1
|
Antunes DR, Forini MMLH, Biscalchim ÉR, Lima PHC, Cavalcante LAF, Teixeira Filho MCM, Tripathi DK, Caballero JP, Grillo R. Polysaccharide-based sustainable hydrogel spheres for controlled release of agricultural inputs. Int J Biol Macromol 2024; 279:135202. [PMID: 39216580 DOI: 10.1016/j.ijbiomac.2024.135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Producing food in quantity and quality to meet the growing population demand is a challenge for the coming years. In addition to the need to improve the use and efficiency of conventional agricultural inputs, we face climate change and disparity in access to food. In this context, creating innovative, efficient, and ecologically approaches is necessary to transform this global scenario. Several delivery systems are being developed to encapsulate agrochemicals, aiming to improve the controlled release of active ingredients and protect them against environmental biotic and abiotic factors. Among these systems, hydrogel spheres are particularly notable for their ability to be fabricated from biodegradable materials, allowing the encapsulation of molecules, nanomaterials, and even organisms (e.g., bacteria and fungi). This review provides an overview of the latest progress in developing polysaccharide-based hydrogel spheres for agriculture. In addition, we describe methods for preparing hydrogel spheres and discuss the encapsulation and release of agricultural inputs in the field. Finally, we put hydrogel spheres into perspective and seek to highlight some current challenges in the field to spark new inspiration and improve the development of environmentally friendly and cost-effective delivery systems for the agricultural sector.
Collapse
Affiliation(s)
- Débora R Antunes
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Mariana M L H Forini
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Érica R Biscalchim
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Pedro H C Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Luiz A F Cavalcante
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Marcelo C M Teixeira Filho
- São Paulo State University (UNESP), Department of Plant Protection, Rural Engineering and Soils, School of Engineering, Ilha Solteira, SP 15385-000, Brazil
| | - Durgesh K Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Javier Pitti Caballero
- Instituto de Innovación Agropecuaria de Panamá (IDIAP), Estación Experimental de Cerro Punta, Centro de Innovación Agropecuaria de Chiriquí, Provincia de Chiriquí, Panamá
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| |
Collapse
|
2
|
Guo L, Ji C, Wang H, Ma T, Qi J. Design and construction of high strength double network hydrogel with flow-induced orientation. J Colloid Interface Sci 2024; 672:497-511. [PMID: 38852352 DOI: 10.1016/j.jcis.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The design and construction of high strength hydrogels is a widely discussed topic in hydrogel research. In this study, we combined three toughening strategies, including dual network, oriented structure construction and nanophase doping, to develop an alginate/polyacrylamide (PAM)/modified titanium dioxide fiber (TiO2 NF@PAM) dual network composite hydrogel prepared via syringe. The effects of different preparation methods, AM/Alginate ratios, inorganic doping phases and TiO2 NF@PAM/AM ratios on the mechanical properties of composite hydrogels were investigated. The study found that the alginate hydrogel prepared by syringe exhibited superior axial orientation and achieved a tensile strength of (1091 ± 46) kPa. And the composite hydrogel doped with 0.2 wt% TiO2 NF@PAM had a tensile strength of (1006 ± 64) kPa, which was higher than that of the composite hydrogel doped with 0.2 wt% TiO2 nanoparticles (976 ± 66) kPa. The highest tensile strength (1120 ± 67) kPa and elongation at break (182 ± 8) % were achieved when the ratio of TiO2 NF@PAM/AM was 0.6 wt%. The force applied to the gel solution in the syringe affects the orientation of the polymer chains and TiO2 NF@PAM within the gel, which subsequently impacts the mechanical properties of the hydrogel. Therefore, we further investigated the mechanical properties of composite hydrogels under varying propulsion speeds, syringe diameters, and syringe lengths. It was observed that the gel solution's shear strength increased as the syringe diameter decreased. The resulting composite hydrogels were better oriented and had improved mechanical properties. The composite hydrogels' tensile strength peaked at (1117 ± 47) kPa when the syringe advance rate was between 1-7 mL/min. The mechanical properties of the hydrogels were optimal when the syringe length was 30 mm, with a maximum tensile strength of (1131 ± 67) kPa and a tensile ratio of (166 ± 5) %. This study demonstrates the viability of integrating three distinct strengthening methodologies to generate hydrogels of considerable strength. Furthermore, the Alginate/PAM/TiO2 NF@PAM composite hydrogels possess remarkable potential as adaptable, wearable sensors due to their exemplary mechanical properties, knittability, and conductivity.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Cheng Ji
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Tianxiao Ma
- Department of Respiratory and Critical Care Medicine, Chifeng Municipal Hospital, Chifeng 024000, PR China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
3
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
4
|
Phillips M, Tronci G, Pask CM, Russell SJ. Nonwoven Reinforced Photocurable Poly(glycerol sebacate)-Based Hydrogels. Polymers (Basel) 2024; 16:869. [PMID: 38611127 PMCID: PMC11013675 DOI: 10.3390/polym16070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Implantable hydrogels should ideally possess mechanical properties matched to the surrounding tissues to enable adequate mechanical function while regeneration occurs. This can be challenging, especially when degradable systems with a high water content and hydrolysable chemical bonds are required in anatomical sites under constant mechanical stimulation, e.g., a foot ulcer cavity. In these circumstances, the design of hydrogel composites is a promising strategy for providing controlled structural features and macroscopic properties over time. To explore this strategy, the synthesis of a new photocurable elastomeric polymer, poly(glycerol-co-sebacic acid-co-lactic acid-co-polyethylene glycol) acrylate (PGSLPA), is investigated, along with its processing into UV-cured hydrogels, electrospun nonwovens and fibre-reinforced variants, without the need for a high temperature curing step or the use of hazardous solvents. The mechanical properties of bioresorbable PGSLPA hydrogels were studied with and without electrospun nonwoven reinforcement and with varied layered configurations, aiming to determine the effects of the microstructure on the bulk compressive strength and elasticity. The nonwoven reinforced PGSLPA hydrogels exhibited a 60% increase in compressive strength and an 80% increase in elastic moduli compared to the fibre-free PGSLPA samples. The mechanical properties of the fibre-reinforced hydrogels could also be modulated by altering the layering arrangement of the nonwoven and hydrogel phase. The nanofibre-reinforced PGSLPA hydrogels also exhibited good elastic recovery, as evidenced by the hysteresis in compression fatigue stress-strain evaluations showing a return to the original dimensions.
