan Q, Song X, Xu Q, Qu Y. M2-type macrophage-targeted delivery of IKKβ siRNA induces M2-to-M1 repolarization for CNV gene therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102740. [PMID: 38458368 DOI: 10.1016/j.nano.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Choroidal Neovascularization (CNV) is capable of inciting recurrent hemorrhage in the macular region, severely impairing patients' visual acuity. During the onset of CNV, infiltrating M2 macrophages play a crucial role in promoting angiogenesis. To control this disease, our study utilizes the RNA interference (RNAi)-based gene therapy to reprogram M2 macrophages to the M1 phenotype in CNV lesions. We synthesize the mannose-modified siRNA-loaded liposome specifically targeting M2 macrophages to inhibit the inhibitory kappa B kinase β (IKKβ) gene involved in the polarization of macrophages, consequently modulating macrophage polarization state. In vitro and in vivo, the mannose-modified IKKβ siRNA-loaded liposome (siIKKβ-ML) has been proven to effectively target M2 macrophages to repolarize them to M1 phenotype, and inhibit the progression of CNV. Collectively, our findings elucidate that siIKKβ-ML holds the potential to control CNV by reprogramming the macrophage phenotype, indicating a promising therapeutic avenue for CNV management.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Baorui Chu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qian Fan
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xian Song
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qian Xu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi Qu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan 250012, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China.
| |
Collapse
|
27
|
Latifi A, Esmaeili F, Mohebali M, Yasami-Khiabani S, Rezaeian M, Soleimani M, Kazemirad E, Amani A. Chitosan nanoparticles improve the effectivity of miltefosine against Acanthamoeba. PLoS Negl Trop Dis 2024; 18:e0011976. [PMID: 38527059 PMCID: PMC10962830 DOI: 10.1371/journal.pntd.0011976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Acanthamoeba keratitis (AK) is a corneal sight-threatening infection caused by the free-living amoebae of the genus Acanthamoeba. Early and appropriate treatment significantly impacts visual outcomes. Mucoadhesive polymers such as chitosan are a potential strategy to prolong the residence time and bioavailability of the encapsulated drugs in the cornea. Regarding the recent administration of miltefosine (MF) for treating resistant AK, in the present study, we synthesized miltefosine-loaded chitosan nanoparticles (MF-CS-NPs) and evaluated them against Acanthamoeba. METHODOLOGY/PRINCIPAL FINDINGS Chitosan nanoparticles (CNPs) were prepared using the ionic gelation method with negatively charged tripolyphosphate (TPP). The zeta-potential (ZP) and the particle size of MF-CS-NPs were 21.8±3.2 mV and 46.61±18.16 nm, respectively. The release profile of MF-CS-NPs indicated linearity with sustained drug release. The cytotoxicity of MF-CS-NPs on the Vero cell line was 2.67 and 1.64 times lower than free MF at 24 and 48 hours. This formulation exhibited no hemolytic activity in vitro and ocular irritation in rabbit eyes. The IC50 of MF-CS-NPs showed a significant reduction by 2.06 and 1.69-fold in trophozoites at 24 and 48 hours compared to free MF. Also, the MF-CS-NPs IC50 in the cysts form was slightly decreased by 1.26 and 1.21-fold at 24 and 48 hours compared to free MF. CONCLUSIONS The MF-CS-NPs were more effective against the trophozoites and cysts than free MF. The nano-chitosan formulation was more effective on trophozoites than the cysts form. MF-CS-NPs reduced toxicity and improved the amoebicidal effect of MF. Nano-chitosan could be an ideal carrier that decreases the cytotoxicity of miltefosine. Further analysis in animal settings is needed to evaluate this nano-formulation for clinical ocular drug delivery.
Collapse
Affiliation(s)
- Alireza Latifi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Rezaeian
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Ocular Trauma and Emergency, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Natural products and medicinal plants Research center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
28
|
Paganini V, Chetoni P, Di Gangi M, Monti D, Tampucci S, Burgalassi S. Nanomicellar eye drops: a review of recent advances. Expert Opin Drug Deliv 2024; 21:381-397. [PMID: 38396342 DOI: 10.1080/17425247.2024.2323208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Research on nanotechnology in medicine has also involved the ocular field and nanomicelles are among the applications developed. This approach is used to increase both the water solubility of hydrophobic drugs and their penetration/permeation within/through the ocular tissues since nanomicelles are able to encapsulate insoluble drug into their core and their small size allows them to penetrate and/or diffuse through the aqueous pores of ocular tissues. AREAS COVERED The present review reports the most significant and recent literature on the use of nanomicelles, made up of both surfactants and amphiphilic polymers, to overcome limitations imposed by the physiology of the eye in achieving a high bioavailability of drugs intended for the therapeutic areas of greatest commercial interest: dry eye, inflammation, and glaucoma. EXPERT OPINION The results of the numerous studies in this field are encouraging and demonstrate that nanomicelles may be the answer to some of the challenges of ocular therapy. In the future, new molecules self-assembling into micelles will be able to meet the regulatory requirements for marketing authorization for their use in ophthalmic formulations.
