1
|
Sazaklioglu SA, Torul H, Tamer U, Ensarioglu HK, Vatansever HS, Gumus BH, Çelikkan H. Sensitive and reliable lab-on-paper biosensor for label-free detection of exosomes by electrochemical impedance spectroscopy. Mikrochim Acta 2024; 191:617. [PMID: 39316098 DOI: 10.1007/s00604-024-06644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
A new, sensitive, and cost-effective lab-on-paper-based immunosensor was designed based on electrochemical impedance spectroscopy (EIS) for the detection of exosomes. EIS was selected as the determination method since there was a surface blockage in electron transfer by binding the exosomes to the transducer. Briefly, the carbon working electrode (WE) on the paper electrode (PE) was modified with gold particles (AuPs@PE) and then conjugated with anti-CD9 (Anti-CD9/AuPs@PE) for the detection of exosomes. Variables involved in the biosensor design were optimized with the univariate mode. The developed method presents the limit of detection of 8.7 × 102 exosomes mL-1, which is lower than that of many other available methods under the best conditions. The biosensor was also tested with urine samples from cancer patients with high recoveries. Due to this a unique, low-cost, biodegradable technology is presented that can directly measure exosomes without labeling them for early cancer or metastasis detection.
Collapse
Affiliation(s)
- Sevda Akay Sazaklioglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara Medipol University, 06050, Ankara, Turkey
- Graduate School of Natural and Applied Science, Gazi University, 06560, Ankara, Turkey
| | - Hilal Torul
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, 06330, Ankara, Turkey
| | - Uğur Tamer
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, 06330, Ankara, Turkey
- METU MEMS Center, Ankara, Turkey
| | - Hilal Kabadayi Ensarioglu
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, 45200, Manisa, Turkey
| | - Hafize Seda Vatansever
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, 45200, Manisa, Turkey
- DESAM Institute, Near East University, Mersin 10, Turkey
| | - Bilal H Gumus
- Faculty of Medicine, Department of Urology, Manisa Celal Bayar University, 45200, Manisa, Turkey
| | - Hüseyin Çelikkan
- Faculty of Science, Department of Chemistry, Gazi University, 06560, Ankara, Turkey.
| |
Collapse
|
2
|
Kalkal A, Tiwari A, Sharma D, Baghel MK, Kumar P, Pradhan R, Packirisamy G. Air-brush spray coated Ti 3C 2-MXene-graphene nanohybrid thin film based electrochemical biosensor for cancer biomarker detection. Int J Biol Macromol 2023; 253:127260. [PMID: 37802449 DOI: 10.1016/j.ijbiomac.2023.127260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Cancer is a significant health hazard worldwide and poses a greater threat to the quality of human life. Quantifying cancer biomarkers with high sensitivity has demonstrated considerable potential for compelling, quick, cost-effective, and minimally invasive early-stage cancer detection. In line with this, efforts have been made towards developing an f-graphene@Ti3C2-MXene nanohybrid thin-film-based electrochemical biosensing platform for efficient carcinoembryonic antigen (CEA) detection. The air-brush spray coating technique has been utilized for depositing the uniform thin films of amine functionalized graphene (f-graphene) and Ti3C2-MXene nanohybrid on ITO-coated glass substrate. The chemical bonding and morphological studies of the deposited nanohybrid thin films are characterized by advanced analytical tools, including XRD, XPS, and FESEM. The EDC-NHS chemistry is employed to immobilize the deposited thin films with monoclonal anti-CEA antibodies, followed by blocking the non-specific binding sites with BSA. The electrochemical response and optimization of biosensing parameters have been conducted using CV and DPV techniques. The optimized BSA/anti-CEA/f-graphene@Ti3C2-MXene immunoelectrode showed the ability to detect CEA biomarker from 0.01 pg mL-1 to 2000 ng mL-1 having a considerably lower detection limit of 0.30 pg mL-1.