Collapse
Affiliation(s)
- Michael Phillips
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, Leeds Institute of Textiles & Colour, School of Design, University of Leeds, Leeds LS2 9JT, UK (G.T.)
| | - Giuseppe Tronci
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, Leeds Institute of Textiles & Colour, School of Design, University of Leeds, Leeds LS2 9JT, UK (G.T.)
| | | | - Stephen J. Russell
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, Leeds Institute of Textiles & Colour, School of Design, University of Leeds, Leeds LS2 9JT, UK (G.T.)
| |
Collapse
|
5
|
Zhang J, Zhang S, Liu C, Lu Z, Li M, Hurren C, Wang D. Photopolymerized multifunctional sodium alginate-based hydrogel for antibacterial and coagulation dressings. Int J Biol Macromol 2024; 260:129428. [PMID: 38232887 DOI: 10.1016/j.ijbiomac.2024.129428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Trauma caused by tissue damage in clinical applications has posed a serious threat to public safety. Dressings with a single function cannot meet the needs of wound healing, but multifunctional dressings are difficult to achieve and obtain. To address this issue, this research designed a facile one-pot photo-crosslinking method to prepare multifunctional sodium alginate-based hydrogel dressings for effective wound healing. According to irregular wounds, sodium alginate-based hydrogel dressings can be quickly prepared anytime and anywhere. The structure and physicochemical properties of hydrogels are regulated by modulating the proportion of main components sodium alginate and acrylamide. The results showed the sodium alginate-based composite hydrogel as a candidate multifunctional dressing that exhibits excellent stretchability and compressibility, viscoelasticity, and suitable tissue-like adhesion. In vitro drug release and antibacterial experiments indicated that the hydrogel has effective antibacterial properties against S. aureus and P. aeruginosa. Furthermore, the haemostatic behaviour of the hydrogel was demonstrated using the coagulation activation test, whole blood-clotting test, and blood cell and platelet adhesion experiments. All these results demonstrated that the sodium alginate-based hydrogel had high application potential as a multifunctional medical dressing for wound healing.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; Deakin University, Institute for Frontier Materials, Geelong 3216, Australia
| | - Siwei Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Chao Liu
- Deakin University, Institute for Frontier Materials, Geelong 3216, Australia
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Christopher Hurren
- Deakin University, Institute for Frontier Materials, Geelong 3216, Australia.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
6
|
Choi C, Yun E, Cha C. Emerging Technology of Nanofiber-Composite Hydrogels for Biomedical Applications. Macromol Biosci 2023; 23:e2300222. [PMID: 37530431 DOI: 10.1002/mabi.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Hydrogels and nanofibers have been firmly established as go-to materials for various biomedical applications. They have been mostly utilized separately, rarely together, because of their distinctive attributes and shortcomings. However, the potential benefits of integrating nanofibers with hydrogels to synergistically combine their functionalities while attenuating their drawbacks are increasingly recognized. Compared to other nanocomposite materials, incorporating nanofibers into hydrogel has the distinct advantage of emulating the hierarchical structure of natural extracellular environment needed for cell and tissue culture. The most important technological aspect of developing "nanofiber-composite hydrogel" is generating nanofibers made of various polymers that are cross-linked and short enough to maintain stable dispersion in hydrated environment. In this review, recent research efforts to develop nanofiber-composite hydrogels are presented, with added emphasis on nanofiber processing techniques. Several notable examples of implementing nanofiber-composite hydrogels for biomedical applications are also introduced.