Collapse
Affiliation(s)
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | | | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| |
Collapse
|
29
|
Sun C, Zhang S, Xu N, Liu K, Wei F, Zhang X, Zhang J, Gao S, Yu Y, Ding X. Topical Ophthalmic Liposomes Dual-Modified with Penetratin and Hyaluronic Acid for the Noninvasive Treatment of Neovascular Age-Related Macular Degeneration. Int J Nanomedicine 2024; 19:1887-1908. [PMID: 38414529 PMCID: PMC10898604 DOI: 10.2147/ijn.s446425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Since intrinsic ocular barrier limits the intraocular penetration of therapeutic protein through eye drops, repeated intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents are the standard therapy for neovascular age-related macular degeneration (nAMD), which are highly invasive and may cause particular ocular complications, leading to poor patient compliance. Methods Using Penetratin (Pen) as the ocular penetration enhancer and hyaluronic acid (HA) as the retina-targeting ligand, a dual-modified ophthalmic liposome (Penetratin hyaluronic acid-liposome/Conbercept, PenHA-Lip/Conb) eye drop was designed to non-invasively penetrate the ocular barrier and deliver anti-VEGF therapeutic agents to the targeted intraocular tissue. Results PenHA-Lip effectively penetrates the ocular barrier and targets the retinal pigment epithelium via corneal and non-corneal pathways. After a single topical administration of conbercept-loaded PenHA-Lip (PenHA-Lip/Conb), the intraocular concentration of conbercept peaked at 18.74 ± 1.09 ng/mL at 4 h, which is 11.55-fold higher than unmodified conbercept. In a laser-induced choroidal neovascularization (CNV) mouse model, PenHA-Lip/Conb eye drops three times daily for seven days inhibited CNV formation and progression without any significant tissue toxicity and achieved an equivalent effect to a single intravitreal conbercept injection. Conclusion PenHA-Lip efficiently and safely delivered conbercept to the posterior eye segment and may be a promising noninvasive therapeutic option for nAMD.
Collapse
Affiliation(s)
- Chen Sun
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Shuyue Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Nan Xu
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200040, People's Republic of China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200040, People's Republic of China
| | - Xiaoqian Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jigang Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Shen Gao
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yuan Yu
- Department of Pharmacy, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xueying Ding
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| |
Collapse
|
30
|
Azadi M, David AE. Enhancing Ocular Drug Delivery: The Effect of Physicochemical Properties of Nanoparticles on the Mechanism of Their Uptake by Human Cornea Epithelial Cells. ACS Biomater Sci Eng 2024; 10:429-441. [PMID: 38055935 DOI: 10.1021/acsbiomaterials.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This study investigates the effect of nanoparticle size and surface chemistry on interactions of the nanoparticles with human cornea epithelial cells (HCECs). Poly(lactic-co-glycolic) acid (PLGA) nanoparticles were synthesized using the emulsion-solvent evaporation method and surface modified with mucoadhesive (alginate [ALG] and chitosan [CHS]) and mucopenetrative (polyethylene glycol [PEG]) polymers. Particles were found to be monodisperse (polydispersity index (PDI) below 0.2), spherical, and with size and zeta potential ranging from 100 to 250 nm and from -25 to +15 mV, respectively. Evaluation of cytotoxicity with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay indicated that incubating cells with nanoparticles for 24 h at concentrations up to 100 μg/mL caused only mild toxicity (70-100% cell viability). Cellular uptake studies were conducted using an in vitro model developed with a monolayer of HCECs integrated with simulated mucosal solution. Evaluation of nanoparticle uptake revealed that energy-dependent endocytosis is the primary uptake mechanism. Among the different nanoparticles studied, 100 nm PLGA NPs and PEG-PLGA-150 NPs showed the highest levels of uptake by HCECs. Additionally, uptake studies in the presence of various inhibitors suggested that macropinocytosis and caveolae-mediated endocytosis are the dominant pathways. While clathrin-mediated endocytosis was found to also be partially responsible for nanoparticle uptake, phagocytosis did not play a role within the studied ranges of size and surface chemistries. These important findings could lead to improved nanoparticle-based formulations that could improve therapies for ocular diseases.
Collapse
Affiliation(s)
- Marjan Azadi
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Allan E David
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
31
|
Santana-Garrido Á, Durán-Lobato M, Mate A, Martín-Banderas L, Vázquez CM. Ophthalmic wild olive (ACEBUCHE) oil nanoemulsions exert oculoprotective effects against oxidative stress induced by arterial hypertension. Int J Pharm 2024; 649:123602. [PMID: 37967686 DOI: 10.1016/j.ijpharm.2023.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Oxidative stress plays a key role in several systemic and ocular diseases, including hypertensive eye diseases. In this context, we previously showed that oral administration of wild olive (acebuche, ACE) oil from Olea europaea var. sylvestris can counteract ocular damage secondary to arterial hypertension by modulating excess reactive oxygen species (ROS) produced by the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Therefore, this work describes the development of an ACE oil-based formulation for ocular administration as a local therapy to counteract hypertension-related oxidative damage. Specifically, ACE oil nanoemulsions (NEs) were successfully produced and characterized, exhibiting appropriate features for ophthalmic administration, including a nanometer size (<200 nm), moderate negative ZP, adequate osmolality and pH, and colloidal stability in biorelevant fluids. Likewise, the NEs presented a shear thinning behavior, especially convenient for ocular instillation. In vivo evaluation was performed through either intravitreal injection or topical ophthalmic administration in mice with hypertension induced via administration of Nω-nitro-L-arginine-methyl-ester (L-NAME). Both routes of administration reduced hypertensive morphological alterations and demonstrated a noticeable antioxidant effect thanks to the reduction of the activity/expression of NADPH oxidase in cornea and retina. Thus, an ACE oil ophthalmic formulation represent a promising therapy for ocular pathologies associated with arterial hypertension.
