1
|
Akbar R, Faheem B, Aziz T, Ali A, Ullah A, Khan IA, Sun J. Evaluating the Efficacy of Plant Extracts in Managing the Bruchid Beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). INSECTS 2024; 15:691. [PMID: 39336659 PMCID: PMC11432110 DOI: 10.3390/insects15090691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
An estimated 2000 plant species have been employed for pest control worldwide. The use of these botanical derivatives is thought to be one of the most cost-effective and sustainable options for pest management in stored grain. The present study was designed to assess the efficacy of five plant extracts viz; Nicotiana tabacum L., Nicotiana rustica L., Azadirachta indica A. Juss., Thuja orientalis L., and Melia azedarach L. against Callosobruchus maculatus L. Plant species extracts were applied at six different concentrations, i.e., 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0% in four replications. The phytochemical analyses of ethanolic extracts of five plant species showed variable amounts of phytochemicals i.e., alkaloids, flavonoids, saponins, diterpenes, phytosterol, and phenols. Total phenolic and flavonoid compounds were also observed. The efficacy of A. indica was highest, characterized by the lowest infestation rate (16.65%), host seed weight loss (7.85%), mean oviposition (84.54), and adult emergence (58.40%). In contrast, T. orientalis was found to be the least effective against C. maculatus, with the highest infestation rate of 25.60%, host seed weight loss of 26.73%, mean oviposition of 117.17, and adult emergence rate of 82.01%. Probit analysis was performed by estimating LC50 and LC90. The toxicity percentages of N. tabacum (LC50 = 0.69%, LC90 = 14.59%), N. rustica (LC50 = 0.98%, LC90 = 22.06%), and A. indica (LC50 = 1.09%, LC90 = 68.52%) were notable in terms of the lower LC50 and LC90 values after the 96-h exposure period against C. maculatus. Repellency was assessed by using the area preference and filter paper method. The repellency of C. maculatus on plant extracts increased with the increasing dose and time, such that it was the highest after 48 h. Likewise, at a 3% concentration, A. indica demonstrated 100.00% (Class-V) repellency followed by N. tabacum (96.00%, Class-V), N. rustica (74%, Class-IV), M. azedarach (70.00%, Class-IV), and T. orientalis (68.00%, Class-IV). Based on the findings of this study, we recommend integrating N. rustica, N. tabacum, A. indica, and M. azedarach for effective management of C. maculatus and highlight the potential of these plant species in the formulation of new biocidal agents.
Collapse
Affiliation(s)
- Rasheed Akbar
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- Department of Entomology, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Brekhna Faheem
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Amjad Ali
- School of Material Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Asmat Ullah
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Imtiaz Ali Khan
- Department of Entomology, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
2
|
Yu Y, Ji X, Song L, Cao Y, Feng J, Zhang R, Tao F, Zhang F, Xue P. Saponins from Chenopodium quinoa Willd. husks alleviated high-fat-diet-induced hyperlipidemia via modulating the gut microbiota and multiple metabolic pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2417-2428. [PMID: 37989713 DOI: 10.1002/jsfa.13127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Hyperlipidemia is characterized by abnormally elevated blood lipids. Quinoa saponins (QS) have multiple pharmacological activities, including antitumor, bactericidal and immune-enhancing effects. However, the lipid-lowering effect and mechanisms of QS in vivo have been scarcely reported. METHODS The effect of QS against hyperlipidemia induced by high-fat diet in rats was explored based on gut microbiota and serum non-targeted metabolomics. RESULTS The study demonstrated that the supplementation of QS could reduce serum lipids, body weight, liver injury and inflammation. 16S rRNA sequencing demonstrated that QS mildly increased alpha-diversity, altered the overall structure of intestinal flora, decreased the relative richness of Firmicutes, the ratio of Firmicutes/Bacteroidetes (P < 0.05) and increased the relative richness of Actinobacteria, Bacteroidetes, Bifidobacterium, Roseburia and Coprococcus (P < 0.05). Simultaneously, metabolomics analysis showed that QS altered serum functional metabolites with respect to bile acid biosynthesis, arachidonic acid metabolism and taurine and hypotaurine metabolism, which were closely related to bile acid metabolism and fatty acid β-oxidation. Furthermore, QS increased protein levels of farnesoid X receptor, peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1, which were related to the screened metabolic pathways. Spearman correlation analysis showed that there was a correlation between gut microbiota and differential metabolites. CONCLUSION QS could prevent lipid metabolism disorders in hyperlipidemic rats, which may be closely associated with the regulation of the gut microbiota and multiple metabolic pathways. This study may provide new evidence for QS as natural active substances for the prevention of hyperlipidemia. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Yu