Collapse
Affiliation(s)
- Cholong Choi
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eunhye Yun
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Zhang N, Zhang X, Zhu Y, Wang D, Li R, Li S, Meng R, Liu Z, Chen D. Bimetal-Organic Framework-Loaded PVA/Chitosan Composite Hydrogel with Interfacial Antibacterial and Adhesive Hemostatic Features for Wound Dressings. Polymers (Basel) 2023; 15:4362. [PMID: 38006086 PMCID: PMC10674882 DOI: 10.3390/polym15224362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Silver-containing wound dressings have shown attractive advantages in the treatment of wound infection due to their excellent antibacterial activity. However, the introduction of silver ions or AgNPs directly into the wound can cause deposition in the body as particles. Here, with the aim of designing low-silver wound dressings, a bimetallic-MOF antibacterial material called AgCu@MOF was developed using 3, 5-pyridine dicarboxylic acid as the ligand and Ag+ and Cu2+ as metal ion sites. PCbM (PVA/chitosan/AgCu@MOF) hydrogel was successfully constructed in PVA/chitosan wound dressing loaded with AgCu@MOF. The active sites on the surface of AgCu@MOF increased the lipophilicity to bacteria and caused the bacterial membrane to undergo lipid peroxidation, which resulted in the strong bactericidal properties of AgCu@MOF, and the antimicrobial activity of the dressing PCbM was as high as 99.9%. The chelation of silver ions in AgCu@MOF with chitosan occupied the surface functional groups of chitosan and reduced the crosslinking density of chitosan. PCbM changes the hydrogel crosslinking network, thus improving the water retention and water permeability of PCbM hydrogel so that the hydrogel has the function of binding wet tissue. As a wound adhesive, PCbM hydrogel reduces the amount of wound bleeding and has good biocompatibility. PCbM hydrogel-treated mice achieved 96% wound recovery on day 14. The strong antibacterial, tissue adhesion, and hemostatic ability of PCbM make it a potential wound dressing.
Collapse
Affiliation(s)
- Nan Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuangying Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruizhi Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihui Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dan Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao High-Tech Industry Promotion Centre (Qingdao Technology Market Service Centre), Qingdao 266112, China
| |
Collapse
|
8
|
Dai X, Liu X, Li Y, Xu Q, Yang L, Gao F. Nitrogen-phosphorous co-doped carbonized chitosan nanoparticles for chemotherapy and ROS-mediated immunotherapy of intracellular Staphylococcus aureus infection. Carbohydr Polym 2023; 315:121013. [PMID: 37230629 DOI: 10.1016/j.carbpol.2023.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Staphylococcus aureus (S. aureus) residing in host macrophages is hard to clear because intracellular S. aureus has evolved mechanisms to hijack and subvert the immune response to favor intracellular infection. To overcome this challenge, nitrogen-phosphorous co-doped carbonized chitosan nanoparticles (NPCNs), which possess the polymer/carbon hybrid structures, were fabricated to clear intracellular S. aureus infection through chemotherapy and immunotherapy. Multi-heteroatom NPCNs were fabricated through the hydrothermal method, where chitosan and imidazole were used as the C and N sources and phosphoric acid as the P source. NPCNs can not only be used as a fluorescent probe for bacteria imaging but also kill extracellular and intracellular bacteria with low cytotoxicity. NPCNs could generate ROS and polarize macrophages into classically activated (M1) phenotypes to increase antibacterial immunity. Furthermore, NPCNs could accelerate intracellular S. aureus-infected wound healing in vivo. We envision that these carbonized chitosan nanoparticles may provide a new platform for clearing intracellular bacterial infection through chemotherapy and ROS-mediated immunotherapy.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
9
|
Jiang N, Su Z, Sun Y, Ren R, Zhou J, Bi R, Zhu S. Spatial Heterogeneity Directs Energy Dissipation in Condylar Fibrocartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301051. [PMID: 37156747 DOI: 10.1002/smll.202301051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Condylar fibrocartilage with structural and compositional heterogeneity can efficiently orchestrate load-bearing and energy dissipation, making the temporomandibular joint (TMJ) survive high occlusion loads for a prolonged lifetime. How the thin condylar fibrocartilage can achieve efficient energy dissipation to cushion enormous stresses remains an open question in biology and tissue engineering. Here, three distinct zones in the condylar fibrocartilage are identified by analyzing the components and structure from the macro-and microscale to the nanoscale. Specific proteins are highly expressed in each zone related to its mechanics. The heterogeneity of condylar fibrocartilage can direct energy dissipation through the nano-micron-macro gradient spatial scale, by atomic force microscope (AFM), nanoindentation, dynamic mechanical analyzer assay (DMA), and the corresponding energy dissipation mechanisms are exclusive for each distinct zone. This study reveals the significance of the heterogeneity of condylar fibrocartilage in mechanical behavior and provides new insights into the research methods for cartilage biomechanics and the design of energy-dissipative materials.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhan Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahao Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Li X, Coates DE. Hollow channels scaffold in bone regenerative: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1702-1715. [PMID: 36794303 DOI: 10.1080/09205063.2023.2181066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Bone substitute materials have been extensively used for bone regeneration over the past 50 years. The development of novel materials, fabrication technologies and the incorporation and release of regenerative cytokines, growth factors, cells and antimicrobials has been driven by the rapid development in the field of additive manufacturing technology. There are still however, significant challenges that need addressing, including ways to better mediate the rapid vascularization of bone scaffolds to enhance subsequent regeneration and osteogenesis. Increasing construct porosity can accelerate the development of blood vessels in the scaffold, but doing so also weakens the constructs mechanical properties. A novel design for promoting rapid vascularization is to fabricate custom-made hollow channels as bone scaffolds. Summarized here are the current developments in hollow channels scaffold, including their biological attributes, physio-chemical properties, and effects on regeneration. An overview of recent developments in scaffold fabrication as they relate to hollow channel constructs and their structural features will be introduced with an emphasis on attributes that enhance new bone and vessel formation. Furthermore, the potential to enhance angiogenesis and osteogenesis by replicating the structure of real bone will be highlighted.