Collapse
Affiliation(s)
- Á Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - M Durán-Lobato
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain
| | - A Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain.
| | - L Martín-Banderas
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain.
| | - C M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| |
Collapse
|
32
|
Kumar L, Rana R, Kukreti G, Aggarwal V, Chaurasia H, Sharma P, Jyothiraditya V. Overview of Spanlastics: A Groundbreaking Elastic Medication Delivery Device with Versatile Prospects for Administration via Various Routes. Curr Pharm Des 2024; 30:2206-2221. [PMID: 38967069 DOI: 10.2174/0113816128313398240613063019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024]
Abstract
When compared to the challenges associated with traditional dosage forms, medication delivery systems based on nanotechnology have been a huge boon. One such candidate for medication delivery is spanlastics, an elastic nanovesicle that can transport a diverse array of medicinal compounds. The use of spanlastics has been associated with an increase in interest in alternative administration methods. The non-ionic surfactant or surfactant blend is the main component of spanlastics. The purpose of this review was primarily to examine the potential of spanlastics as a delivery system for a variety of medication classes administered via diverse routes. Science Direct, Google Scholar, and Pubmed were utilized to search the academic literature for this review. Several studies have demonstrated that spanlastics greatly improve therapeutic effectiveness, increase medication absorption, and decrease drug toxicity. This paper provides a summary of the composition and structure of spanlastics along with their utility in the delivery of various therapeutic agents by adopting different routes. Additionally, it provides an overview of the numerous disorders that may be treated using drugs that are contained in spanlastic vesicles.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University, Phagwara, Punjab 144401, India
| | - Ritesh Rana
- Department of Pharmaceutical Sciences (Pharmaceutics), Laureate Institute of Pharmacy, Kathog-Kangra, Himachal Pradesh 176031, India
| | - Gauree Kukreti
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala Dehradun, Uttarakhand 248161, India
| | - Vikas Aggarwal
- Senior Pharmacovigilance Specialist, Continuum India LLP, 3rd Floor, Tower F DLF Building, Chandigarh Technology Park, Chandigarh 160101, India
| | - Himanshu Chaurasia
- Department of Pharmacy, Quantum School of Health Science, Quantum University, Vill. Mandawar (N.H.73), Roorkee-Dehradun Highway, Roorkee, Uttrakhand 247662, India
| | - Puneet Sharma
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Vuluchala Jyothiraditya
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
33
|
Kumar V, Garg V, Saini N, Aggarwal N, Kumar H, Kumar D, Chopra H, Kamal MA, Dureja H. An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery. Curr Pharm Biotechnol 2024; 25:2218-2252. [PMID: 38415490 DOI: 10.2174/0113892010267771240211124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Nakul Saini
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
34
|
Sanchez Armengol E, Grassiri B, Piras AM, Zambito Y, Fabiano A, Laffleur F. Ocular antibacterial chitosan-maleic acid hydrogels: In vitro and in vivo studies for a promising approach with enhanced mucoadhesion. Int J Biol Macromol 2024; 254:127939. [PMID: 37951441 DOI: 10.1016/j.ijbiomac.2023.127939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
The aim was to design and evaluate a chitosan-based conjugate providing high mucoadhesiveness and antibacterial activity for ocular infections treatment. Chitosan was conjugated with maleic acid via amide bond formation and infrared spectroscopy. Furthermore, 2,4,6-Trinitrobenzene sulfonic acid (TNBS) allowed characterization and quantification of conjugated groups, respectively. Biocompatibility was tested via hemolysis assay and Hen's Egg-Chorioallantoic membrane test. Characterization of the pH and osmolarity of hydrogels was followed by mucoadhesion assessment utilizing rheology. In addition, antibacterial studies were carried out towards Escherichia coli by broth microdilution test and agar-disk diffusion assay. In vivo studies were carried out following the already established Draize test and determining pharmacokinetic profile of dexamethasone in aqueous humour. The conjugate exhibited a degree of modification of 50.05 % and no toxicity or irritability. Moreover, mucoadhesive properties were enhanced in 2.68-fold and 1.81-fold for elastic and viscous modulus, respectively. Furthermore, rheological synergism revealed the presence of a gel-like structure. Additionally, broth microdilution and agar disk diffusion studies exhibited enhancement in antibacterial activity. Finally, in vivo studies manifested that hydrogels were highly tolerated, evidencing promising characteristics of the developed conjugate. The conjugate presented promising antimicrobial, long lasting mucoadhesive features and highly improved pharmacokinetics, leading to a revolutionizing approach in the treatment of ocular bacterial infections.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
