1
|
Zhang X, Contessi Negrini N, Correia R, Sharpe PT, Celiz AD, Angelova Volponi A. Generating Tooth Organoids Using Defined Bioorthogonally Cross-Linked Hydrogels. ACS Macro Lett 2024; 13:1620-1626. [PMID: 39532305 DOI: 10.1021/acsmacrolett.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Generating teeth in vitro requires mimicking tooth developmental processes. Biomaterials are essential to support 3D tooth organoid formation, but their properties must be finely tuned to achieve the required biomimicry for tooth development. For the first time, we used bioorthogonally cross-linked hydrogels as defined 3D matrixes for tooth developmental engineering, and we highlighted how their properties play a pivotal role in enabling 3D tooth organoid formation in vitro. We prepared hydrogels by mixing gelatin precursors modified either with tetrazine (Tz) or norbornene (Nb) moieties. We tuned the hydrogel properties (E = 2-7 kPa; G' = 500-1500 Pa) by varying the gelatin concentration (8% vs 12% w/V) and stoichiometric ratio (Tz:Nb = 1 vs 0.5). We encapsulated dental epithelial-mesenchymal cell pellets in a library of hydrogels and identified a hydrogel formulation that enabled successful growth kinetics and morphogenesis of tooth germs, introducing a defined tunable platform for tooth organoid engineering and modeling.
Collapse
Affiliation(s)
- Xuechen Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, SE1 9RT London, U.K
| | - Nicola Contessi Negrini
- Department of Bioengineering, Imperial College London, W12 0BZ London, U.K
- The Francis Crick Institute, NW1 1AT London, U.K
| | - Rita Correia
- Department of Bioengineering, Imperial College London, W12 0BZ London, U.K
- The Francis Crick Institute, NW1 1AT London, U.K
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, SE1 9RT London, U.K
| | - Adam D Celiz
- Department of Bioengineering, Imperial College London, W12 0BZ London, U.K
- The Francis Crick Institute, NW1 1AT London, U.K
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, SE1 9RT London, U.K
| |
Collapse
|
2
|
Zhao KY, Du YX, Cao HM, Su LY, Su XL, Li X. The biological macromolecules constructed Matrigel for cultured organoids in biomedical and tissue engineering. Colloids Surf B Biointerfaces 2024; 247:114435. [PMID: 39647422 DOI: 10.1016/j.colsurfb.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Matrigel is the most commonly used matrix for 3D organoid cultures. Research on the biomaterial basis of Matrigel for organoid cultures is a highly challenging field. Currently, many studies focus on Matrigel-based biological macromolecules or combinations to construct natural Matrigel and synthetic hydrogel scaffolds based on collagen, peptides, polysaccharides, microbial transglutaminase, DNA supramolecules, and polymers for organoid culture. In this review, we discuss the limitations of both natural and synthetic Matrigel, and describe alternative scaffolds that have been employed for organoid cultures. The patient-derived organoids were constructed in different cancer types and limitations of animal-derived organoids based on the hydrogel or Matrigel. The constructed techniques utilizing 3D bioprinting platforms, air-liquid interface (ALI) culture, microfluidic culture, and organ-on-a-chip platform are summarized. Given the potential of organoids for a wide range of therapeutic, tissue engineering and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels in addition to Matrigel.
Collapse
Affiliation(s)
- Ke-Yu Zhao
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Yi-Xiang Du
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Hui-Min Cao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Li-Ya Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xiu-Lan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
3
|
Liu Y, Gilchrist AE, Heilshorn SC. Engineered Protein Hydrogels as Biomimetic Cellular Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407794. [PMID: 39233559 PMCID: PMC11573243 DOI: 10.1002/adma.202407794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Indexed: 09/06/2024]
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) play a pivotal role in regulating cellular behaviors such as proliferation, migration, and differentiation. Engineered protein-based hydrogels, with highly tunable multifunctional properties, have the potential to replicate key features of the native ECM. Formed by self-assembly or crosslinking, engineered protein-based hydrogels can induce a range of cell behaviors through bioactive and functional domains incorporated into the polymer backbone. Using recombinant techniques, the amino acid sequence of the protein backbone can be designed with precise control over the chain-length, folded structure, and cell-interaction sites. In this review, the modular design of engineered protein-based hydrogels from both a molecular- and network-level perspective are discussed, and summarize recent progress and case studies to highlight the diverse strategies used to construct biomimetic scaffolds. This review focuses on amino acid sequences that form structural blocks, bioactive blocks, and stimuli-responsive blocks designed into the protein backbone for highly precise and tunable control of scaffold properties. Both physical and chemical methods to stabilize dynamic protein networks with defined structure and bioactivity for cell culture applications are discussed. Finally, a discussion of future directions of engineered protein-based hydrogels as biomimetic cellular scaffolds is concluded.
Collapse
Affiliation(s)
- Yueming Liu
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aidan E Gilchrist
- Department of Biomedical Engineering, University of California, Davis 451 Health Sciences Dr, GBSF 3315, Davis, CA, 95616, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, 476 Lomita Mall, McCullough Room 246, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Liu X, Astudillo Potes MD, Serdiuk V, Dashtdar B, Schreiber AC, Rezaei A, Lee Miller A, Hamouda AM, Shafi M, Elder BD, Lu L. Injectable bioactive poly(propylene fumarate) and polycaprolactone based click chemistry bone cement for spinal fusion in rabbits. J Biomed Mater Res A 2024; 112:1803-1816. [PMID: 38644548 DOI: 10.1002/jbm.a.37725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Degenerative spinal pathology is a widespread medical issue, and spine fusion surgeries are frequently performed. In this study, we fabricated an injectable bioactive click chemistry polymer cement for use in spinal fusion and bone regrowth. Taking advantages of the bioorthogonal click reaction, this cement can be crosslinked by itself eliminating the addition of a toxic initiator or catalyst, nor any external energy sources like UV light or heat. Furthermore, nano-hydroxyapatite (nHA) and microspheres carrying recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) were used to make the cement bioactive for vascular induction and osteointegration. After implantation into a rabbit posterolateral spinal fusion (PLF) model, the cement showed excellent induction of new bone formation and bridging bone, achieving results comparable to autograft control. This is largely due to the osteogenic properties of nano-hydroxyapatite (nHA) and the released rhBMP-2 and rhVEGF growth factors. Since the availability of autograft sources is limited in clinical settings, this injectable bioactive click chemistry cement may be a promising alternative for spine fusion applications in addressing various spinal conditions.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mahnoor Shafi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
McCahill AL, Zhang T, Saven JG, Kloxin CJ, Pochan DJ. Peptide Bundlemer Networks or Lattices: Controlling Cross-Linking and Self-Assembly Using Protein-like Display of Chemistry. ACS NANO 2024; 18:25695-25707. [PMID: 39228265 DOI: 10.1021/acsnano.4c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Coiled-coil 'bundlemer' peptides were selectively modified with allyloxycarbonyl (alloc)-protected lysine, a non-natural amino acid containing an alkene on its side chain. The specific display of this alkene from the coiled-coil surface with protein-like specificity enabled this residue to be used as a covalent linkage for creating peptide networks with controllable properties or as a physical linkage for the self-assembly of bundlemers into unexpected, intricate lattices driven by the hydrophobic nature of the side chain. For network formation, peptides were modified with both alloc-protected lysine and cysteine amino acids for solution assembly into solvent-swollen films and subsequent covalent cross-linking via thiol-ene photo click reactions. The degree of network cross-linking, as determined by rheometry, was finely tuned by varying the specific spatial display of reactive groups on the bundlemer building block particles, transitioning between intrabundle and interbundle cross-linking. The designed display of alloc groups from the center of the bundlemer building block also prompted particle self-assembly into an unexpected intricate lattice with a porous morphology. The lattices were studied in a variety of solution conditions using transmission electron microscopy, cryotransmission electron microscopy, and small-angle X-ray scattering. The approximate particle arrangement in the lattice was determined by using coarse-grained modeling and machine learning optimization techniques along with experimental methods. The proposed truss-like face-centered cubic packing of the alloc-functionalized bundlemers agrees well with the experimental results.