- Clinical Nutrition Department, First Affiliated Hospital of Weifang Medical, University (Weifang People's Hospital), Weifang, People's Republic of China
- School of Public Health, Weifang Medical University, Weifang, People's Republic of China
| | - Xueying Ji
- Clinical Nutrition Department, First Affiliated Hospital of Weifang Medical, University (Weifang People's Hospital), Weifang, People's Republic of China
- School of Public Health, Weifang Medical University, Weifang, People's Republic of China
| | - Linmeng Song
- School of Public Health, Weifang Medical University, Weifang, People's Republic of China
| | - Yuqing Cao
- School of Public Health, Weifang Medical University, Weifang, People's Republic of China
| | - Jing Feng
- School of Rehabilitation, Weifang Medical University, Weifang, People's Republic of China
| | - Ruoyu Zhang
- School of Public Health, Weifang Medical University, Weifang, People's Republic of China
| | - Feiyan Tao
- School of Public Health, Weifang Medical University, Weifang, People's Republic of China
| | - Fengxiang Zhang
- School of Public Health, Weifang Medical University, Weifang, People's Republic of China
| | - Peng Xue
- Clinical Nutrition Department, First Affiliated Hospital of Weifang Medical, University (Weifang People's Hospital), Weifang, People's Republic of China
- School of Public Health, Weifang Medical University, Weifang, People's Republic of China
| |
Collapse
|
3
|
Koczurkiewicz-Adamczyk P, Grabowska K, Karnas E, Piska K, Wnuk D, Klaś K, Galanty A, Wójcik-Pszczoła K, Michalik M, Pękala E, Fuchs H, Podolak I. Saponin Fraction CIL1 from Lysimachia ciliata L. Enhances the Effect of a Targeted Toxin on Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15051350. [PMID: 37242592 DOI: 10.3390/pharmaceutics15051350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Saponins are plant metabolites that possess multidirectional biological activities, among these is antitumor potential. The mechanisms of anticancer activity of saponins are very complex and depend on various factors, including the chemical structure of saponins and the type of cell they target. The ability of saponins to enhance the efficacy of various chemotherapeutics has opened new perspectives for using them in combined anticancer chemotherapy. Co-administration of saponins with targeted toxins makes it possible to reduce the dose of the toxin and thus limit the side effects of overall therapy by mediating endosomal escape. Our study indicates that the saponin fraction CIL1 of Lysimachia ciliata L. can improve the efficacy of the EGFR-targeted toxin dianthin (DE). We investigated the effect of cotreatment with CIL1 + DE on cell viability in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, on proliferation in a crystal violet assay (CV) and on pro-apoptotic activity using Annexin V/7 Actinomycin D (7-AAD) staining and luminescence detection of caspase levels. Cotreatment with CIL1 + DE enhanced the target cell-specific cytotoxicity, as well as the antiproliferative and proapoptotic properties. We found a 2200-fold increase in both the cytotoxic and antiproliferative efficacy of CIL1 + DE against HER14-targeted cells, while the effect on control NIH3T3 off-target cells was less profound (6.9- or 5.4-fold, respectively). Furthermore, we demonstrated that the CIL1 saponin fraction has a satisfactory in vitro safety profile with a lack of cytotoxic and mutagenic potential.
Collapse
Affiliation(s)
- Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Karolina Grabowska
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Klaś
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
4
|
Lin X, Zhou Q, Zhou L, Sun Y, Han X, Cheng X, Wu M, Lv W, Wang J, Zhao W. Quinoa ( Chenopodium quinoa Willd) Bran Saponins Alleviate Hyperuricemia and Inhibit Renal Injury by Regulating the PI3K/AKT/NFκB Signaling Pathway and Uric Acid Transport. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6635-6649. [PMID: 37083411 DOI: 10.1021/acs.jafc.3c00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triterpenoids derived from natural products can exert antihyperuricemic effects. Here, we investigated the antihyperuricemic activity and mechanism of quinoa bran saponins (QBSs) in hyperuricemic mouse and cell models. The QBS4 fraction, with the highest saponin content, was used. Fourier-transform infrared, high-performance liquid chromatography, and ultrahigh-performance liquid chromatography-mass spectrometry identified 11 individual saponins in QBS4, of which the main components were hederagenin and oleanolic acid. The QBS4 effects on hyperuricemic mice (induced by adenine and potassium oxonate) were then studied. QBS4 reduced the levels of uric acid (UA), serum urea nitrogen, creatinine, and lipids in mice with hyperuricemia (HUA) and decreased renal inflammation and renal damage. Molecular analysis revealed that QBS4 may alleviate HUA by regulating the expression of key genes involved in the transport of UA and by inhibiting the activation of the PI3K/AKT/NFκB inflammatory signaling pathway. In conclusion, QBS4 has promise for using as a natural dietary supplement to treat and prevent HUA.