35
|
Ansari M, Kulkarni YA, Singh K. Advanced Technologies of Drug Delivery to the Posterior Eye Segment Targeting Angiogenesis and Ocular Cancer. Crit Rev Ther Drug Carrier Syst 2024; 41:85-124. [PMID: 37824419 DOI: 10.1615/critrevtherdrugcarriersyst.2023045298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Retinoblastoma (RB), a childhood retinal cancer is caused due to RB1 gene mutation which affects the child below 5 years of age. Angiogenesis has been proven its role in RB metastasis due to the presence of vascular endothelial growth factor (VEGF) in RB cells. Therefore, exploring angiogenic pathway by inhibiting VEGF in treating RB would pave the way for future treatment. In preclinical studies, anti-VEGF molecule have shown their efficacy in treating RB. However, treatment requires recurrent intra-vitreal injections causing various side effects along with patient nonadherence. As a result, delivery of anti-VEGF agent to retina requires an ocular delivery system that can transport it in a non-invasive manner to achieve patient compliance. Moreover, development of these type of systems are challenging due to the complicated physiological barriers of eye. Adopting a non-invasive or minimally invasive approach for delivery of anti-VEGF agents would not only address the bioavailability issues but also improve patient adherence to therapy overcoming the side effects associated with invasive approach. The present review focuses on the eye cancer, angiogenesis and various novel ocular drug delivery systems that can facilitate inhibition of VEGF in the posterior eye segment by overcoming the eye barriers.
Collapse
Affiliation(s)
- Mudassir Ansari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| |
Collapse
|
36
|
Shree D, Patra CN, Sahoo BM. Applications of Nanotechnology-mediated Herbal Nanosystems for Ophthalmic Drug. Pharm Nanotechnol 2024; 12:229-250. [PMID: 37587812 DOI: 10.2174/2211738511666230816090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
In recent years, herbal nanomedicines have gained tremendous popularity for novel drug discovery. Nanotechnology has provided several advances in the healthcare sector, emerging several novel nanocarriers that potentiate the bioavailability and therapeutic efficacy of the herbal drug. The recent advances in nanotechnology with accelerated strategies of ophthalmic nanosystems have paved a new path for overcoming the limitations associated with ocular drug delivery systems, such as low bioavailability, poor absorption, stability, and precorneal drug loss. Ophthalmic drug delivery is challenging due to anatomical and physiological barriers. Due to the presence of these barriers, the herbal drug entry into the eyes can be affected when administered by following multiple routes, i.e., topical, injectables, or systemic. However, the advancement of nanotechnology with intelligent systems enables the herbal active constituent to successfully entrap within the system, which is usually difficult to reach employing conventional herbal formulations. Herbal-loaded nanocarrier drug delivery systems demonstrated enhanced herbal drug permeation and prolonged herbal drug delivery. In this current manuscript, an extensive search is conducted for original research papers using databases Viz., PubMed, Google Scholar, Science Direct, Web of Science, etc. Further painstaking efforts are made to compile and update the novel herbal nanocarriers such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, nanostructure lipid carriers, micelles, niosomes, nanoemulsions, dendrimers, etc., which are mostly used for ophthalmic drug delivery system. This article presents a comprehensive survey of diverse applications used for the preventative measures and treatment therapy of varied eye disorders. Further, this article highlights the recent findings that the innovators are exclusively working on ophthalmic nanosystems for herbal drug delivery systems. The nanocarriers are promising drug delivery systems that enable an effective and supreme therapeutic potential circumventing the limitations associated with conventional ocular drug delivery systems. The nanotechnology-based approach is useful to encapsulate the herbal bioactive and prevent them from degradation and therefore providing them for controlled and sustained release with enhanced herbal drug permeation. Extensive research is still being carried out in the field of herbal nanotechnology to design an ophthalmic nanosystem with improved biopharmaceutical properties.