Collapse
Affiliation(s)
- Amanda L McCahill
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianren Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Philadelphia 19104, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Philadelphia 19104, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Duong VT, Nguyen HD, Luong NH, Chang CY, Lin CC. Photo-responsive decellularized small intestine submucosa hydrogels. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2401952. [PMID: 39525288 PMCID: PMC11546089 DOI: 10.1002/adfm.202401952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/16/2024]
Abstract
Decellularized small intestine submucosa (dSIS) is a promising biomaterial for promoting tissue regeneration. Isolated from the submucosal layer of animal jejunum, SIS is rich in extracellular matrix (ECM) proteins, including collagen, laminin, and fibronectin. Following mild decellularization, dSIS becomes an acellular matrix that supports cell adhesion, proliferation, and differentiation. Conventional dSIS matrix is usually obtained by thermal crosslinking, which yields a soft scaffold with low stability. To address these challenges, dSIS has been modified with methacrylate groups for photocrosslinking into stable hydrogels. However, dSIS has not been modified with clickable handles for orthogonal crosslinking. Here, we report the development of norbornene-modified dSIS, named dSIS-NB, via reacting amine groups of dSIS with carbic anhydride in acidic aqueous reaction conditions. Using triethylamine (TEA) as a mild base catalyst, we obtained high degrees of NB substitution on dSIS. In addition to describing the synthesis of dSIS-NB, we explored its adaptability in orthogonal hydrogel crosslinking and used dSIS-NB hydrogels for cancer and vascular tissue engineering. Impressively, compared with physically crosslinked dSIS and collagen matrices, orthogonally crosslinked dSIS-NB hydrogels supported rapid dissemination of cancer cells and superior vasculogenic and angiogenic properties. dSIS-NB was also exploited as a versatile bioink for 3D bioprinting applications.
Collapse
Affiliation(s)
- Van Thuy Duong
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Han Dang Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ngoc Ha Luong
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chun-Yi Chang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Milton LA, Davern JW, Hipwood L, Chaves JCS, McGovern J, Broszczak D, Hutmacher DW, Meinert C, Toh YC. Liver click dECM hydrogels for engineering hepatic microenvironments. Acta Biomater 2024; 185:144-160. [PMID: 38960110 DOI: 10.1016/j.actbio.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge. Here, we demonstrate that thiolation of solubilized liver dECM enables rapid formation of covalently crosslinked hydrogels via Michael-type addition, allowing for precise control over mechanical properties and superior organotypic biological activity. Investigation of various decellularization methodologies revealed that treatment of liver tissue with Triton X-100 and ammonium hydroxide resulted in near complete DNA removal with significant retention of the native liver proteome. Chemical functionalization of pepsin-solubilized liver dECMs via 1-ethyl-3(3-dimethylamino)propyl carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling of l-Cysteine created thiolated liver dECM (dECM-SH), which rapidly reacted with 4-arm polyethylene glycol (PEG)-maleimide to form optically clear hydrogels under controlled conditions. Importantly, Young's moduli could be precisely tuned between 1 - 7 kPa by varying polymer concentrations, enabling close replication of healthy and fibrotic liver conditions in in vitro cell cultures. Click dECM-SH hydrogels were cytocompatible, supported growth of HepG2 and HepaRG liver cells, and promoted liver-specific functional phenotypes as evidenced by increased metabolic activity, as well CYP1A2 and CYP3A4 activity and excretory function when compared to monolayer culture and collagen-based hydrogels. Our findings demonstrate that click-functionalized dECM hydrogels offer a highly controlled, reproducible alternative to conventional tissue-derived hydrogels for in vitro cell culture applications. STATEMENT OF SIGNIFICANCE: Traditional dECM hydrogels face challenges in reproducibility and mechanical property control due to variable crosslinking processes. We introduce a click hydrogel based on porcine liver decellularized extracellular matrix (dECM) that circumnavigates these challenges. After optimizing liver decellularization for ECM retention, we integrated thiol-functionalized liver dECM with polyethylene-glycol derivatives through Michael-type addition click chemistry, enabling rapid, room-temperature gelation. This offers enhanced control over the hydrogel's mechanical and biochemical properties. The resultant click dECM hydrogels mimic the liver's natural ECM and exhibit greater mechanical tunability and handling ease, facilitating their application in high-throughput and industrial settings. Moreover, these hydrogels significantly improve the function of HepaRG-derived hepatocytes in 3D culture, presenting an advancement for liver tissue cell culture models for drug testing applications.
Collapse
Affiliation(s)
- Laura A Milton
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia
| | - Jordan W Davern
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Luke Hipwood
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Juliana C S Chaves
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jacqui McGovern
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Daniel Broszczak
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia.
