1
|
Soma K, Moriyama N, Nagasawa H, Tsuru T, Kanezashi M. Design of Silica-Cobalt Composite Microporous Structures with Dispersed Carbon Particles for Highly Permselective Gas Separation Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65233-65244. [PMID: 39558625 DOI: 10.1021/acsami.4c15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Metal-doped silica membranes, fabricated via the sol-gel technique using metal nitrates, hold promise for high-temperature separation processes, such as H2 separation in steam reforming reactions. However, controlling the status of the doped metal is challenging and often leads to defect formation owing to the aggregation of metal oxides. In this study, we designed a uniform carbon-Co-SiO2 ceramic membrane using a one-pot sol-gel method with copolymerization, employing tetraethoxysilane and cobalt acetylacetone(III) (Co-(acac)3) as precursors. Organic chelate ligands within the amorphous silica network formed by the polymerization reaction were carbonized by calcination at 250-750 °C in an inert atmosphere. This approach suppressed defect formation and tailored the microporous structures to a wide range of separation systems. For example, the SiO2-Co-(acac)3 membrane calcined at 550 °C demonstrated a notable C3H6 permeance of 4.0 × 10-8 mol m-2 s-1 Pa-1 (GPU: 120), with a high C3H6/C3H8 selectivity of 46, attributed to the molecular sieving effect, whereas the membrane calcined at 650 °C exhibited a remarkable He permeance of 4.6 × 10-7 mol m-2 s-1 Pa-1 (GPU: 1400), with a high He/CH4 selectivity of 830. This study provides valuable insights into the development of defect-free carbon-cation-SiO2 ceramic membranes for a broad range of gas separation processes.
Collapse
Affiliation(s)
- Kento Soma
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Norihiro Moriyama
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroki Nagasawa
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Toshinori Tsuru
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Masakoto Kanezashi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
2
|
Wang X, Abass G, Wang J, Song D, Ma A. A comparative DFT study of HCHO decomposition on different terminations of the Co 3O 4(110) surface. Dalton Trans 2024; 53:12381-12389. [PMID: 38995145 DOI: 10.1039/d4dt01068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Density functional theory calculations have been performed to compare the HCHO decomposition on Co3O4(110)-A and (110)-B terminations. The results showed that the energy barriers of the two C-H bond cleavages of HCHO on the (110)-A termination were lower than those on the (110)-B termination, suggesting that the (110)-A termination had stronger HCHO decomposition ability than the (110)-B termination. Electronic structures revealed that the stronger HCHO decomposition ability of the (110)-A termination might be ascribed to the strong covalent bond between HCHO and the (110)-A termination, as well as the higher d-band center of Co3+ ions on the (110)-A termination. Furthermore, we proposed that the preparation of Co3O4 under oxygen-rich growth conditions was beneficial to HCHO decomposition because the (110)-A termination was more stable under oxygen-rich conditions.
Collapse
Affiliation(s)
- Xing Wang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| | - Gbemi Abass
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| | - Jiajia Wang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| | - Dan Song
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| | - Aibin Ma
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| |
Collapse
|
3
|
Chen X, de Boer RM, Kosari A, van Gog H, van Huis MA. Thermal Reduction of MoO 3 Particles and Formation of MoO 2 Nanosheets Monitored by In Situ Transmission Electron Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21387-21398. [PMID: 37937158 PMCID: PMC10626599 DOI: 10.1021/acs.jpcc.3c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Nanoscale forms of molybdenum trioxide have found widespread use in optoelectronic, sensing, and battery applications. Here, we investigate the thermal evolution of micrometer-sized molybdenum trioxide particles during in situ heating in vacuum using transmission electron microscopy and observed drastic structural and chemical changes that are strongly dependent on the heating rate. Rapid heating (flash heating) of MoO3 particles to a temperature of 600 °C resulted in large-scale formation of MoO2(001) nanosheets that were formed in a wide area around the reducing MoO3 particles, within a few minutes of time frame. In contrast, when heated more gently, the initially single-crystal MoO3 particles were reduced into hollow nanostructures with polycrystalline MoO2 shells. Using density functional theory calculations employing the DFT-D3 functional, the surface energy of MoO3(010) was calculated to be 0.187 J m-2, and the activation energy for exfoliation of the van der Waals bonded MoO3 (010) layers was calculated to be 0.478 J m-2. Ab initio molecular dynamics simulations show strong fluctuations in the distance between the (010) layers, where thermal vibrations lead to additional separations of up to 1.8 Å at 600 °C. This study shows efficient pathways for the generation of either MoO2 nanosheets or hollow MoO2 nanostructures with very high effective surface areas beneficial for applications.