Collapse
Affiliation(s)
- Dipthi Shree
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760010, Odisha, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur, 760010, Odisha, India
| |
Collapse
|
37
|
Gawin-Mikołajewicz A, Nawrot U, Malec KH, Krajewska K, Nartowski KP, Karolewicz BL. The Effect of High-Pressure Homogenization Conditions on the Physicochemical Properties and Stability of Designed Fluconazole-Loaded Ocular Nanoemulsions. Pharmaceutics 2023; 16:11. [PMID: 38276489 PMCID: PMC10818809 DOI: 10.3390/pharmaceutics16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
The growing interest in high-energy emulsification is a result of its scalability, which is important from an industrial perspective and allows for a more reproducible and efficient production of pharmaceutical formulations. The aim of this study was to evaluate the effect of composition, mainly a fixed surfactant/cosurfactant (Smix) ratio, their concentration, and the parameters of high-pressure homogenization (HPH) processing on the quality and stability of ophthalmic fluconazole-loaded nanoemulsions. After a physicochemical analysis of nanoemulsions containing 20% w/w of oil, as optimal conditions for the HPH process, three cycles at a pressure of 1000 bar were established, obtaining formulations with an average droplet diameter size in the range of 80.63-129.68 nm and PDI values below 0.25. While it was expected that an increasing cosurfactant concentration decreased the droplet size, in the case of formulations containing Tween 20 and 10% w/w of cosurfactants, "over-processing" was observed, identified by the droplet size and polydispersity index increase. Consecutively, the selected formulations were evaluated for in vitro drug release in Franz's cell, antifungal activity, and 30-day stability using NMR spectroscopy. An antifungal activity test showed no significant difference in the antifungal activity between optimal fluconazole-loaded nanoemulsions and a 0.3% aqueous drug solution, but previously, research showed that prepared formulations were characterized by a higher viscosity and satisfactory prolonged release compared to a control. In a 30-day stability study, it was observed that higher HLB values of the used surfactants decreased the stability of the formulations in the following order: Kolliphor EL, Tween 80, Tween 20. The NMR spectra confirmed that Kolliphor EL-based formulations ensured the higher stability of the nanoemulsion composition in comparison to Tween 80 and a better stabilizing effect of propylene glycol as a cosurfactant in comparison to PEG 200. Therefore, the optimization of HPH technology should be focused on the selection of Smix and the Smix:oil ratio in order to prepare stable formulations of high quality.
Collapse
Affiliation(s)
- Agnieszka Gawin-Mikołajewicz
- Department of Drug Form Technology, Wroclaw Medical University, 211A Borowska Str., 50-556 Wroclaw, Poland; (K.H.M.); (K.K.); (K.P.N.); (B.L.K.)
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 211A Borowska Str., 50-556 Wroclaw, Poland;
| | - Katarzyna Hanna Malec
- Department of Drug Form Technology, Wroclaw Medical University, 211A Borowska Str., 50-556 Wroclaw, Poland; (K.H.M.); (K.K.); (K.P.N.); (B.L.K.)
| | - Karolina Krajewska
- Department of Drug Form Technology, Wroclaw Medical University, 211A Borowska Str., 50-556 Wroclaw, Poland; (K.H.M.); (K.K.); (K.P.N.); (B.L.K.)
| | - Karol Przemysław Nartowski
- Department of Drug Form Technology, Wroclaw Medical University, 211A Borowska Str., 50-556 Wroclaw, Poland; (K.H.M.); (K.K.); (K.P.N.); (B.L.K.)
| | - Bożena Lucyna Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, 211A Borowska Str., 50-556 Wroclaw, Poland; (K.H.M.); (K.K.); (K.P.N.); (B.L.K.)
| |
Collapse
|
38
|
Bustos-Salgado P, Domínguez-Villegas V, Andrade-Carrera B, Mallandrich M, Calpena A, Domènech O, Martínez-Ruiz S, Badía J, Baldomà L, Gómez de Aranda I, Blasi J, Garduño-Ramírez ML. PLGA Nanoparticles Containing Natural Flavanones for Ocular Inflammation. Pharmaceutics 2023; 15:2752. [PMID: 38140093 PMCID: PMC10748021 DOI: 10.3390/pharmaceutics15122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Flavanones are natural compounds that display anti-inflammatory activity. The aim of this work was to prepare PLGA nanoparticles (NPs) containing natural flavanones I ((2S)-5,7-dihydroxy-6-methyl-8-(3-methyl-2-buten-1-il)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one) and II (2S)-5,7-dihydroxy-2-(4'-methoxyphenyl)-6-methyl-8-(3-methyl-2-buten-1-yl)-2,3-dihydro-4H-1-Benzopyran-4-one) (NP I and NP II, respectively) so as to evaluate their potential for topical anti-inflammatory ocular therapy. An in silico study was carried out using the Molinspiration® and PASS Online web platforms before evaluating the in vitro release study and the ex vivo porcine cornea and sclera permeation. The HPLC analytical method was also established and validated. Finally, the in vitro anti-inflammatory efficacy of NPs was studied in the HCE-2 model. The flavanones I and II could be released following a kinetic hyperbolic model. Neither of the two NPs was able to permeate through the tissues. NP I and NP II were found to be respectful of any changes in the tissues' morphology, as evidenced by histological studies. In HCE-2 cells, NP I and NP II were not cytotoxic at concentrations up to 25 µM. NP I showed higher anti-inflammatory activity than NP II, being able to significantly reduce IL-8 production in LPS-treated HCE-2 cells. In summary, ocular treatment with NP I and NP II could be used as a promising therapy for the inhibition of ocular inflammation.
Collapse
Affiliation(s)
- Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Valeri Domínguez-Villegas
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| | - Berenice Andrade-Carrera
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Calle Iztaccihuatl S/N, Col. Los Volcanes, Cuernavaca 62350, Morelos, Mexico
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ana Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Oscar Domènech
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sergio Martínez-Ruiz
- Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (J.B.); (L.B.)
| | - Josefa Badía
- Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (J.B.); (L.B.)