| | - Yi-Chin Toh
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
8
|
Nam S, Lou J, Lee S, Kartenbender JM, Mooney DJ. Dynamic injectable tissue adhesives with strong adhesion and rapid self-healing for regeneration of large muscle injury. Biomaterials 2024; 309:122597. [PMID: 38696944 PMCID: PMC11144078 DOI: 10.1016/j.biomaterials.2024.122597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Wounds often necessitate the use of instructive biomaterials to facilitate effective healing. Yet, consistently filling the wound and retaining the material in place presents notable challenges. Here, we develop a new class of injectable tissue adhesives by leveraging the dynamic crosslinking chemistry of Schiff base reactions. These adhesives demonstrate outstanding mechanical properties, especially in regard to stretchability and self-healing capacity, and biodegradability. Furthermore, they also form robust adhesion to biological tissues. Their therapeutic potential was evaluated in a rodent model of volumetric muscle loss (VML). Ultrasound imaging confirmed that the adhesives remained within the wound site, effectively filled the void, and degraded at a rate comparable to the healing process. Histological analysis indicated that the adhesives facilitated muscle fiber and blood vessel formation, and induced anti-inflammatory macrophages. Notably, the injured muscles of mice treated with the adhesives displayed increased weight and higher force generation than the control groups. This approach to adhesive design paves the way for the next generation of medical adhesives in tissue repair.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junzhe Lou
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sangmin Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Jan-Marc Kartenbender
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
10
|
Chen Y, Chen B, Dong J, Yang D, Tang H, Wen L, Li J, Huang L, Zhou J. A tough and bioadhesive injectable hydrogel formed with maleimidyl alginate and pristine gelatin. Carbohydr Polym 2024; 334:122011. [PMID: 38553212 DOI: 10.1016/j.carbpol.2024.122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
Injectable hydrogels have wide applications in clinical practice. However, the development of tough and bioadhesive ones based on biopolymers, along with biofriendly and robust crosslinking strategies, still represents a great challenge. Herein, we report an injectable hydrogel composed of maleimidyl alginate and pristine gelatin, for which the precursor solutions could self-crosslink via mild Michael-type addition without any catalyst or external energy upon mixing. This hydrogel is tough and bioadhesive, which can maintain intactness as well as adherence to the defect of porcine skin under fierce bending and twisting, warm water bath, and boiling water shower. Besides, it is biocompatible, bioactive and biodegradable, which could support the growth and remodeling of cells by affording an extracellular matrix-like environment. As a proof of application, we demonstrate that this hydrogel could significantly accelerate diabetic skin wound healing, thereby holding great potential in healthcare.
Collapse
Affiliation(s)
- Yin Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Baiqi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Deyu Yang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Tang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China; College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lu Huang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
11
|
Gholamali I, Vu TT, Jo SH, Park SH, Lim KT. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2439. [PMID: 38793505 PMCID: PMC11123044 DOI: 10.3390/ma17102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors. Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues, HA hydrogels can replicate the ECM's structure and functions. This mimicry is pivotal in tissue engineering applications by providing an ideal setting for cellular growth and maturation. Various cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechanical strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering, drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels enables the production of biomaterials with sought-after qualities, offering avenues for advancements in the realm of biomedicine.
Collapse
Affiliation(s)
- Iman Gholamali
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, Huang W, Hu N, Hu X. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res 2024; 12:28. [PMID: 38744863 PMCID: PMC11094017 DOI: 10.1038/s41413-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection in deep bone tissue. Its high recurrence rate and impaired restoration of bone deficiencies are major challenges in treatment. Microbes have evolved numerous mechanisms to effectively evade host intrinsic and adaptive immune attacks to persistently localize in the host, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants (SCVs). Moreover, microbial-mediated dysregulation of the bone immune microenvironment impedes the bone regeneration process, leading to impaired bone defect repair. Despite advances in surgical strategies and drug applications for the treatment of bone infections within the last decade, challenges remain in clinical management. The development and application of tissue engineering materials have provided new strategies for the treatment of bone infections, but a comprehensive review of their research progress is lacking. This review discusses the critical pathogenic mechanisms of microbes in the skeletal system and their immunomodulatory effects on bone regeneration, and highlights the prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. It will inform the development and translation of antimicrobial and bone repair tissue engineering materials for the management of bone infections.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Feilong Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yaji Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Bei Jing, 101408, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
13
|
Qiao S, Peijie T, Nan J. Crosslinking strategies of decellularized extracellular matrix in tissue regeneration. J Biomed Mater Res A 2024; 112:640-671. [PMID: 37990863 DOI: 10.1002/jbm.a.37650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
By removing the immunogenic cellular components through various decellularization methods, decellularized extracellular matrix (dECM) is considered a promising material in the field of tissue engineering and regenerative medicine with highly preserved physicochemical properties and superior biocompatibility. However, decellularization treatment can lead to some loss of structural integrity, mechanical strength, degradation stability, and biological performance of dECM biomaterials. Therefore, physical and chemical crosslinking methods are preferred to restore or even improve the biomechanical properties, stability, and bioactivity, and to achieve a delicate balance between degradation of the implanted biomaterial and regeneration of the host tissue. This review provides an overview of dECM biomaterials, and describes and compares the mechanisms and characteristics of commonly used crosslinking methods for dECM, with a focus on the potential applications of versatile dECM-based biomaterials derived from skin, cardiac tissues (pericardium, heart valves, myocardial tissue), blood vessels, liver, and kidney, modified with different chemical crosslinking reagents, in tissue and organ regeneration.
Collapse
Affiliation(s)
- Su Qiao
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tan Peijie
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Nan
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Dixit A, Mahajan A, Saxena R, Chakraborty S, Katti DS. Engineering sulfated polysaccharides and silk fibroin based injectable IPN hydrogels with stiffening and growth factor presentation abilities for cartilage tissue engineering. Biomater Sci 2024; 12:2067-2085. [PMID: 38470831 DOI: 10.1039/d3bm01466e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The extracellular matrix (ECM) presents a framework for various biological cues and regulates homeostasis during both developing and mature stages of tissues. During development of cartilage, the ECM plays a critical role in endowing both biophysical and biochemical cues to the progenitor cells. Hence, designing microenvironments that recapitulate these biological cues as provided by the ECM during development may facilitate the engineering of cartilage tissue. In the present study, we fabricated an injectable interpenetrating hydrogel (IPN) system which serves as an artificial ECM and provides chondro-inductive niches for the differentiation of stem cells to chondrocytes. The hydrogel was designed to replicate the gradual stiffening (as a biophysical cue) and the presentation of growth factors (as a biochemical cue) as provided by the natural ECM of the tissue, thus exemplifying a biomimetic approach. This dynamic stiffening was achieved by incorporating silk fibroin, while the growth factor presentation was accomplished using sulfated-carboxymethyl cellulose. Silk fibroin and sulfated-carboxymethyl cellulose (s-CMC) were combined with tyraminated-carboxymethyl cellulose (t-CMC) and crosslinked using HRP/H2O2 to fabricate s-CMC/t-CMC/silk IPN hydrogels. Initially, the fabricated hydrogel imparted a soft microenvironment to promote chondrogenic differentiation, and with time it gradually stiffened to offer mechanical support to the joint. Additionally, the presence of s-CMC conferred the hydrogel with the property of sequestering cationic growth factors such as TGF-β and allowing their prolonged presentation to the cells. More importantly, TGF-β loaded in the developed hydrogel system remained active and induced chondrogenic differentiation of stem cells, resulting in the deposition of cartilage ECM components which was comparable to the hydrogels that were treated with TGF-β provided through media. Overall, the developed hydrogel system acts as a reservoir of the necessary biological cues for cartilage regeneration and simultaneously provides mechanical support for load-bearing tissues such as cartilage.