Collapse
Affiliation(s)
- Xiao Li
- University of Otago, Dunedin, New Zealand
| | - Dawn Elizabeth Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Hakimi F, Jafari H, Hashemikia S, Shabani S, Ramazani A. Chitosan-polyethylene oxide/clay-alginate nanofiber hydrogel scaffold for bone tissue engineering: Preparation, physical characterization, and biomimetic mineralization. Int J Biol Macromol 2023; 233:123453. [PMID: 36709816 DOI: 10.1016/j.ijbiomac.2023.123453] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
This study aimed to prepare a novel organic-mineral nanofiber/hydrogel of chitosan-polyethylene oxide (CS-PEO)/nanoclay-alginate (NC-ALG). The effects of NC particles on the mineralization and biocompatibility of the scaffold were investigated. A layer-by-layer scaffold composed of CS-PEO and NC-ALG was prepared. The morphological properties, swelling, biodegradation, and mechanical behaviors of the scaffolds were evaluated. Furthermore, scaffolds were characterized by the Fourier Transform Infrared (FTIR), the Field Emission Scanning Electron Microscope (FE-SEM), and X-Ray Diffraction (XRD) techniques. Bone-like apatite formation ability of the scaffolds was determined by the mineralization test in a simulated body fluid (M-SBF). In addition, the crystalline phase of bone-like apatite precipitates was investigated by XRD analysis. The cell compatibility of the scaffolds was also studied with osteoblastic cell line MC3T3-E1 by MTT assay. Notably, the incorporation of NC particles in CS-PEO/ALG scaffolds is suitable for bone tissue regeneration which enhances bone-like apatite formation. Further, the hemolysis and MTT assays demonstrated that CS-PEO/NC-ALG scaffold was compatible and safe for MC3T3 cells.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Jafari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Hashemikia
- Department of Textile Engineering, Urmia University of Technology, Urmia, Iran; Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Siamak Shabani
- Department of Surgery, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
12
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Zhang M, Xu S, Du C, Wang R, Han C, Che Y, Feng W, Wang C, Gao S, Zhao W. Novel PLCL nanofibrous/keratin hydrogel bilayer wound dressing for skin wound repair. Colloids Surf B Biointerfaces 2023; 222:113119. [PMID: 36621177 DOI: 10.1016/j.colsurfb.2022.113119] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In this study, a novel poly(L-lactate-caprolactone) copolymer (PLCL) nanofibrous/keratin hydrogel bilayer wound dressing loaded with fibroblast growth factor (FGF-2) was prepared by the low-pressure filtration-assisted method. The ability of the keratin hydrogel in the bilayer dressing to mimic the dermis and that of the nanofibrous PLCL to mimic the epidermis were discussed. Keratin hydrogel exhibited good porosity and maximum water absorption of 874.09%. Compared with that of the dressing prepared by the coating method, the interface of the bilayer dressing manufactured by the low-pressure filtration-assisted method (filtration time: 20 min) was tightly bonded, and its bilayer dressing interface could not be easily peeled off. The elastic modulus of hydrogel was about 44 kPa, which was similar to the elastic modulus of the dermis (2-80 kPa). Additionally, PLCL nanofibers had certain toughness and flexibility suitable for simulating the epidermal structures. In vitro studies showed that the bilayer dressing was biocompatible and biodegradable. In vivo studies indicated that PLCL/keratin-FGF-2 bilayer dressing could promote re-epithelialization, collagen deposition, skin appendages (hair follicles) regeneration, microangiogenesis construction, and adipose-derived stem cells (ADSCs) recruitment. The introduction of FGF-2 resulted in a better repair effect. The bilayer dressing also solved the problems of poor interface adhesion of hydrogel/electrospinning nanofibers. This paper also explored the preliminary role and mechanism of bilayer dressing in promoting skin healing, showing that its potential applications as a biomedical wound dressing in the field of skin tissue engineering.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chen Du
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Cuicui Han
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongan Che
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Feng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shan Gao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
14
|
Rajati H, Alvandi H, Rahmatabadi SS, Hosseinzadeh L, Arkan E. A nanofiber-hydrogel composite from green synthesized AgNPs embedded to PEBAX/PVA hydrogel and PA/Pistacia atlantica gum nanofiber for wound dressing. Int J Biol Macromol 2023; 226:1426-1443. [PMID: 36442567 DOI: 10.1016/j.ijbiomac.2022.11.255] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
A polyamide/Pistacia atlantica (P.a) gum nanofiber, fabricated by electrospinning method, was coated on a layer of PEBAX/PVA hydrogel embedded with green synthesized Ag nanoparticles (AgNPs) and the prepared nanofiber-hydrogel composite was assessed for wound dressing application. The AgNPs were characterized using ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta potential analysis. The PEBAX/PVA/Ag hydrogel, prepared using solution casting method, displayed strong mechanical properties as Young's modulus and the elongation at break for the hydrogel containing AgNPs increased by 12 % and 96 %, respectively. The PEBAX/PVA/Ag hydrogel showed a high antimicrobial activity towards the E. coli (22.8 mm) with no cytotoxicity. The effect of adding the P.a gum on the properties of polyamide nanofiber was investigated using FTIR, SEM, and tensile tests. Samples were assessed by swelling, degradation, and water vapor transfer measurements. Very fine and continuous fibers with average diameters of ≤200 nm were observed by SEM analysis due to the addition of the P.a gum. The result of tensile test indicated that the addition of P.a gum improves the mechanical properties of nanofibers. The physical properties and biocompatibility of the two layers were shown to be complementary when combined.