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
- Research Institute Sant Joan De Déu (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (J.B.); (L.B.)
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
- Research Institute Sant Joan De Déu (IR-SJD), 08950 Barcelona, Spain
| | - Inmaculada Gómez de Aranda
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Bellvitge Campus, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Spain; (I.G.d.A.); (J.B.)
| | - Juan Blasi
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Bellvitge Campus, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Spain; (I.G.d.A.); (J.B.)
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| |
Collapse
|
39
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
40
|
Oucif Khaled MT, Zaater A, Ben Amor I, Zeghoud S, Ben Amor A, Hemmami H, Alnazza Alhamad A. Drug delivery methods based on nanotechnology for the treatment of eye diseases. Ann Med Surg (Lond) 2023; 85:6029-6040. [PMID: 38098602 PMCID: PMC10718325 DOI: 10.1097/ms9.0000000000001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023] Open
Abstract
One of the most difficult tasks among the numerous medication delivery methods is ocular drug delivery. Despite having effective medications for treating ocular illness, we have not yet managed to develop an appropriate drug delivery strategy with the fewest side effects. Nanotechnology has the potential to significantly address the drawbacks of current ocular delivery systems, such as their insufficient therapeutic effectiveness and unfavourable side effects from invasive surgery or systemic exposure. The objective of the current research is to highlight and update the most recent developments in nano-based technologies for the detection and treatment of ocular diseases. Even if more work has to be done, the advancements shown here might lead to brand-new, very practical ocular nanomedicines.
Collapse
Affiliation(s)
- Mohammed Tayeb Oucif Khaled
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Abdelmalekd Zaater
- Department of Agronomy, Faculty of Nature and Life Sciences, University of El Oued, El Oued, Algeria
- Biodiversity laboratory and application of biotechnology in agriculture, University of El Oued, El Oued, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syrian Arab Republic
| |
Collapse
|
41
|
Casey-Power S, Vardar C, Ryan R, Behl G, McLoughlin P, Byrne ME, Fitzhenry L. NAD+-associated-hyaluronic acid and poly(L-lysine) polyelectrolyte complexes: An evaluation of their potential for ocular drug delivery. Eur J Pharm Biopharm 2023; 192:62-78. [PMID: 37797681 DOI: 10.1016/j.ejpb.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
This study details the formation and characterisation of a novel nicotinamide adenine dinucleotide (NAD+)-associated polymeric nanoparticle system. The development of a polyelectrolyte complex (PEC) composed of two natural polyelectrolytes, hyaluronic acid and poly(L-lysine), and an evaluation of its suitability for NAD+ ocular delivery, primarily based on its physicochemical properties and in vitro release profile under physiological ocular flow rates, were of key focus. Following optimisation of formulation method conditions such as complexation pH, mode of addition, and charge ratio, the PEC was successfully formulated under mild formulation conditions via polyelectrolyte complexation. With a size of 235.1 ± 19.0 nm, a PDI value of 0.214 ± 0.140, and a zeta potential value of - 38.0 ± 1.1 mV, the chosen PEC, loaded with 430 µg of NAD+ per mg of PEC, exhibited non-Fickian, sustained release at physiological flowrates of 10.9 ± 0.2 mg of NAD+ over 14 h. PECs containing up to 200 µM of NAD+ did not induce any significant cytotoxic effects on an immortalised human corneal epithelial cell line. Using fluorescent labeling, the NAD+-associated PECs demonstrated retention within the corneal epithelium layer of a porcine model up to 6 h post incubation under physiological conditions. A study of the physicochemical behaviour of the PECs, in terms of size, zeta potential and NAD+ complexation in response to environmental stimuli,highlighted the dynamic nature of the PEC matrix and its dependence on both pH and ionic condition. Considering the successful formation of reproducible NAD+-associated PECs with suitable characteristics for ocular drug delivery via an inexpensive formulation method, they provide a promising platform for NAD+ ocular delivery with a strong potential to improve ocular health.
Collapse
Affiliation(s)
- Saoirse Casey-Power
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, Waterford X91 K0EK, Ireland.
| | - Camila Vardar
- Department of Biomedical Engineering, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA.
| | - Richie Ryan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, Waterford X91 K0EK, Ireland.
| | - Gautam Behl
- EirGen Pharma, UNIT 64/64A, Westside Business Park, Old Kilmeaden Road, Co. Waterford X91 YV67, Ireland.
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, Waterford X91 K0EK, Ireland.
| | - Mark E Byrne
- Department of Biomedical Engineering, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA; Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA.