Collapse
Affiliation(s)
- Akansha Dixit
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Aman Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Rakshita Saxena
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Saptomee Chakraborty
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
15
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
16
|
Mehak, Singh G, Singh R, Singh G, Stanzin J, Singh H, Kaur G, Singh J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Adv 2024; 14:7383-7413. [PMID: 38433942 PMCID: PMC10906366 DOI: 10.1039/d4ra00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Collapse
Affiliation(s)
- Mehak
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Jigmat Stanzin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| |
Collapse
|
17
|
Dimmitt N, Lin CC. Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions. Macromolecules 2024; 57:1556-1568. [PMID: 38435678 PMCID: PMC10903513 DOI: 10.1021/acs.macromol.3c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
The inverse electron demand Diels-Alder (iEDDA) reactions are highly efficient click chemistry increasingly utilized in bioconjugation, live cell labeling, and the synthesis and modification of biomaterials. iEDDA click reactions have also been used to cross-link tetrazine (Tz) and norbornene (NB) modified macromers [e.g., multiarm poly(ethylene glycol) or PEG]. In these hydrogels, Tz-NB adducts exhibit stable supramolecular interactions with a high hydrolytic stability. Toward engineering a new class of PEG-based click hydrogels with highly adaptable properties, we previously reported a new group of NB-derivatized PEG macromers via reacting hydroxyl-terminated PEG with carbic anhydride (CA). In this work, we show that hydrogels cross-linked by PEGNBCA or its derivatives exhibited fast and tunable hydrolytic degradation. Here, we show that PEGNBCA (either mono- or octafunctional) and its dopamine or tyramine conjugated derivatives (i.e., PEGNB-D and PEGNB-T) readily cross-link with 4-arm PEG-Tz to form a novel class of multifunctional iEDDA click hydrogels. Through modularly adjusting the macromers with unstable and stable iEDDA click-induced supramolecular interactions (iEDDA-CSI), we achieved highly tunable degradation, with full degradation in less than 2 weeks to over two months. We also show that secondary enzymatic reactions could dynamically stiffen these hydrogels. These hydrogels could also be spatiotemporally photopatterned through visible light-initiated photochemistry. Finally, the iEDDA-CSI hydrogels post ester hydrolysis displayed shear-thinning and self-healing properties, enabling injectable delivery.
Collapse
Affiliation(s)
- Nathan
H. Dimmitt
- Department of Biomedical Engineering,
Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering,
Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
18
|
Yang W, Chen J, Zhao Z, Wu M, Gong L, Sun Y, Huang C, Yan B, Zeng H. Recent advances in fabricating injectable hydrogels via tunable molecular interactions for bio-applications. J Mater Chem B 2024; 12:332-349. [PMID: 37987037 DOI: 10.1039/d3tb02105j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hydrogels with three-dimensional structures have been widely applied in various applications because of their tunable structures, which can be easily tailored with desired functionalities. However, the application of hydrogel materials in bioengineering is still constrained by their limited dosage flexibility and the requirement of invasive surgical procedures. Compared to traditional hydrogels, injectable hydrogels, with shear-thinning and/or in situ formation properties, simplify the implantation process and reduce tissue invasion, which can be directly delivered to target sites using a syringe injection, offering distinct advantages over traditional hydrogels. These injectable hydrogels incorporate physically non-covalent and/or dynamic covalent bonds, granting them self-healing abilities to recover their structural integrity after injection. This review summarizes our recent progress in preparing injectable hydrogels and discusses their performance in various bioengineering applications. Moreover, the underlying molecular interaction mechanisms that govern the injectable and functional properties of hydrogels were characterized by using nanomechanical techniques such as surface forces apparatus (SFA) and atomic force microscopy (AFM). The remaining challenges and future perspectives on the design and application of injectable hydrogels are also discussed. This work provides useful insights and guides future research directions in the field of injectable hydrogels for bioengineering.
Collapse
Affiliation(s)
- Wenshuai Yang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Ziqian Zhao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Meng Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Yimei Sun
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
19
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
20
|
Ghosh S, Pati F. Decellularized extracellular matrix and silk fibroin-based hybrid biomaterials: A comprehensive review on fabrication techniques and tissue-specific applications. Int J Biol Macromol 2023; 253:127410. [PMID: 37844823 DOI: 10.1016/j.ijbiomac.2023.127410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Biomaterials play a fundamental role in tissue engineering by providing biochemical and physical cues that influence cellular fate and matrix development. Decellularized extracellular matrix (dECM) as a biomaterial is distinguished by its abundant composition of matrix proteins, such as collagen, elastin, fibronectin, and laminin, as well as glycosaminoglycans and proteoglycans. However, the mechanical properties of only dECM-based constructs may not always meet tissue-specific requirements. Recent advancements address this challenge by utilizing hybrid biomaterials that harness the strengths of silk fibroin (SF), which contributes the necessary mechanical properties, while dECM provides essential cellular cues for in vitro studies and tissue regeneration. This review discusses emerging trends in developing such biopolymer blends, aiming to synergistically combine the advantages of SF and dECM through optimal concentrations and desired cross-linking density. We focus on different fabrication techniques and cross-linking methods that have been utilized to fabricate various tissue-engineered hybrid constructs. Furthermore, we survey recent applications of such biomaterials for the regeneration of various tissues, including bone, cartilage, trachea, bladder, vascular graft, heart, skin, liver, and other soft tissues. Finally, the trajectory and prospects of the constructs derived from this blend in the tissue engineering field have been summarized, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Soham Ghosh
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Falguni Pati
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
21
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Duong VT, Lin CC. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization. Macromol Biosci 2023; 23:e2300213. [PMID: 37536347 PMCID: PMC10837335 DOI: 10.1002/mabi.202300213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo-reactive bioinks. Norbornene-based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post-printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin-norbornene (GelNB) is reported as a photo-cross-linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2-5 wt.%) and poly(ethylene glycol)-tetra-thiol (PEG4SH) are DLP-printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP-printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)-mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP-printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications.
Collapse
Affiliation(s)
- Van Thuy Duong
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Luo Z, Wang Y, Xu Y, Wang J, Yu Y. Modification and crosslinking strategies for hyaluronic acid-based hydrogel biomaterials. SMART MEDICINE 2023; 2:e20230029. [PMID: 39188300 PMCID: PMC11235888 DOI: 10.1002/smmd.20230029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/24/2023] [Indexed: 08/28/2024]
Abstract
Hyaluronic acid (HA) is an attractive extracellular matrix-derived polymer. The related HA-based hydrogels are emerging to be the hotspots in the cutting edge of biomaterials. The continuous sights concentrate on exploring modification methods and crosslinking strategies to promote the advancement of HA-based hydrogels with enhanced physical/chemical properties and enriched biological performance. Here, the advances on modification methods and crosslinking strategies for fabricating HA-based hydrogels with diverse capacities are summarized. Firstly, the modification reactions that occur on the active hydroxyl, carboxyl and N-acetyl groups of HA molecule are discussed. Next, the emphasis is put on various crosslinking strategies including physical crosslinking, covalent crosslinking and dynamic covalent crosslinking. Finally, we provide a general summary and give a critical viewpoint on the remaining challenges and the future development of HA-based hydrogels. It is hoped that this review can provide new proposals for the specific design of functional hydrogel biomaterials.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Ye Xu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
24
|
Song J, Gerecht S. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Arterioscler Thromb Vasc Biol 2023; 43:e291-e302. [PMID: 37317849 DOI: 10.1161/atvbaha.122.318235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
The ECM (extracellular matrix) is a 3-dimensional network that supports cellular responses and maintains structural tissue integrity in healthy and pathological conditions. The interactions between ECM and cells trigger signaling cascades that lead to phenotypic changes and structural and compositional turnover of the ECM, which in turn regulates vascular cell behavior. Hydrogel biomaterials are a powerful platform for basic and translational studies and clinical applications due to their high swelling capacity and exceptional versatility in compositions and properties. This review highlights recent developments and uses of engineered natural hydrogel platforms that mimic the ECM and present defined biochemical and mechanical cues for vascularization. Specifically, we focus on modulating vascular cell stimulation and cell-ECM/cell-cell interactions in the microvasculature that are the established biomimetic microenvironment.