Collapse
Affiliation(s)
- Ashish Kalkal
- iHub Divyasmapark, Technology Innovation Hub, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ayush Tiwari
- iHub Divyasmapark, Technology Innovation Hub, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Deepanshu Sharma
- iHub Divyasmapark, Technology Innovation Hub, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Manoj Kumar Baghel
- iHub Divyasmapark, Technology Innovation Hub, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pramod Kumar
- Institute Instrumentation Center, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Rangadhar Pradhan
- iHub Divyasmapark, Technology Innovation Hub, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
3
|
Chen YS, Huang CH, Pai PC, Seo J, Lei KF. A Review on Microfluidics-Based Impedance Biosensors. BIOSENSORS 2023; 13:bios13010083. [PMID: 36671918 PMCID: PMC9855525 DOI: 10.3390/bios13010083] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 05/30/2023]
Abstract
Electrical impedance biosensors are powerful and continuously being developed for various biological sensing applications. In this line, the sensitivity of impedance biosensors embedded with microfluidic technologies, such as sheath flow focusing, dielectrophoretic focusing, and interdigitated electrode arrays, can still be greatly improved. In particular, reagent consumption reduction and analysis time-shortening features can highly increase the analytical capabilities of such biosensors. Moreover, the reliability and efficiency of analyses are benefited by microfluidics-enabled automation. Through the use of mature microfluidic technology, complicated biological processes can be shrunk and integrated into a single microfluidic system (e.g., lab-on-a-chip or micro-total analysis systems). By incorporating electrical impedance biosensors, hand-held and bench-top microfluidic systems can be easily developed and operated by personnel without professional training. Furthermore, the impedance spectrum provides broad information regarding cell size, membrane capacitance, cytoplasmic conductivity, and cytoplasmic permittivity without the need for fluorescent labeling, magnetic modifications, or other cellular treatments. In this review article, a comprehensive summary of microfluidics-based impedance biosensors is presented. The structure of this article is based on the different substrate material categorizations. Moreover, the development trend of microfluidics-based impedance biosensors is discussed, along with difficulties and challenges that may be encountered in the future.
Collapse
Affiliation(s)
- Yu-Shih Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hao Huang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jungmok Seo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
4
|
Eghbal M, Rozman M, Kononenko V, Hočevar M, Drobne D. A549 Cell-Covered Electrodes as a Sensing Element for Detection of Effects of Zn 2+ Ions in a Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3493. [PMID: 36234621 PMCID: PMC9565818 DOI: 10.3390/nano12193493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn2+ ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes. After treatment with ZnCl2, the morphological changes of the cells and, ultimately, their death and detachment from the electrode surface as cytotoxic effects were detected through changes in the electrical signal. Electrochemical cell-based impedance spectroscopy (ECIS) measurements were conducted with cytotoxicity tests and microscopic observation to investigate the behavior of the A549 cells. As expected, the Zn2+ ions caused changes in cell confluency and spreading, which were checked by light microscopy, while the cell morphology and attachment pattern were explored by scanning electron microscopy (SEM). The ECIS measurements confirmed the ability of the biosensor to detect the effects of Zn2+ ions on A549 cells attached to the low-cost stainless-steel surfaces and its potential for use as an inexpensive detector for a broad range of chemicals and nanomaterials in their cytotoxic concentrations.
Collapse
Affiliation(s)
- Mina Eghbal
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Martin Rozman
- FunGlass—Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Alqahtani MS, Abbas M, Abdulmuqeet M, Alqahtani AS, Alshahrani MY, Alsabaani A, Ramalingam M. Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5078. [PMID: 35888544 PMCID: PMC9317545 DOI: 10.3390/ma15145078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic has the tendency to affect various organizational paradigm alterations, which civilization hasyet to fully comprehend. Personal to professional, individual to corporate, and across most industries, the spectrum of transformations is vast. Economically, the globe has never been more intertwined, and it has never been subjected to such widespread disruption. While many people have felt and acknowledged the pandemic's short-term repercussions, the resultant paradigm alterations will certainly have long-term consequences with an unknown range and severity. This review paper aims at acknowledging various approaches for the prevention, detection, and diagnosis of the SARS-CoV-2 virus using nanomaterials as a base material. A nanostructure is a material classification based on dimensionality, in proportion to the characteristic diameter and surface area. Nanoparticles, quantum dots, nanowires (NW), carbon nanotubes (CNT), thin films, and nanocomposites are some examples of various dimensions, each acting as a single unit, in terms of transport capacities. Top-down and bottom-up techniques are used to fabricate nanomaterials. The large surface-to-volume ratio of nanomaterials allows one to create extremely sensitive charge or field sensors (electrical sensors, chemical sensors, explosives