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, Waterford X91 K0EK, Ireland.
| |
Collapse
|
42
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
43
|
Wu KY, Brister D, Bélanger P, Tran SD. Exploring the Potential of Nanoporous Materials for Advancing Ophthalmic Treatments. Int J Mol Sci 2023; 24:15599. [PMID: 37958583 PMCID: PMC10650608 DOI: 10.3390/ijms242115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The landscape of ophthalmology is undergoing significant transformations, driven by technological advancements and innovations in materials science. One of the advancements in this evolution is the application of nanoporous materials, endowed with unique physicochemical properties ideal for a variety of ophthalmological applications. Characterized by their high surface area, tunable porosity, and functional versatility, these materials have the potential to improve drug delivery systems and ocular devices. This review, anchored by a comprehensive literature focusing on studies published within the last five years, examines the applications of nanoporous materials in ocular drug delivery systems (DDS), contact lenses, and intraocular lenses. By consolidating the most current research, this review aims to serve as a resource for clinicians, researchers, and material scientists engaged in the rapidly evolving field of ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Danielle Brister
- College of Public Health, National Taiwan University (NTU), Taipei 106319, Taiwan
| | - Paul Bélanger
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
44
|
Wang J, Viola M, Migliorini C, Paoletti L, Arpicco S, Di Meo C, Matricardi P. Polysaccharide-Based Nanogels to Overcome Mucus, Skin, Cornea, and Blood-Brain Barriers: A Review. Pharmaceutics 2023; 15:2508. [PMID: 37896268 PMCID: PMC10610445 DOI: 10.3390/pharmaceutics15102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been extensively developed in the biomedical field to enhance the treatment of various diseases. However, to effectively deliver therapeutic agents to desired target tissues and enhance their pharmacological activity, these nanocarriers must overcome biological barriers, such as mucus gel, skin, cornea, and blood-brain barriers. Polysaccharides possess qualities such as excellent biocompatibility, biodegradability, unique biological properties, and good accessibility, making them ideal materials for constructing drug delivery carriers. Nanogels, as a novel drug delivery platform, consist of three-dimensional polymer networks at the nanoscale, offering a promising strategy for encapsulating different pharmaceutical agents, prolonging retention time, and enhancing penetration. These attractive properties offer great potential for the utilization of polysaccharide-based nanogels as drug delivery systems to overcome biological barriers. Hence, this review discusses the properties of various barriers and the associated constraints, followed by summarizing the most recent development of polysaccharide-based nanogels in drug delivery to overcome biological barriers. It is expected to provide inspiration and motivation for better design and development of polysaccharide-based drug delivery systems to enhance bioavailability and efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Ju Wang
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Marco Viola
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Claudia Migliorini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Luca Paoletti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| |
Collapse
|
45
|
Liu LC, Chen YH, Lu DW. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int J Mol Sci 2023; 24:15352. [PMID: 37895032 PMCID: PMC10607833 DOI: 10.3390/ijms242015352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
46
|
Firozian F, Arabkhani Z, Mahboobian MM, Mohammadi M, Chehardoli G. Cationic Dextran Stearate (Dex-St-GTMAC): Synthesis and Evaluation as Polymeric Micelles for Indomethacin Corneal Penetration. ACS OMEGA 2023; 8:38092-38100. [PMID: 37867673 PMCID: PMC10586442 DOI: 10.1021/acsomega.3c04187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Background Indomethacin as a non-steroidal anti-inflammatory drug (NSAID) is commonly used to treat some ocular inflammatory disorders. Unfortunately, indomethacin is a drug that is poorly soluble in water; therefore, it has low efficacy. An attractive approach is the targeted delivery of indomethacin to the cornea using cationic dextran stearate as a polymeric micelle drug carrier. Methods A dextran stearate-glycidyl trimethylammonium chloride (Dex-St-GTMAC) copolymer was prepared through the reaction of GTMAC, stearoyl chloride, and dextran. Then, Dex-St-GTMAC was characterized by Fourier transform infrared (FT-IR) spectroscopy and 1H NMR spectroscopy. Dex-St-GTMAC forms micelles in the presence of indomethacin. The prepared polymeric micelles were characterized for size, ζ-potential, drug loading, particle morphology, critical micelle concentration, and encapsulation efficiency. To study the irritation potential of the indomethacin-loaded Dex-St-GTMAC, Het-Cam and Draize tests have been performed. Prepared cationic micelles were subjected to the in vitro drug release and ex vivotrans-corneal permeation test. Results The dialysis method was used for the preparation of indomethacin-loaded micelles (10, 20, and 30%). Measurement of the particle size showed a mean diameter of 122.1 and 150.9 nm for the drug-loaded micelles. Scanning electron microscopy (SEM) images showed that the morphology of the particles is spherical. 10% formulation was chosen as the best formulation due to more surface charge and reasonable drug loading. ζ-potential measurement for the 10% drug-containing micelles showed a value of +39.1 mV. Drug loading efficiency and the encapsulation efficiency for 10% drug-containing micelles were 6.36 and 63.61%, respectively. The results of the Het-Cam and Draize tests indicated that the indomethacin-loaded Dex-St-GTMAC formulation had no toxicity to eye tissues. Based on our results, the prepared micelles (indomethacin-loaded Dex-St-GTMAC) exhibited a sustained drug release pattern compared to the control group. Indomethacin penetration from the micelles to the excised bovine cornea was 1.75-fold greater than the control (indomethacin 0.1% in phosphate-buffered saline (PBS)). Conclusions Data from the ζ-potential, SEM, drug loading capacity, and in vitro drug release studies indicated that cationic dextran stearate polymeric micelles are an appropriate carrier for the efficient penetration of indomethacin into cornea tissues.