Collapse
Affiliation(s)
- Xuan Lin
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Qian Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Liangfu Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yasai Sun
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Xue Han
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Xinlong Cheng
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Mengying Wu
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Wei Lv
- National Engineering Research Center for Semi-arid Agriculture, Shijiazhuang 050000, Hebei Province, China
| | - Jie Wang
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Wen Zhao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
5
|
Anxiolytic and Antioxidant Effect of Phytoecdysteroids and Polyphenols from Chenopodium quinoa on an In Vivo Restraint Stress Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249003. [PMID: 36558137 PMCID: PMC9785041 DOI: 10.3390/molecules27249003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The variety of stressful conditions in daily human activity requires nutritional support with safe, specialized food products containing functional food ingredients (FFIs) enriched with biologically active plant substances with proven adaptogenic properties. In this in vivo study, by evaluating a set of physiological parameters and biochemical markers, we investigated the effectiveness of the developed FFIs from Chenopodium quinoa grains in stress conditions induced by daily episodes of immobilization for 36 days. The results of the evaluation of the anxiety-like functions, locomotor, and search activity of rats in the "open field" and "elevated plus maze" tests demonstrated the ability of FFIs to reduce stressful behavior induced by immobilization. The improvement in the long-term memory of animals treated with FFIs was noted in the passive avoidance test. Together with the hypolipidemic effect and compensation of transaminase levels, FFIs normalized the excretion of catecholamines in the urine and reduced the levels of malondialdehyde to values of the control group. According to the results of the assessment of FFI acute oral toxicity, the LD50 value exceeded 5000 mg/kg of body weight, which categorizes the FFIs under hazard class 5-substances with low hazard. The conducted experiment demonstrated the effectiveness of nutritional support with FFIs on the selected stress model. The positive safety profile of FFIs makes them reasonable to study on other stress models and to conduct clinical testing as part of specialized food products in various categories of people exposed to chronic stress.
Collapse
|
6
|
Han C, Lin B, Huang X, Mao Z, Kong X, Fang L, Xue P, Wang A, Zhang F. Quinoa husk peptides reduce melanin content via Akt signaling and apoptosis pathways. iScience 2022; 26:105721. [PMID: 36582825 PMCID: PMC9793265 DOI: 10.1016/j.isci.2022.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
To improve the treatment of pigmentation disorders, looking for natural and safe inhibitors of melanin synthesis has become an area of research interest. The quinoa husk peptides reportedly elicit various biological activities (e.g., anti-cancer, antioxidant, anti-hypertensive, and so forth), but its effects on melanin inhibition remain unknown. In the current study, we purified quinoa husk peptides with 30 and 80% ethanol using a macroporous adsorption resin (DA201-C). Component screening revealed that the 80%-ethanol fraction (i.e., QHP fraction) contained numerous short peptides (84.41%) and hydrophobic amino acids (45.60%), while eliciting a superior tyrosinase [TYR]-inhibition rate, 2,2-diphenyl-1-picryhydrazil-scavenging rate, reducing activity, and chelating capacity compared to the 30% fraction and was thus applied in subsequent analyses. Differentially expressed genes in the QHP fraction were primarily enriched in the Akt-signaling pathways based on transcriptomics. Thus, we assessed the expression of related proteins and genes in A375 cells and rat skin cells following treatment with QHP.