detection, optical sensors, and gas sensing applications). Nanowires have potential applications in information and communication technologies, low-energy lightning, and medical sensors. Carbon nanotubes have the best environmental stability, electrical characteristics, and surface-to-volume ratio of any nanomaterial, making them ideal for bio-sensing applications. Traditional commercially available techniques have focused on clinical manifestations, as well as molecular and serological detection equipment that can identify the SARS-CoV-2 virus. Scientists are expressing a lot of interest in developing a portable and easy-to-use COVID-19 detection tool. Several unique methodologies and approaches are being investigated as feasible advanced systems capable of meeting the demands. This review article attempts to emphasize the pandemic's aftereffects, utilising the notion of the bullwhip phenomenon's short-term and long-term effects, and it specifies the use of nanomaterials and nanosensors for detection, prevention, diagnosis, and therapy in connection to the SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- BioImaging Unit, Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
- Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mohammed Abdulmuqeet
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdullah S. Alqahtani
- Pathology and Clinical Laboratory Medicine Administration (PCLMA), King Fahad Medical City, Riyadh 59046, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdullah Alsabaani
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Arora S, Talwar D, Chetal M, Bhardwaj VK, Dawar A, Sidhu H, Kashyap S, Capalash N. Binding of periodate by non–covalent interaction: Synthesis, characterization, single crystal structure determination, antibacterial and anticancer studies of [Co(bpy)2CO3].IO4. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kalkal A, Kadian S, Kumar S, Manik G, Sen P, Kumar S, Packirisamy G. Ti 3C 2-MXene decorated with nanostructured silver as a dual-energy acceptor for the fluorometric neuron specific enolase detection. Biosens Bioelectron 2022; 195:113620. [PMID: 34560349 DOI: 10.1016/j.bios.2021.113620] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Nanohybrids of two-dimensional (2D) layered materials have shown fascinating prospects towards the fabrication of highly efficient fluorescent immunosensor. In this context, a nanohybrid of ultrathin Ti3C2-MXene nanosheets and silver nanoparticles (Ag@Ti3C2-MXene) has been reported as a dual-energy acceptor for ultrahigh fluorescence quenching of protein-functionalized graphene quantum dots (anti-NSE/amino-GQDs). The Ti3C2-MXene nanosheets are decorated with silver nanoparticles (AgNPs) to obsolete the agglomeration and restacking through a one-pot direct reduction method wherein the 2D Ti3C2-MXene nanosheets acted both as a reducing agent and support matrix for AgNPs. The as-prepared nanohybrid is characterized by various techniques to analyze the optical, structural, compositional, and morphological parameters. The quenching efficiency and energy transfer capability between the anti-NSE/amino-GQDs (donor) and Ag@Ti3C2-MXene (acceptor) have been explored through steady state and time-resolved spectroscopic studies. Interestingly, the Ag@Ti3C2-MXene nanohybrid exhibits better quenching and energy transfer efficiencies in contrast to bare Ti3C2-MXene, AgNPs and previously reported AuNPs. Based on optimized donor-acceptor pair, a fluorescent turn-on biosensing system is constructed that revealed improved biosensing characteristics compared to Ti3C2-MXene, graphene and AuNPs for the detection of neuron-specific enolase (NSE), including higher sensitivity (∼771 mL ng-1), broader linear detection range (0.0001-1500 ng mL-1), better LOD (0.05 pg mL-1), and faster response time (12 min). Besides, remarkable biosensing capability has been observed in serum samples, with fluorescence recovery of ∼98%.
Collapse
Affiliation(s)
- Ashish Kalkal
- Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Sumit Kumar
- Department of Research and Innovations, Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science Bengaluru, Karnataka, 560012, India
| | - Saurabh Kumar
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science Bengaluru, Karnataka, 560012, India; Department of Medical Devices, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India.
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
8
|
Paivana G, Barmpakos D, Mavrikou S, Kallergis A, Tsakiridis O, Kaltsas G, Kintzios S. Evaluation of Cancer Cell Lines by Four-Point Probe Technique, by Impedance Measurements in Various Frequencies. BIOSENSORS 2021; 11:345. [PMID: 34562935 PMCID: PMC8466278 DOI: 10.3390/bios11090345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Cell-based biosensors appear to be an attractive tool for the rapid, simple, and cheap monitoring of chemotherapy effects at a very early stage. In this study, electrochemical measurements using a four-point probe method were evaluated for suspensions of four cancer cell lines of different tissue origins: SK-N-SH, HeLa, MCF-7 and MDA-MB-231, all for two different population densities: 50 K and 100 K cells/500 μL. The anticancer agent doxorubicin was applied for each cell type in order to investigate whether the proposed technique was able to determine specific differences in cell responses before and after drug treatment. The proposed methodology can offer valuable insight into the frequency-dependent bioelectrical responses of various cellular systems using a low frequency range and without necessitating lengthy cell culture treatment. The further development of this biosensor assembly with the integration of specially designed cell/electronic interfaces can lead to novel diagnostic biosensors and therapeutic bioelectronics.