Collapse
Affiliation(s)
- Farzin Firozian
- Department
of Pharmaceutics, School of Pharmacy, Hamadan
University of Medical Sciences, Hamadan 6517838678, Iran
| | - Zahra Arabkhani
- Department
of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural
Products Research Center, Hamadan University
of Medical Sciences, Hamadan 6517838678, Iran
| | - Mohammad Mehdi Mahboobian
- Department
of Pharmaceutics, School of Pharmacy, Hamadan
University of Medical Sciences, Hamadan 6517838678, Iran
| | - Mojdeh Mohammadi
- Department
of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Gholamabbas Chehardoli
- Department
of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural
Products Research Center, Hamadan University
of Medical Sciences, Hamadan 6517838678, Iran
| |
Collapse
|
47
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
48
|
Hosseini MS, Mohseni M, Naseripour M, Mirzaei M, Bagherzadeh K, Alemezadeh SA, Mehravi B. Synthesis and evaluation of modified lens using plasma treatment containing timolol-maleate loaded lauric acid-decorated chitosan-alginate nanoparticles for glaucoma. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1793-1812. [PMID: 36872905 DOI: 10.1080/09205063.2023.2187204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Reducing intraocular pressure (IOP) with eye drops is one of the most common ways to control glaucoma. Low bioavailability and high frequency of administration in eye drops are major challenges in ocular pharmacotherapy. Contact lenses have attracted the attention of scientists in recent decades as an alternative method. In this study, with the aim of long-term drug delivery and better patient compatibility, contact lenses with surface modification and nanoparticles were used. In this study, timolol-maleate was loaded into polymeric nanoparticles made of chitosan conjugate with lauric acid and sodium alginate. Then silicon matrix was mixed with a curing agent (10:1), and the suspension of nanoparticles was added to the precursor and cured. Finally, for surface modification, the lenses were irradiated with oxygen plasma at different exposure times (30, 60, and 150 s) and soaked in different BSA concentrations (1, 3, and 5% w/v). The results showed nanoparticles with a size of 50 nm and a spherical shape were synthesized. The best surface modification of the lenses was for 5 (% w/v) albumin concentration and 150 s exposure time, which had the highest increase in hydrophilicity. Drug release from nanoparticles continued for 3 days and this amount increased to 6 days after dispersion in the modified lens matrix. The drug model and kinetic study show the Higuchi model completely supported the release profile. This study represents the novel drug delivery system to control intra-ocular pressure as a candidate platform for glaucoma treatment. Improved compatibility and drug release from the designed contact lenses would prepare new insight into the mentioned disease treatment.
Collapse
Affiliation(s)
- Maryam Sadat Hosseini
- Medical Nanotechnology Department, Advanced Technologies Faculty, Iran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mohseni
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Naseripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaei
- Iran Ministry of Health and Medical Education, Deputy Ministry for Education, Tehran, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Bita Mehravi
- Medical Nanotechnology Department, Advanced Technologies Faculty, Iran University of Medical Sciences, Tehran, Iran
- Finetech in Medicine Research Center, Iran University of Medical, Tehran, Iran
| |
Collapse
|
49
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
50
|
Dobrzycka M, Sulewska A, Biecek P, Charkiewicz R, Karabowicz P, Charkiewicz A, Golaszewska K, Milewska P, Michalska-Falkowska A, Nowak K, Niklinski J, Konopińska J. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:14699. [PMID: 37834147 PMCID: PMC10572595 DOI: 10.3390/ijms241914699] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma, a neurodegenerative disorder that leads to irreversible blindness, remains a challenge because of its complex nature. MicroRNAs (miRNAs) are crucial regulators of gene expression and are associated with glaucoma and other diseases. We aimed to review and discuss the advantages and disadvantages of miRNA-focused molecular studies in glaucoma through discussing their potential as biomarkers for early detection and diagnosis; offering insights into molecular pathways and mechanisms; and discussing their potential utility with respect to personalized medicine, their therapeutic potential, and non-invasive monitoring. Limitations, such as variability, small sample sizes, sample specificity, and limited accessibility to ocular tissues, are also addressed, underscoring the need for robust protocols and collaboration. Reproducibility and validation are crucial to establish the credibility of miRNA research findings, and the integration of bioinformatics tools for miRNA database creation is a valuable component of a comprehensive approach to investigate miRNA aberrations in patients with glaucoma. Overall, miRNA research in glaucoma has provided significant insights into the molecular mechanisms of the disease, offering potential biomarkers, diagnostic tools, and therapeutic targets. However, addressing challenges such as variability and limited tissue accessibility is essential, and further investigations and validation will contribute to a deeper understanding of the functional significance of miRNAs in glaucoma.
Collapse
Affiliation(s)
- Margarita Dobrzycka
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland;
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Angelika Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Kinga Golaszewska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | | | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| |
Collapse
|