Collapse
Affiliation(s)
- Hajar Rajati
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Alvandi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Soheil Rahmatabadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Shabani Samghabadi M, Karkhaneh A, Katbab AA. Synthesis and characterization of biphasic layered structure composite with simultaneous electroconductive and piezoelectric behavior as a scaffold for bone tissue engineering. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mina Shabani Samghabadi
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ali Asghar Katbab
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
16
|
Mohd Razali NA, Lin WC. Accelerating the excisional wound closure by using the patterned microstructural nanofibrous mats/gentamicin-loaded hydrogel composite scaffold. Mater Today Bio 2022; 16:100347. [PMID: 35813981 PMCID: PMC9263994 DOI: 10.1016/j.mtbio.2022.100347] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Ideal artificial tissue scaffolds should provide an in vitro microenvironment comparable to native human skin tissue to direct cell functions, regulate tissue homeostasis, and promote tissue regeneration. A sandwich-like composite scaffold consisting of a hydrogel layer and two aligned nanofibre layers was fabricated and applied as a wound-healing dressing. Gentamicin was preloaded into the hydrogel middle layer and naturally released for antibacterial activity during the healing period. Nanofibrous layers embedded on the top and bottom surfaces of the hydrogel improved the tensile strength fivefold (1560 kPa and 465% strain) while serving as a diffusion barrier to reduce the gentamicin initial burst release (30%–15%). Inspired by the extracellular matrix (ECM), the surface of nanofibre top layer was patterned with triangular microarrays using micro-moulding approach to reflect the multidimensional structure of ECM. Biocompatibility of the scaffold is proven from cytotoxicity and haemolysis studies. Fibroblast cells revealed a highly elongated and consistent alignment modulated by the micropatterned fibrous layer and directed their migration towards the wound area. Excisional wounds treated with the scaffold promoted 97.49% wound closure with low inflammation and rapid re-epithelialization and angiogenesis. This scaffold, with its tailored functionality capable of accelerating wound healing, has high potential in tissue engineering applications.
Collapse
|
17
|
pH-sensitive alginate hydrogel for synergistic anti-infection. Int J Biol Macromol 2022; 222:1723-1733. [DOI: 10.1016/j.ijbiomac.2022.09.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
18
|
Peng Y, Wang J, Dai X, Chen M, Bao Z, Yang X, Xie J, Wang C, Shao J, Han H, Yao K, Gou Z, Ye J. Precisely Tuning the Pore-Wall Surface Composition of Bioceramic Scaffolds Facilitates Angiogenesis and Orbital Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43987-44001. [PMID: 36102779 DOI: 10.1021/acsami.2c14909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Orbital bone damage (OBD) may result in severe post-traumatic enophthalmos, craniomaxillofacial deformities, vision loss, and intracranial infections. However, it is still a challenge to fabricate advanced biomaterials that can match the individual anatomical structure and enhance OBD repair in situ. Herein, we aimed to develop a selective surface modification strategy on bioceramic scaffolds and evaluated the effects of inorganic or organic functional coating on angiogenesis and osteogenesis, ectopically and orthotopically in OBD models. It was shown that the low thermal bioactive glass (BG) modification or layer-by-layer assembly of a biomimetic hydrogel (Biogel) could readily integrate into the pore wall of the bioceramic scaffolds. The BG and Biogel modification showed appreciable enhancement in the initial compressive strength (∼30-75%) or structural stability in vivo, respectively. BG modification could enhance by nearly 2-fold the vessel ingrowth, and the osteogenic capacity was also accelerated, accompanied with a mild scaffold biodegradation after 3 months. Meanwhile, the Biogel-modified scaffolds showed enhanced osteogenic differentiation and mineralization through calcium and phosphorus retention. The potential mechanism of the enhanced bone repair was elucidated via vascular and osteogenic cell responses in vitro, and the cell tests indicated that the Biogel and BG functional layers were both beneficial for in vitro osteoblastic differentiation and mineralization on bioceramics. Totally, these findings demonstrated that the bioactive ions or biomolecules could significantly improve the angiogenic and osteogenic capabilities of conventional bioceramics, and the integration of inorganic or organic functional coating in the pore wall is a highly flexible material toolbox that can be tailored directly to improve orbital bone defect repair.