Collapse
Affiliation(s)
- Jiyeon Song
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC
| |
Collapse
|
25
|
Zhu Y, Zhang M, Sun Q, Wang X, Li X, Li Q. Advanced Mechanical Testing Technologies at the Cellular Level: The Mechanisms and Application in Tissue Engineering. Polymers (Basel) 2023; 15:3255. [PMID: 37571149 PMCID: PMC10422338 DOI: 10.3390/polym15153255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mechanics, as a key physical factor which affects cell function and tissue regeneration, is attracting the attention of researchers in the fields of biomaterials, biomechanics, and tissue engineering. The macroscopic mechanical properties of tissue engineering scaffolds have been studied and optimized based on different applications. However, the mechanical properties of the overall scaffold materials are not enough to reveal the mechanical mechanism of the cell-matrix interaction. Hence, the mechanical detection of cell mechanics and cellular-scale microenvironments has become crucial for unraveling the mechanisms which underly cell activities and which are affected by physical factors. This review mainly focuses on the advanced technologies and applications of cell-scale mechanical detection. It summarizes the techniques used in micromechanical performance analysis, including atomic force microscope (AFM), optical tweezer (OT), magnetic tweezer (MT), and traction force microscope (TFM), and analyzes their testing mechanisms. In addition, the application of mechanical testing techniques to cell mechanics and tissue engineering scaffolds, such as hydrogels and porous scaffolds, is summarized and discussed. Finally, it highlights the challenges and prospects of this field. This review is believed to provide valuable insights into micromechanics in tissue engineering.
Collapse
Affiliation(s)
- Yingxuan Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengqi Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
27
|
Ruan T, Fu CY, Lin CH, Chou KC, Lin YJ. Nanocontroller-mediated dissolving hydrogel that can sustainably release cold-mimetic menthol to induce adipocyte browning for treating obesity and its related metabolic disorders. Biomaterials 2023; 297:122120. [PMID: 37058899 DOI: 10.1016/j.biomaterials.2023.122120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Obesity leads to the development of many metabolic diseases, causing severe health problems. Menthol can induce adipocyte browning and thus has been used to combat obesity. To deliver menthol with a sustained effect, an injectable hydrogel that comprises carboxymethyl chitosan and aldehyde-functionalized alginate that are crosslinked through dynamic Schiff-base linkages is developed to load menthol-cyclodextrin inclusion complexes (IC). To render the as-developed hydrogel soluble after its payload is released, amino acid-loaded liposomes, functioning as nanocontrollers, are covalently grafted onto networks of the hydrogel. Upon subcutaneous injection in mice with diet-induced obesity, the as-developed hydrogel absorbs body fluids and spontaneously swells, expanding and stretching its networks, gradually releasing the loaded IC. Menthol then disassociates from the released IC to induce adipocyte browning, triggering fat consumption and increasing energy expenditure. Meanwhile, the expanded hydrogel networks destabilize the grafted liposomes, which function as built-in nanocontrollers, unleashing their loaded amino acid molecules to disrupt the dynamic Schiff-base linkages, causing hydrogel to dissolve. The thus-developed nanocontroller-mediated dissolving hydrogel realizes the sustained release of menthol for treating obesity and its related metabolic disorders without leaving exogenous hydrogel materials inside the body, and thereby preventing any undesired adverse effects.
Collapse
Affiliation(s)
- Ting Ruan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Yu Fu
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan; Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kun-Chi Chou
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
28
|
Lagneau N, Tournier P, Nativel F, Maugars Y, Guicheux J, Le Visage C, Delplace V. Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials 2023; 296:122091. [PMID: 36947892 DOI: 10.1016/j.biomaterials.2023.122091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Osteoarthritis (OA) is the most common debilitating joint disease, yet there is no curative treatment for OA to date. Delivering mesenchymal stromal cells (MSCs) as therapeutic cells to mitigate the inflammatory symptoms associated with OA is attracting increasing attention. In principle, MSCs could respond to the pro-inflammatory microenvironment of an OA joint by the secretion of anti-inflammatory, anti-apoptotic, immunomodulatory and pro-regenerative factors, therefore limiting pain, as well as the disease development. However, the microenvironment of MSCs is known to greatly affect their survival and bioactivity, and using tailored biomaterial scaffolds could be key to the success of intra-articular MSC-based therapies. The aim of this review is to identify and discuss essential characteristics of biomaterial scaffolds to best promote MSC secretory functions in the context of OA. First, a brief introduction to the OA physiopathology is provided, followed by an overview of the MSC secretory functions, as well as the current limitations of MSC-based therapy. Then, we review the current knowledge on the effects of cell-material interactions on MSC secretion. These considerations allow us to define rational guidelines for next-generation biomaterial design to improve the MSC-based therapy of OA.
Collapse
Affiliation(s)
- Nathan Lagneau
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Pierre Tournier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Fabien Nativel
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France; Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Yves Maugars
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France.
| | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Vianney Delplace
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| |
Collapse
|
29
|
Brady SR, Gohsman SB, Sepulveda K, Weaver JD. Engineering synthetic poly(ethylene) glycol-based hydrogels compatible with injection molding biofabrication. J Biomed Mater Res A 2023; 111:814-824. [PMID: 36866410 DOI: 10.1002/jbm.a.37523] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Hydrogel injection molding is a biofabrication method that is useful for the rapid generation of complex cell-laden hydrogel geometries, with potential utility in biomanufacturing products for tissue engineering applications. Hydrogel injection molding requires that hydrogel polymers have sufficiently delayed crosslinking times to enable injection and molding prior to gelation. In this work, we explore the feasibility of injection molding synthetic poly(ethylene) glycol (PEG)-based hydrogels functionalized with strain promoted azide-alkyne cycloaddition click chemistry functional groups. We evaluate the mechanical properties of a PEG-based hydrogel library, including time to gelation and successful generation of complex geometries via injection molding. We evaluate the binding and retention of adhesive ligand RGD within the library matrices and characterize the viability and function of encapsulated cells. This work demonstrates the feasibility of injection molding synthetic PEG-based hydrogels for tissue engineering applications, with potential utility in the clinic and biomanufacturing.