Collapse
Affiliation(s)
- Caijing Han
- School of Public Health, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Bingjie Lin
- School of Public Health, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Xinyu Huang
- School of Public Health, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Zhaojie Mao
- School of Public Health, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Xiaoting Kong
- School of Public Health, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Lei Fang
- School of Public Health, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Anning Wang
- Neurology Department, The First Affiliated Hospital of Weifang Medical University (Weifang People’s Hospital), Weifang, 261000 Shandong, China
- Corresponding author
| | - Fengxiang Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053 Shandong, China
- Corresponding author
| |
Collapse
|
7
|
Wu D, Wu J, Cheng X, Qian J, Du R, Tang S, Lian Y, Qiao Y. Safety assessment of marigold flavonoids from marigold inflorescence residue. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115520. [PMID: 35792278 DOI: 10.1016/j.jep.2022.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marigold flavonoids, extracted from marigold (Tagetes erecta L.) inflorescence residues, have attracted significant attention with respect to antioxidant, anti-inflammatory and chelating properties. However, the toxicity of marigold flavonoids have not yet been fully investigated. AIM OF THE STUDY The main purpose of this study was to assess the safety of marigold flavonoids extracted from Marigold (Tagetes erecta L.) in order to provide information on its nonclinical safety. Thus, the acute oral toxicity, in vitro Ames test, sperm aberration study, bone marrow micronucleus test, subchronic oral toxicity test, and teratogenic potential were carried out in rats or mice. MATERIALS AND METHODS For an acute oral toxicity test, SD rats and ICR mice (male and female, n = 5) orally received a single dose of 5000 mg/kg marigold flavonoids. Evaluation of marigold flavonoids genotoxic potential with a battery of tests, including an in vitro bacterial reverse mutation test using four mutant strains of Salmonella typhimurium (TA97、TA98、TA100、TA102), an sperm aberration test and an in vivo micronucleus test using bone marrow cells ICR mice that were orally administered marigold flavonoids, an subchronic oral toxicity study and teratogenic test employing male and female SD rats that were orally administered marigold flavonoids. All animals tests were completed in accordance with GB 15193 for toxicity tests. RESULTS In the acute oral toxicity test, marigold flavonoids given at the dose of 5000 mg/kg body weight for 14 days didn't produce any abnormal clinical symptoms or mortality in SD rats and ICR mice (both sex, n = 5). There was no evidence of genotoxicity of marigold flavonoids based on the results of the in vitro bacterial reverse mutation test (up to 1250 μg/plate), the sperm aberration test (up to 5000 mg/kg body weight), the in vivo micronucleus test (up to 5000 mg/kg body weight), the subchronic oral toxicity study (up to 10 g/kg feed dose) and the teratogenic test (up to 1250 mg/kg body weight). CONCLUSIONS We found that marigold flavonoids are safe with regard to acute toxicity in rats or mice as well as genotoxicity such as mutagenesis or clastogenesis under the present experimental conditions. These results might support the safety of marigold flavonoids as a potential therapeutic material for the traditional use of herbal medicines and for the further development of novel antioxidant.
Collapse
Affiliation(s)
- Di Wu
- Beijing University of Chinese Medicine, Beijing, 100105, China; Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China
| | - Juanjuan Wu
- Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China
| | - Xinying Cheng
- Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China
| | - Jianrui Qian
- Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China
| | - Ruiliang Du
- China Agricultural University, Beijing, 100193, China
| | - Shusheng Tang
- China Agricultural University, Beijing, 100193, China
| | - Yunhe Lian
- Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, Beijing, 100105, China.
| |
Collapse
|
8
|
Safety assessment of crude saponins from Chenopodium quinoa willd. husks: 90-day oral toxicity and gut microbiota & metabonomics study in rats. Food Chem 2021; 375:131655. [PMID: 34903398 DOI: 10.1016/j.foodchem.2021.131655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
The subchronic toxicity of saponins of Chenopodium quinoa Willd. husks in healthy adult Sprague-Dawley (SD) rats was explored. Female and male rats were randomly divided into 0, 5, 50, and 500 mg/kg body weight (BW)/day groups. Subchronic general toxicity, metabonomics and gut microbiota were assessed. The rats treated with saponins weighed less and had lower blood sugar levels (P < 0.05). Thirty-two differential metabolites were found in female rats and 23 in male rats. Saponins also led to changes in metabonomics. Slight necrosis was observed in the intestinal mucosa, which was associated with an increase in the gut microbiota diversity of female rats in the high-dose saponin treatment group and metabolic changes in the liver and kidney. In conclusion, the toxic effect of quinoa saponins is sex-dependent; however, the no-observed-adverse-effect level for quinoa saponins was evaluated to be under 50 mg/kg BW/day for both sexes in the current study.
Collapse
|