Collapse
Affiliation(s)
- Yiyu Peng
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jingyi Wang
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xizhe Dai
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Menglu Chen
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiajun Xie
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Changjun Wang
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji Shao
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijie Han
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ke Yao
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Juan Ye
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
19
|
Martin A, Nyman JN, Reinholdt R, Cai J, Schaedel AL, van der Plas MJA, Malmsten M, Rades T, Heinz A. In Situ Transformation of Electrospun Nanofibers into Nanofiber-Reinforced Hydrogels. NANOMATERIALS 2022; 12:nano12142437. [PMID: 35889661 PMCID: PMC9318765 DOI: 10.3390/nano12142437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Nanofiber-reinforced hydrogels have recently gained attention in biomedical engineering. Such three-dimensional scaffolds show the mechanical strength and toughness of fibers while benefiting from the cooling and absorbing properties of hydrogels as well as a large pore size, potentially aiding cell migration. While many of such systems are prepared by complicated processes where fibers are produced separately to later be embedded in a hydrogel, we here provide proof of concept for a one-step solution. In more detail, we produced core-shell nanofibers from the natural proteins zein and gelatin by coaxial electrospinning. Upon hydration, the nanofibers were capable of directly transforming into a nanofiber-reinforced hydrogel, where the nanofibrous structure was retained by the zein core, while the gelatin-based shell turned into a hydrogel matrix. Our nanofiber-hydrogel composite showed swelling to ~800% of its original volume and water uptake of up to ~2500% in weight. The physical integrity of the nanofiber-reinforced hydrogel was found to be significantly improved in comparison to a hydrogel system without nanofibers. Additionally, tetracycline hydrochloride was incorporated into the fibers as an antimicrobial agent, and antimicrobial activity against Staphylococcus aureus and Escherichia coli was confirmed.
Collapse
Affiliation(s)
- Alma Martin
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
- School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Jenny Natalie Nyman
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Rikke Reinholdt
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Anna-Lena Schaedel
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Mariena J. A. van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, S-22184 Lund, Sweden
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
- Department of Physical Chemistry, Lund University, 22100 Lund, Sweden
| | - Thomas Rades
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
- Correspondence:
| |
Collapse
|
20
|
Rahimtoroghi E, Kasra M, Maleki H. Hydrogels reinforced by electrospun nanofibrous yarns designed for tissue engineering applications: mechanical and cellular properties. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Elham Rahimtoroghi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehran Kasra
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Homa Maleki
- Faculty of Arts, University of Birjand, University Boulevard, Birjand, South Khorasan, Iran
| |
Collapse
|
21
|
Chen Y, Hao Y, Mensah A, Lv P, Wei Q. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications. BIOMATERIALS ADVANCES 2022; 136:212799. [PMID: 35929334 DOI: 10.1016/j.bioadv.2022.212799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Numerous tissues in the human body have fibrous structures, including the extracellular matrix, muscles, and heart, which perform critical biological functions and have exceptional mechanical strength. Due to their high-water content, softness, biocompatibility and elastic nature, hydrogels resemble biological tissues. Traditional hydrogels, on the other hand, have weak mechanical properties and lack tissue-like fibrous structures, limiting their potential applications. Thus, bio-inspired hydrogels with fibrous architectures have piqued the curiosity of biomedical researchers. Here, we review fabrication strategies for fibrous hydrogels and their recent progress in the biomedical fields of wound dressings, drug delivery, tissue engineering scaffolds and bioadhesives. Challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Yajun Chen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yi Hao
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Alfred Mensah
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
22
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
23
|
Boon-In S, Theerasilp M, Crespy D. Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. J Colloid Interface Sci 2022; 622:75-86. [PMID: 35489103 DOI: 10.1016/j.jcis.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
HYPOTHESIS The entrapment of lyophobic in superhydrophilic hydrogels is challenging because of the intrinsic incompatibility between hydrophobic and hydrophilic molecules. To achieve such entrapment without affecting the hydrogel's formation, the electrospinning of nanodroplets or nanoparticles with a water-soluble polymer could reduce the incompatibility through the reduction of interfacial tension and the formation of a barrier film preventing coalescence or aggregation. EXPERIMENTS Nanodroplets or nanoparticles dispersion are electrospun in the presence of a hydrophilic polymer in hydrogel precursors. The dissolution of the hydrophilic nanofibers during electrospinning allows a redispersion of emulsion droplets and nanoparticles in the hydrogel's matrix. FINDINGS Superhydrophilic hydrogels with well-distributed hydrophobic nanodroplets or nanoparticles are obtained without detrimentally imparting the viscosity of hydrogel's precursors and the mechanical properties of the hydrogels. Compared with the incorporation of droplets without electrospinning, higher loadings of hydrophobic payload are achieved without premature leakage. This concept can be used to entrap hydrophobic agrochemicals, drugs, or antibacterial agents in simple hydrogels formulation.