Collapse
Affiliation(s)
- Sarah R Brady
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Simone B Gohsman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Keven Sepulveda
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
30
|
Laurano R, Boffito M, Cassino C, Midei L, Pappalardo R, Chiono V, Ciardelli G. Thiol-Ene Photo-Click Hydrogels with Tunable Mechanical Properties Resulting from the Exposure of Different -Ene Moieties through a Green Chemistry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2024. [PMID: 36903139 PMCID: PMC10004734 DOI: 10.3390/ma16052024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Temperature and light responsiveness are widely exploited stimuli to tune the physico-chemical properties of double network hydrogels. In this work, new amphiphilic poly(ether urethane)s bearing photo-sensitive moieties (i.e., thiol, acrylate and norbornene functionalities) were engineered by exploiting the versatility of poly(urethane) chemistry and carbodiimide-mediated green functionalization procedures. Polymers were synthesized according to optimized protocols maximizing photo-sensitive group grafting while preserving their functionality (approx. 1.0 × 1019, 2.6 × 1019 and 8.1 × 1017 thiol, acrylate and norbornene groups/gpolymer), and exploited to prepare thermo- and Vis-light-responsive thiol-ene photo-click hydrogels (18% w/v, 1:1 thiol:ene molar ratio). Green light-induced photo-curing allowed the achievement of a much more developed gel state with improved resistance to deformation (ca. 60% increase in critical deformation, γL). Triethanolamine addition as co-initiator to thiol-acrylate hydrogels improved the photo-click reaction (i.e., achievement of a better-developed gel state). Differently, L-tyrosine addition to thiol-norbornene solutions slightly hindered cross-linking, resulting in less developed gels with worse mechanical performances (~62% γL decrease). In their optimized composition, thiol-norbornene formulations resulted in prevalent elastic behavior at lower frequency compared to thiol-acrylate gels due to the formation of purely bio-orthogonal instead of heterogeneous gel networks. Our findings highlight that exploiting the same thiol-ene photo-click chemistry, a fine tuning of the gel properties is possible by reacting specific functional groups.
Collapse
Affiliation(s)
- Rossella Laurano
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy
| | - Ludovica Midei
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Roberta Pappalardo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Department of Surgical Sciences, Università degli Studi di Torino, 10126 Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
31
|
Kim MH, Lin CC. Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2737-2746. [PMID: 36608274 DOI: 10.1021/acsami.2c20098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Digital light processing (DLP) bioprinting is an emerging technology for three-dimensional bioprinting (3DBP) owing to its high printing fidelity, fast fabrication speed, and higher printing resolution. Low-viscosity bioinks such as poly(ethylene glycol) diacrylate (PEGDA) are commonly used for DLP-based bioprinting. However, the cross-linking of PEGDA proceeds via chain-growth photopolymerization that displays significant heterogeneity in cross-linking density. In contrast, step-growth thiol-norbornene photopolymerization is not oxygen inhibited and produces hydrogels with an ideal network structure. The high cytocompatibility and rapid gelation of thiol-norbornene photopolymerization have lent itself to the cross-linking of cell-laden hydrogels but have not been extensively used for DLP bioprinting. In this study, we explored eight-arm PEG-norbornene (PEG8NB) as a bioink/resin for visible light-initiated DLP-based 3DBP. The PEG8NB-based DLP resin showed high printing fidelity and cytocompatibility even without the use of any bioactive motifs and high initial stiffness. In addition, we demonstrated the versatility of the PEGNB resin by printing solid structures as cell culture devices, hollow channels for endothelialization, and microwells for generating cell spheroids. This work not only expands the selection of bioinks for DLP-based 3DBP but also provides a platform for dynamic modification of the bioprinted constructs.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
32
|
Combining thermosensitive physical self-assembly and covalent cycloaddition chemistry as simultaneous dual cross-linking mechanisms for the preparation of injectable hydrogels with tuneable properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis. Bioact Mater 2022; 22:274-290. [PMID: 36263097 PMCID: PMC9556860 DOI: 10.1016/j.bioactmat.2022.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is a serious clinical disease. Due to the deformability and fragility of the spinal cord, overly rigid hydrogels cannot be used to treat SCI. Hence, we used TPA and Laponite to develop a hydrogel with shear-thinning ability. This hydrogel exhibits good deformation, allowing it to match the physical properties of the spinal cord; additionally, this hydrogel scavenges ROS well, allowing it to inhibit the lipid peroxidation caused by ferroptosis. According to the in vivo studies, the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism. In addition, dental pulp stem cells (DPSCs) were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses. It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.
Collapse
|
34
|
Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: A bird’s-eye view. Acta Pharm Sin B 2022; 13:1990-2016. [DOI: 10.1016/j.apsb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
|
35
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
36
|
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022; 10:954501. [PMID: 36159703 PMCID: PMC9493100 DOI: 10.3389/fbioe.2022.954501] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
The rapid development of tissue engineering makes it an effective strategy for repairing cartilage defects. The significant advantages of injectable hydrogels for cartilage injury include the properties of natural extracellular matrix (ECM), good biocompatibility, and strong plasticity to adapt to irregular cartilage defect surfaces. These inherent properties make injectable hydrogels a promising tool for cartilage tissue engineering. This paper reviews the research progress on advanced injectable hydrogels. The cross-linking method and structure of injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells, and stimulators commonly used in the preparation of injectable hydrogels are thoroughly reviewed. Finally, we summarize the research progress of the latest advanced hydrogels for cartilage repair and the future challenges for injectable hydrogels.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Li
- Zhejiang University of Technology, Hangzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Yu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiong Zhang
- Center for Operating Room, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Arkenberg MR, Koehler K, Lin CC. Heparinized Gelatin-Based Hydrogels for Differentiation of Induced Pluripotent Stem Cells. Biomacromolecules 2022; 23:4141-4152. [PMID: 36074748 PMCID: PMC9554908 DOI: 10.1021/acs.biomac.2c00585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chemically defined
hydrogels are increasingly utilized to define
the effects of extracellular matrix (ECM) components on cellular fate
determination of human embryonic and induced pluripotent stem cell
(hESC and hiPSCs). In particular, hydrogels cross-linked by orthogonal
click chemistry, including thiol-norbornene photopolymerization and
inverse electron demand Diels–Alder (iEDDA) reactions, are
explored for 3D culture of hESC/hiPSCs owing to the specificity, efficiency,
cytocompatibility, and modularity of the cross-linking reactions.
In this work, we exploited the modularity of thiol-norbornene photopolymerization
to create a biomimetic hydrogel platform for 3D culture and differentiation
of hiPSCs. A cell-adhesive, protease-labile, and cross-linkable gelatin
derivative, gelatin-norbornene (GelNB), was used as the backbone polymer
for constructing hiPSC-laden biomimetic hydrogels. GelNB was further
heparinized via the iEDDA click reaction using tetrazine-modified
heparin (HepTz), creating GelNB-Hep. GelNB or GelNB-Hep was modularly
cross-linked with either inert macromer poly(ethylene glycol)-tetra-thiol
(PEG4SH) or another bioactive macromer-thiolated hyaluronic acid (THA).