Collapse
Affiliation(s)
- Xiaodan Chen
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Roos M. de Boer
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Ali Kosari
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Electron
Microscopy Centre, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Heleen van Gog
- Nanostructured
Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Marijn A. van Huis
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Electron
Microscopy Centre, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Li M, Yang Q, Fan L, Dai X, Kang Z, Wang R, Sun D. An Ultrastable Bifunctional Electrocatalyst Derived from a Co 2+-Anchored Covalent-Organic Framework for High-Efficiency ORR/OER and Rechargeable Zinc-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39448-39460. [PMID: 37527438 DOI: 10.1021/acsami.3c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
It remains a great challenge to develop alternative electrocatalysts with high stability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, a bifunctional electrocatalyst composed of hollow CoOx (Co3O4/CoO) nanoparticles embedded in lamellar carbon nanofibers is derived from a Co2+-anchored covalent-organic framework. The as-fabricated electrocatalyst (CoOx@NC-800) exhibits a half-wave potential (E1/2) of 0.89 V with ultrahigh long-term stability (100% current retention after 3000 CV cycles). Together with promising OER performance, the CoOx@NC-800 based reversible Zn-air battery displays a small potential gap (0.70 V), superior to that of the commercial 20% Pt/C + RuO2. The density functional theory (DFT) calculations reveal that the remarkable electrocatalytic performance and stability of CoOx@NC-800 are attributed to the optimized adsorption of the *OOH intermediate and reduced free energy of the potential-limiting step. This study establishes the functionalization of COF structure for fabrication of high-performance carbon-based electrocatalysts.
Collapse
Affiliation(s)
- Mengfei Li
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - QianQian Yang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lili Fan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaojie Dai
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zixi Kang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Rongming Wang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
5
|
Chen X, van Huis MA. Formation Pathways of Lath-Shaped WO 3 Nanosheets and Elemental W Nanoparticles from Heating of WO 3 Nanocrystals Studied via In Situ TEM. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1291. [PMID: 36770297 PMCID: PMC9920553 DOI: 10.3390/ma16031291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
WO3 is a versatile material occurring in many polymorphs, and is used in nanostructured form in many applications, including photocatalysis, gas sensing, and energy storage. We investigated the thermal evolution of cubic-phase nanocrystals with a size range of 5-25 nm by means of in situ heating in the transmission electron microscope (TEM), and found distinct pathways for the formation of either 2D WO3 nanosheets or elemental W nanoparticles, depending on the initial concentration of deposited WO3 nanoparticles. These pristine particles were stable up to 600 °C, after which coalescence and fusion of the nanocrystals were observed. Typically, the nanocrystals transformed into faceted nanocrystals of elemental body-centered-cubic W after annealing to 900 °C. However, in areas where the concentration of dropcast WO3 nanoparticles was high, at a temperature of 900 °C, considerably larger lath-shaped nanosheets (extending for hundreds of nanometers in length and up to 100 nm in width) were formed that are concluded to be in monoclinic WO3 or WO2.7 phases. These lath-shaped 2D particles, which often curled up from their sides into folded 2D nanosheets, are most likely formed from the smaller nanoparticles through a solid-vapor-solid growth mechanism. The findings of the in situ experiments were confirmed by ex situ experiments performed in a high-vacuum chamber.
Collapse
Affiliation(s)
- Xiaodan Chen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Electron Microscopy Center, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marijn A. van Huis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Electron Microscopy Center, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Vijayakumar J, Savchenko TM, Bracher DM, Lumbeeck G, Béché A, Verbeeck J, Vajda Š, Nolting F, Vaz CAF, Kleibert A. Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles. Nat Commun 2023; 14:174. [PMID: 36635276 PMCID: PMC9837083 DOI: 10.1038/s41467-023-35846-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Understanding chemical reactivity and magnetism of 3d transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co3O4 and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.
Collapse
Affiliation(s)
| | | | - David M Bracher
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | | | - Armand Béché
- EMAT, University of Antwerp, 2020, Antwerpen, Belgium
| | - Jo Verbeeck
- EMAT, University of Antwerp, 2020, Antwerpen, Belgium
| | - Štefan Vajda
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 18223, Prague, Czech Republic
| | - Frithjof Nolting
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - C A F Vaz
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| | - Armin Kleibert
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
7
|
Yoon A, Kim G, Lee M, Lee Z, Ryu GH. Thermally driven phase transition of cobalt hydroxide sheets via cobalt oxides to cobalt nanoparticles. NANOSCALE HORIZONS 2022; 7:1210-1216. [PMID: 35929511 DOI: 10.1039/d2nh00218c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal oxides, which include many stoichiometric variations, are formed into various crystal structures by the atomic arrangement of cations and anions according to stoichiometric composition and are used for a wide range of applications based on this. Among them, cobalt oxide, which has wide crystal structures depending on the lattice points of the anion and the valence of the Co cation, from its hydroxide formula, is attracting a lot of attention due to its interesting catalytic properties due to its crystal structure. In this study, using the synthesized Co(OH)2 nanosheets, the real-time behavior of the phase transition that occurs when continuous heat is applied to the sample has been systematically analyzed using an aberration-corrected scanning transmission electron microscope. The layered Co(OH)2 phase passes through hexagonal CoO and cubic CoO phases to finally become Co nanoparticles, but when the temperature is dropped in the hexagonal phase, spinel Co3O4 is formed. These results suggest that various phases included in transition metal oxides can be selectively implemented according to temperature range control.