Collapse
Affiliation(s)
- Supissra Boon-In
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
24
|
Stocco TD, Moreira Silva MC, Corat MAF, Gonçalves Lima G, Lobo AO. Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers. Int J Nanomedicine 2022; 17:1111-1124. [PMID: 35309966 PMCID: PMC8932947 DOI: 10.2147/ijn.s353937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Three of the main requirements that remain major challenges in tissue engineering of the knee meniscus are to engineer scaffolds with compatible anatomical shape, good mechanical properties, and microstructure able to mimic the architecture of the extracellular matrix (ECM). In this context, we presented a new biofabrication strategy to develop a three-dimensional (3D) meniscus-regenerative scaffold with custom-made macroscopic size and microarchitecture bioinspired by the organization of structural fibers of native tissue ECM. Methods The concept was based on the combination of bioprinted cell-laden hydrogel (type 1 collagen) reinforced by multilayers of biomimetically aligned electrospun nanofibrous mats (polycaprolactone/carbon nanotubes, PCL/CNT), using a patient-specific 3D digital meniscus model reconstructed from MRI data by free and open-source software. Results The results showed that the incorporation of aligned nanofibers sheets between the hydrogel layers enhanced the scaffold's structural integrity and shape fidelity compared to the nanofiber-free collagen hydrogel. Furthermore, mechanical compression tests demonstrated that the presence of nanofiber layers significantly improved the mechanical properties of the bioprinted construct. Importantly, the introduction of PCL/CNT nanofibrous mats between the layers of the bioprinted collagen hydrogel did not negatively affect cell viability, in which mesenchymal stem cells remained viable even after 7 days of culture within the scaffold. Conclusion Overall, these findings evidence that this bioengineering approach offers a promising strategy for fabricating biomimetic meniscus scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Faculty of Medical Sciences, Unicamp - State University of Campinas, Campinas, SP, Brazil
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- UNISA - University of Santo Amaro, São Paulo, Brazil
| | | | | | - Gabriely Gonçalves Lima
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI—Federal University of Piauí, Teresina, PI, Brazil
| | - Anderson Oliveira Lobo
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI—Federal University of Piauí, Teresina, PI, Brazil
| |
Collapse
|
25
|
Dai X, Li Y, Liu X, Lei Z, Yang L, Xu Q, Gao F. Biodegradable Fe( ii)/Fe( iii)-coordination-driven nanoassemblies for chemo/photothermal/chemodynamic synergistic therapy of bacterial infection. NEW J CHEM 2022. [DOI: 10.1039/d2nj03803j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study provides a novel approach for preparing biodegradable nanoassemblies with synergistic chemo/photothermal/chemodynamic performance to selectively combat bacterial infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhangyi Lei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
26
|
Chen C, Wang Y, Zhou T, Wan Z, Yang Q, Xu Z, Li D, Jin Y. Toward Strong and Tough Wood-Based Hydrogels for Sensors. Biomacromolecules 2021; 22:5204-5213. [PMID: 34787399 DOI: 10.1021/acs.biomac.1c01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this research is to develop strong and tough wood-based hydrogels, which are reinforced by an aligned cellulosic wood skeleton. The hypothesis is that improved interfacial interaction between the wood cell wall and a polymer is of great importance for improving the mechanical performance. To this end, a facile and green approach, called ultraviolet (UV) grafting, was performed on the polyacrylamide (PAM)-infiltrated wood skeleton without using initiators. An important finding was that PAM-grafted cellulose nanofiber (CNF) architectures formed in the obtained hydrogels under UV irradiation, where CNFs themselves serve as both initiators and cross-linkers. Moreover, an alkali swelling treatment was utilized to improve the accessibility of the wood cell wall before UV irradiation and thus facilitate grafting efficiency. The resulting alkali-treated Wood-g-PAM hydrogels exhibited significantly higher tensile properties than those of the Wood/PAM hydrogel and were further assembled into conductive devices for sensor applications. We believe that this UV grafting strategy may facilitate the development of strong wood-based composites with interesting features.
Collapse
Affiliation(s)
- Chuchu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiren Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tong Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhangmin Wan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Quanling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dagang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
27
|
Bayer IS. A Review of Sustained Drug Release Studies from Nanofiber Hydrogels. Biomedicines 2021; 9:1612. [PMID: 34829843 PMCID: PMC8615759 DOI: 10.3390/biomedicines9111612] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Polymer nanofibers have exceptionally high surface area. This is advantageous compared to bulk polymeric structures, as nanofibrils increase the area over which materials can be transported into and out of a system, via diffusion and active transport. On the other hand, since hydrogels possess a degree of flexibility very similar to natural tissue, due to their significant water content, hydrogels made from natural or biodegradable macromolecular systems can even be injectable into the human body. Due to unique interactions with water, hydrogel transport properties can be easily modified and tailored. As a result, combining nanofibers with hydrogels would truly advance biomedical applications of hydrogels, particularly in the area of sustained drug delivery. In fact, certain nanofiber networks can be transformed into hydrogels directly without the need for a hydrogel enclosure. This review discusses recent advances in the fabrication and application of biomedical nanofiber hydrogels with a strong emphasis on drug release. Most of the drug release studies and recent advances have so far focused on self-gelling nanofiber systems made from peptides or other natural proteins loaded with cancer drugs. Secondly, polysaccharide nanofiber hydrogels are being investigated, and thirdly, electrospun biodegradable polymer networks embedded in polysaccharide-based hydrogels are becoming increasingly popular. This review shows that a major outcome from these works is that nanofiber hydrogels can maintain drug release rates exceeding a few days, even extending into months, which is an extremely difficult task to achieve without the nanofiber texture. This review also demonstrates that some publications still lack careful rheological studies on nanofiber hydrogels; however, rheological properties of hydrogels can influence cell function, mechano-transduction, and cellular interactions such as growth, migration, adhesion, proliferation, differentiation, and morphology. Nanofiber hydrogel rheology becomes even more critical for 3D or 4D printable systems that should maintain sustained drug delivery rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