The formulations of these hydrogels were modularly tuned to afford
biomimetic matrices with similar elastic moduli but varying bioactive
components, enabling the understanding of each bioactive component
on supporting hiPSC growth and ectodermal, mesodermal, and endodermal
fate commitment under identical soluble differentiation cues.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karl Koehler
- Departments of Otolaryngology and Plastic and Oral Surgery, F.M. Kirby Neurobiology Center, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
38
|
Dimmitt NH, Arkenberg MR, de Lima Perini MM, Li J, Lin CC. Hydrolytically Degradable PEG-Based Inverse Electron Demand Diels-Alder Click Hydrogels. ACS Biomater Sci Eng 2022; 8:4262-4273. [PMID: 36074814 PMCID: PMC9554872 DOI: 10.1021/acsbiomaterials.2c00714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Hydrogels cross-linked by inverse electron demand Diels–Alder
(iEDDA) click chemistry are increasingly used in biomedical applications.
With a few exceptions in naturally derived and chemically modified
macromers, iEDDA click hydrogels exhibit long-term hydrolytic stability,
and no synthetic iEDDA click hydrogels can undergo accelerated and
tunable hydrolytic degradation. We have previously reported a novel
method for synthesizing norbornene (NB)-functionalized multiarm poly(ethylene
glycol) (PEG), where carbic anhydride (CA) was used to replace 5-norbornene-2-carboxylic
acid. The new PEGNBCA-based thiol-norbornene hydrogels
exhibited unexpected fast yet highly tunable hydrolytic degradation.
In this contribution, we leveraged the new PEGNBCA macromer
for forming iEDDA click hydrogels with [methyl]tetrazine ([m]Tz)-modified
macromers, leading to the first group of synthetic iEDDA click hydrogels
with highly tunable hydrolytic degradation kinetics. We further exploited
Tz and mTz dual conjugation to achieve tunable hydrolytic degradation
with an in vitro degradation time ranging from 2 weeks to 3 months.
Finally, we demonstrated the excellent in vitro cytocompatibility
and in vivo biocompatibility of the new injectable PEGNBCA-based iEDDA click cross-linked hydrogels.
Collapse
Affiliation(s)
- Nathan H Dimmitt
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mariana Moraes de Lima Perini
- Department of Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jiliang Li
- Department of Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
39
|
Wei Z, Wang S, Hirvonen J, Santos HA, Li W. Microfluidics Fabrication of Micrometer-Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Adv Healthc Mater 2022; 11:e2200846. [PMID: 35678152 PMCID: PMC11468590 DOI: 10.1002/adhm.202200846] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 01/24/2023]
Abstract
Micrometer-sized hydrogels are cross-linked three-dimensional network matrices with high-water contents and dimensions ranging from several to hundreds of micrometers. Due to their excellent biocompatibility and capability to mimic physiological microenvironments in vivo, micrometer-sized hydrogels have attracted much attention in the biomedical engineering field. Their biological properties and applications are primarily influenced by their chemical compositions and geometries. However, inhomogeneous morphologies and uncontrollable geometries limit traditional micrometer-sized hydrogels obtained by bulk mixing. In contrast, microfluidic technology holds great potential for the fabrication of micrometer-sized hydrogels since their geometries, sizes, structures, compositions, and physicochemical properties can be precisely manipulated on demand based on the excellent control over fluids. Therefore, micrometer-sized hydrogels fabricated by microfluidic technology have been applied in the biomedical field, including drug encapsulation, cell encapsulation, and tissue engineering. This review introduces micrometer-sized hydrogels with various geometries synthesized by different microfluidic devices, highlighting their advantages in various biomedical applications over those from traditional approaches. Overall, emerging microfluidic technologies enrich the geometries and morphologies of hydrogels and accelerate translation for industrial production and clinical applications.
Collapse
Affiliation(s)
- Zhenyang Wei
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Shiqi Wang
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Jouni Hirvonen
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
- Department of Biomedical EngineeringW.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity Medical Center Groningen/University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Wei Li
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| |
Collapse
|
40
|
Cornelison C, Fadel S. Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci 2022; 23:8496. [PMID: 35955631 PMCID: PMC9369181 DOI: 10.3390/ijms23158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer's disease and Parkinson's disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of 'immunomodulation' leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called 'click' or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair.
Collapse
Affiliation(s)
- Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
41
|
Saleh KS, Hewawasam R, Šerbedžija P, Blomberg R, Noreldeen SE, Edelman B, Smith BJ, Riches DWH, Magin CM. Engineering Hybrid-Hydrogels Comprised of Healthy or Diseased Decellularized Extracellular Matrix to Study Pulmonary Fibrosis. Cell Mol Bioeng 2022; 15:505-519. [PMID: 36444345 PMCID: PMC9700547 DOI: 10.1007/s12195-022-00726-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic disease characterized by progressive lung scarring that inhibits gas exchange. Evidence suggests fibroblast-matrix interactions are a prominent driver of disease. However, available preclinical models limit our ability to study these interactions. We present a technique for synthesizing phototunable poly(ethylene glycol) (PEG)-based hybrid-hydrogels comprising healthy or fibrotic decellularized extracellular matrix (dECM) to decouple mechanical properties from composition and elucidate their roles in fibroblast activation. Here, we engineered and characterized phototunable hybrid-hydrogels using molecular techniques such as ninhydrin and Ellman's assays to assess dECM functionalization, and parallel-plate rheology to measure hydrogel mechanical properties. These biomaterials were employed to investigate the activation of fibroblasts from dual-transgenic Col1a1-GFP and αSMA-RFP reporter mice in response to changes in composition and mechanical properties. We show that reacting functionalized dECM from healthy or bleomycin-injured mouse lungs with PEG alpha-methacrylate (αMA) in an off-stoichiometry Michael-addition reaction created soft hydrogels mimicking a healthy lung elastic modulus (4.99 ± 0.98 kPa). Photoinitiated stiffening increased the material modulus to fibrotic values (11.48 ± 1.80 kPa). Percent activation of primary murine fibroblasts expressing Col1a1 and αSMA increased by approximately 40% following dynamic stiffening of both healthy and bleomycin hybrid-hydrogels. There were no significant differences between fibroblast activation on stiffened healthy versus stiffened bleomycin-injured hybrid-hydrogels. Phototunable hybrid-hydrogels provide an important platform for probing cell-matrix interactions and developing a deeper understanding of fibrotic activation in pulmonary fibrosis. Our results suggest that mechanical properties are a more significant contributor to fibroblast activation than biochemical composition within the scope of the hybrid-hydrogel platform evaluated in this study. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00726-y.