Collapse
Affiliation(s)
- Georgia Paivana
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Dimitris Barmpakos
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Alexandros Kallergis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Odysseus Tsakiridis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Grigoris Kaltsas
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| |
Collapse
|
9
|
Takekawa VS, Marques LA, Strubinger E, Segato TP, Bogusz S, Brazaca LC, Carrilho E. Development of low-cost planar electrodes and microfluidic channels for applications in capacitively coupled contactless conductivity detection (C 4 D). Electrophoresis 2021; 42:1560-1569. [PMID: 34080201 DOI: 10.1002/elps.202000351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/11/2023]
Abstract
Electrochemical techniques are commonly applied to micro total analysis system (μTAS) devices mainly due to its high sensitivity and miniaturization capacity. Among many electrochemical techniques, capacitively coupled contactless conductivity detection (C4 D) stands out for not requiring direct electrode-solution contact, avoiding several problems such as electrolysis, bubble formation, and metal degradation. Furthermore, the instrumentation required for C4 D measurements is compact, low cost, and easy to use, allowing in situ measurements to be performed even by nonspecialized personal. Contrarily, the production of metallic electrodes and microchannels adequate for C4 D measurements commonly requires specialized facilities and workers, increasing the costs of applying these methods. We propose alternatives to batch manufacture metallic electrodes and polymeric microchannels for C4 D analysis using more straightforward equipment and lower-cost materials. Three devices with different dielectric layer compositions and electrode sizes were tested and compared regarding their analytical performance. The constructed platforms have shown a reduction of more than 64% in cost when compared to traditional techniques and displayed good linearity (R2 ≥ 0.994), reproducibility (RSD ≤ 4.07%, n = 3), and limits of detection (≤0.26 mmol/L) when measuring standard NaCl samples. Therefore, the proposed methods were successfully validated and are available for further C4 D applications such as diagnosis of dry-eye syndrome.
Collapse
Affiliation(s)
- Victor Sadanory Takekawa
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| | - Letícia Aparecida Marques
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| | - Ethan Strubinger
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Thiago Pinotti Segato
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| | - Stanislau Bogusz
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Kalkal A, Allawadhi P, Pradhan R, Khurana A, Bharani KK, Packirisamy G. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis. SENSORS INTERNATIONAL 2021; 2:100102. [PMID: 34766058 PMCID: PMC8164516 DOI: 10.1016/j.sintl.2021.100102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is one of the worst pandemics to have hit the humanity. The manifestations are quite varied, ranging from severe lung infections to being asymptomatic. Hence, there is an urgent need to champion new tools to accelerate the end of this pandemic. Compromised immunity is a primary feature of COVID-19. Allium sativum (AS) is an effective dietary supplement known for its immune-modulatory, antibacterial, anti-inflammatory, anticancer, antifungal, and anti-viral properties. In this paper, it is hypothesized that carbon dots (CDs) derived from AS (AS-CDs) may possess the potential to downregulate the expression of pro-inflammatory cytokines and revert the immunological aberrations to normal in case of COVID-19. CDs have already been explored in the world of nanobiomedicine as a promising theranostic candidates for bioimaging and drug/gene delivery. The antifibrotic and antioxidant effects of AS are elaborated, as demonstrated in several studies. It is found that the most active constituent of AS, allicin has a highly potent antioxidant and reactive oxygen species (ROS) scavenging effect. The antibacterial, antifungal, and anti-viral effects along with their capability of negating inflammatory effects and cytokine storm are discussed. The synthesis of theranostic CDs from AS may provide a novel weapon in the therapeutic armamentarium for the management of COVID-19 infection and, at the same time, could act as a diagnostic agent for COVID-19.
Collapse
Affiliation(s)
- Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Rangadhar Pradhan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
- Department of Aquatic Animal Health Management, College of Fishery Science, Pebbair, Wanaparthy, 509104, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| |
Collapse
|