28
|
Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, Zhao N, Xu F, Wang C. Natural Melanin/Alginate Hydrogels Achieve Cardiac Repair through ROS Scavenging and Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100505. [PMID: 34414693 PMCID: PMC8529445 DOI: 10.1002/advs.202100505] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/24/2021] [Indexed: 05/04/2023]
Abstract
The efficacy of cardiac regenerative strategies for myocardial infarction (MI) treatment is greatly limited by the cardiac microenvironment. The combination of reactive oxygen species (ROS) scavenging to suppress the oxidative stress damage and macrophage polarization to regenerative M2 phenotype in the MI microenvironment can be desirable for MI treatment. Herein, melanin nanoparticles (MNPs)/alginate (Alg) hydrogels composed of two marine-derived natural biomaterials, MNPs obtained from cuttlefish ink and alginate extracted from ocean algae, are proposed. Taking advantage of the antioxidant property of MNPs and mechanical support from injectable alginate hydrogels, the MNPs/Alg hydrogel is explored for cardiac repair by regulating the MI microenvironment. The MNPs/Alg hydrogel is found to eliminate ROS against oxidative stress injury of cardiomyocytes. More interestingly, the macrophage polarization to regenerative M2 macrophages can be greatly promoted in the presence of MNPs/Alg hydrogel. An MI rat model is utilized to evaluate the feasibility of the as-prepared MNPs/Alg hydrogel for cardiac repair in vivo. The antioxidant, anti-inflammatory, and proangiogenesis effects of the hydrogel are investigated in detail. The present study opens up a new way to utilize natural biomaterials for MI treatment and allows to rerecognize the great value of natural biomaterials in cardiac repair.
Collapse
Affiliation(s)
- Jin Zhou
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Xiaoyi Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yifan Xian
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Wei Wu
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Nana Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Fu‐Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| |
Collapse
|
29
|
Enhanced osteogenic differentiation of alendronate-conjugated nanodiamonds for potential osteoporosis treatment. Biomater Res 2021; 25:28. [PMID: 34556181 PMCID: PMC8461989 DOI: 10.1186/s40824-021-00231-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Background Alendronate (Alen) is promising material used for bone-targeted drug delivery due to its high bone affinity and therapeutic effects on bone diseases. In addition, Alen can enhance the osteogenic differentiation of osteoblastic cell. Recently, nanodiamonds (NDs) with hardness, non-toxicity, and excellent biocompatibility are employed as promising materials for carrier systems and osteogenic differentiation. Therefore, we prepared Alen-conjugated NDs (Alen-NDs) and evaluated their osteogenic differentiation performances. Methods Alen-NDs were synthesized using DMTMM as a coupling reagent. Morphological change of Mouse calvaria-derived preosteoblast (MC3T3-E1) treated with Alen-NDs was observed using the confocal microscope. The osteogenic differentiation was confirmed by cell proliferation, alkaline phosphatase (ALP), calcium deposition, and real-time polymerase chain reaction assay. Results Alen-NDs were prepared to evaluate their effect on the proliferation and differentiation of osteoblastic MC3T3-E1 cells. The Alen-NDs had a size of about 100 nm, and no cytotoxicity at less than 100 μg/mL of concentration. The treatment of NDs and Alen-NDs reduced the proliferation rate of MC3T3-E1 cells without cell death. Confocal microscopy images confirmed that the treatment of NDs and Alen-NDs changed the cellular morphology from a fibroblastic shape to a cuboidal shape. Flow cytometry, alkaline phosphatase (ALP) activity, calcium deposition, and real-time polymerase chain reaction (RT-PCR) confirmed the higher differentiation of MC3T3-E1 cells treated by Alen-NDs, compared to the groups treated by osteogenic medium and NDs. The higher concentration of Alen-ND treated in MC3T3-E1 resulted in a higher differentiation level. Conclusions Alen-NDs can be used as potential therapeutic agents for osteoporosis treatment by inducing osteogenic differentiation.
Collapse
|
30
|
Teixeira MO, Antunes JC, Felgueiras HP. Recent Advances in Fiber-Hydrogel Composites for Wound Healing and Drug Delivery Systems. Antibiotics (Basel) 2021; 10:248. [PMID: 33801438 PMCID: PMC8001440 DOI: 10.3390/antibiotics10030248] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
In the last decades, much research has been done to fasten wound healing and target-direct drug delivery. Hydrogel-based scaffolds have been a recurrent solution in both cases, with some reaching already the market, even though their mechanical stability remains a challenge. To overcome this limitation, reinforcement of hydrogels with fibers has been explored. The structural resemblance of fiber-hydrogel composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel-forming techniques and fiber spinning approaches has been crucial in the development of scaffolding systems with improved mechanical strength and medicinal properties. In this review, a comprehensive overview of the recently developed fiber-hydrogel composite strategies for wound healing and drug delivery is provided. The methodologies employed in fiber and hydrogel formation are also highlighted, together with the most compatible polymer combinations, as well as drug incorporation approaches creating stimuli-sensitive and triggered drug release towards an enhanced host response.
Collapse
Affiliation(s)
| | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.O.T.); (J.C.A.)
| |
Collapse
|