Collapse
Affiliation(s)
- Kamiel S. Saleh
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Rukshika Hewawasam
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Predrag Šerbedžija
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Saif E. Noreldeen
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Benjamin Edelman
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO USA
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - David W. H. Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Aurora, CO USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Chelsea M. Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
42
|
Cerdan K, Moya C, Van Puyvelde P, Bruylants G, Brancart J. Magnetic Self-Healing Composites: Synthesis and Applications. Molecules 2022; 27:3796. [PMID: 35744920 PMCID: PMC9228312 DOI: 10.3390/molecules27123796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 12/17/2022] Open
Abstract
Magnetic composites and self-healing materials have been drawing much attention in their respective fields of application. Magnetic fillers enable changes in the material properties of objects, in the shapes and structures of objects, and ultimately in the motion and actuation of objects in response to the application of an external field. Self-healing materials possess the ability to repair incurred damage and consequently recover the functional properties during healing. The combination of these two unique features results in important advances in both fields. First, the self-healing ability enables the recovery of the magnetic properties of magnetic composites and structures to extend their service lifetimes in applications such as robotics and biomedicine. Second, magnetic (nano)particles offer many opportunities to improve the healing performance of the resulting self-healing magnetic composites. Magnetic fillers are used for the remote activation of thermal healing through inductive heating and for the closure of large damage by applying an alternating or constant external magnetic field, respectively. Furthermore, hard magnetic particles can be used to permanently magnetize self-healing composites to autonomously re-join severed parts. This paper reviews the synthesis, processing and manufacturing of magnetic self-healing composites for applications in health, robotic actuation, flexible electronics, and many more.
Collapse
Affiliation(s)
- Kenneth Cerdan
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium; (K.C.); (P.V.P.)
| | - Carlos Moya
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium;
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium; (K.C.); (P.V.P.)
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium;
| | - Joost Brancart
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| |
Collapse
|
43
|
Tuning the viscoelastic response of hydrogel scaffolds with covalent and dynamic bonds. J Mech Behav Biomed Mater 2022; 130:105179. [DOI: 10.1016/j.jmbbm.2022.105179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/09/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
44
|
Dendrobium officinale Enzyme Changing the Structure and Behaviors of Chitosan/γ-poly(glutamic acid) Hydrogel for Potential Skin Care. Polymers (Basel) 2022; 14:polym14102070. [PMID: 35631951 PMCID: PMC9146334 DOI: 10.3390/polym14102070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels have been widespreadly used in various fields. But weak toughness has limited their further applications. In this study, Dendrobium officinale enzyme (DOE) was explored to improve chitosan/γ-poly(glutamic acid) (CS/γ-PGA) hydrogel in the structure and properties. The results indicated that DOE with various sizes of ingredients can make multiple noncovalent crosslinks with the skeleton network of CS/γ-PGA, significantly changing the self-assembly of CS/γ-PGA/DOE hydrogel to form regular protuberance nanostructures, which exhibits stronger toughness and better behaviors for skin care. Particularly, 4% DOE enhanced the toughness of CS/γ-PGA/DOE hydrogel, increasing it by 116%. Meanwhile, water absorption, antioxygenation, antibacterial behavior and air permeability were increased by 39%, 97%, 27% and 52%.
Collapse
|
45
|
Preparation and application of poly(α-L-lysine)-based interpenetrating network hydrogel via synchronous free-radical polymerization and amine-anhydride reaction in water. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Yan J, Gundsambuu B, Krasowska M, Platts K, Facal Marina P, Gerber C, Barry SC, Blencowe A. Injectable Diels-Alder cycloaddition hydrogels with tuneable gelation, stiffness and degradation for the sustained release of T-lymphocytes. J Mater Chem B 2022; 10:3329-3343. [PMID: 35380575 DOI: 10.1039/d2tb00274d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered T-cell therapies have proven highly efficacious for the treatment of haematological cancers, but translation of this success to solid tumours has been limited, in part, due to difficulties in maintaining high doses at specific target sites. Hydrogel delivery systems that provide a sustained release of T-cells at the target site are emerging as a promising strategy. Therefore, in this study we aimed to develop an injectable hydrogel that gels in situ via efficient Diels-Alder cycloaddition (DAC) chemistry and provides a sustained release of T-cells through gradual hydrolysis of the hydrogel matrix. Hydrogels were prepared via the DAC between fulvene and maleimide functionalised poly(ethylene glycol) (PEG) derivatives. By adjusting the concentration and molecular weight of the functionalised PEGs in the hydrogel formulation the in vitro gelation time (Tgel), initial Young's modulus (E) and degradation time (Td) could be tailored from 15-150 min, 5-179 kPa and 7-114 h, respectively. Prior to gelation, the formulations could be readily injected through narrow gauge (26 G) needles with the working time correlating closely with the Tgel. A 5 wt% hydrogel formation with conjugated cyclic RGD motif was found to be optimal for the encapsulation and release of CD3+ T-cells with a near linear release profile and >70% cell viability over the first 4 d and release continuing out to 7 d. With their tuneable Tgel, Td and stiffness, the DAC hydrogels provide the opportunity to control the release period and profile of encapsulated cells.
Collapse
Affiliation(s)
- Jie Yan
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marta Krasowska
- Surface Interaction and Soft Matter (SISM) Group, Future Industries Institute (FII), UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kirsten Platts
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Cobus Gerber
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA Health, Adelaide, South Australia 5006, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
47
|
van Sprang JF, de Jong SM, Dankers PY. Biomaterial-driven kidney organoid maturation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Tondepu C, Karumbaiah L. Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma. Adv Healthc Mater 2022; 11:e2101956. [PMID: 34878733 PMCID: PMC9048137 DOI: 10.1002/adhm.202101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a stage IV astrocytoma that carries a dismal survival rate of ≈10 months postdiagnosis and treatment. The highly invasive capacity of GBM and its ability to escape therapeutic challenges are key factors contributing to the poor overall survival rate. While current treatments aim to target the cancer cell itself, they fail to consider the significant role that the GBM tumor microenvironment (TME) plays in promoting tumor progression and therapeutic resistance. The GBM tumor glycocalyx and glycan-rich extracellular matrix (ECM), which are important constituents of the TME have received little attention as therapeutic targets. A wide array of aberrantly modified glycans in the GBM TME mediate tumor growth, invasion, therapeutic resistance, and immunosuppression. Here, an overview of the landscape of aberrant glycan modifications in GBM is provided, and the design and utility of 3D glycomaterials are discussed as a tool to evaluate glycan-mediated GBM progression and therapeutic efficacy. The development of alternative strategies to target glycans in the TME can potentially unveil broader mechanisms of restricting tumor growth and enhancing the efficacy of tumor-targeting therapeutics.
Collapse
Affiliation(s)
- Chaitanya Tondepu
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
- Division of Neuroscience, Biomedical & Translational Sciences Institute, University of Georgia, Athens, GA, 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
50
|
Murphy RD, Garcia RV, Heise A, Hawker CJ. Peptides as 3D printable feedstocks: Design strategies and emerging applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|