Collapse
Affiliation(s)
- Aram Yoon
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Gyutae Kim
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Minjeong Lee
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Zonghoon Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Gyoeng Hee Ryu
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
8
|
Weidenthaler C, Schmidt W, Leiting S, Ternieden J, Kostis A, Ulucan TH, Budiyanto E. In‐situ Investigations of Co@Al2O3 Ammonia Decomposition Catalysts: The Interaction between Support and Catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| | - Wolfgang Schmidt
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Sebastian Leiting
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Jan Ternieden
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Alexander Kostis
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Tolga Han Ulucan
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heter GERMANY
| |
Collapse
|
9
|
Liu WJ, Kwon E, Huy NN, Khiem TC, Lisak G, Wi-Afedzi T, Wu CC, Ghanbari F, Lin KYA. Facilely-prepared sulfide-doped Co3O4 nanocomposite as a boosted catalyst for activating Oxone to degrade a sunscreen agent. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Budiyanto E, Salamon S, Wang Y, Wende H, Tüysüz H. Phase Segregation in Cobalt Iron Oxide Nanowires toward Enhanced Oxygen Evolution Reaction Activity. JACS AU 2022; 2:697-710. [PMID: 35373196 PMCID: PMC8970005 DOI: 10.1021/jacsau.1c00561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The impact of reduction post-treatment and phase segregation of cobalt iron oxide nanowires on their electrochemical oxygen evolution reaction (OER) activity is investigated. A series of cobalt iron oxide spinel nanowires are prepared via the nanocasting route using ordered mesoporous silica as a hard template. The replicated oxides are selectively reduced through a mild reduction that results in phase transformation as well as the formation of grain boundaries. The detailed structural analyses, including the 57Fe isotope-enriched Mössbauer study, validated the formation of iron oxide clusters supported by ordered mesoporous CoO nanowires after the reduction process. This affects the OER activity significantly, whereby the overpotential at 10 mA/cm2 decreases from 378 to 339 mV and the current density at 1.7 V vs RHE increases by twofold from 150 to 315 mA/cm2. In situ Raman microscopy revealed that the surfaces of reduced CoO were oxidized to cobalt with a higher oxidation state upon solvation in the KOH electrolyte. The implementation of external potential bias led to the formation of an oxyhydroxide intermediate and a disordered-spinel phase. The interactions of iron clusters with cobalt oxide at the phase boundaries were found to be beneficial to enhance the charge transfer of the cobalt oxide and boost the overall OER activity by reaching a Faradaic efficiency of up to 96%. All in all, the post-reduction and phase segregation of cobalt iron oxide play an important role as a precatalyst for the OER.
Collapse
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Soma Salamon
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Yue Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Heiko Wende
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Chen X, Hosseini SN, van Huis MA. Heating-Induced Transformation of Anatase TiO 2 Nanorods into Rock-Salt TiO Nanoparticles: Implications for Photocatalytic and Gas-Sensing Applications. ACS APPLIED NANO MATERIALS 2022; 5:1600-1606. [PMID: 35128341 PMCID: PMC8805116 DOI: 10.1021/acsanm.1c04346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Anatase TiO2 nanocrystals (NCs) play a vital role in photocatalytic applications due to their high catalytic activity and in gas-sensing applications due to their high chemical sensitivity. Here, we report the transformation at elevated temperature of anatase nanorods (NRs) with a length of 25 nm into rock-salt TiO nanoparticles with an average size of 9.2 ± 2.1 nm investigated by means of in situ heating in the transmission electron microscope. The NRs were completely transformed to titanium monoxide NCs after heating to a temperature of 1200 °C. We also identified an intermediate stage in the temperature range of 950-1200 °C, during which not only the anatase and rock-salt phases were found but also the brookite phase. Understanding of the phase and morphology evolution at high temperatures is of essence to the functionality of the NRs in various applications, as discussed in this work. Moreover, the high-temperature transformation to titanium monoxide is of interest as rock-salt TiO (γ-TiO) is known to exhibit superconducting properties. We propose the heating-induced transformation as a physical route to synthesize TiO NCs of very small size.
Collapse
|