1
|
Lakshmi Devi A, Sreelakshmi M, Suneesh PV, Satheesh Babu TG. Copper and nickel doped carbon dots for rapid and sensitive fluorescent turn-off detection of bilirubin. Sci Rep 2025; 15:1262. [PMID: 39779895 PMCID: PMC11711382 DOI: 10.1038/s41598-025-85246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Carbon dots doped with metals and non-metals have gained much popularity due to the enhancement in their optical and electronic properties. In this study, polyethyleneimine-functionalized transition metal (nickel or copper) doped carbon dots (CD, NiCD and CuCD) were synthesized through hydrothermal method. The carbon dots exhibited a blue fluorescence at 470 nm when excited at 350 nm. The as-synthesized carbon dots were utilised for the fluorimetric detection of bilirubin in the range 0.5 µM - 280 µM, with CuCD exhibiting the highest sensitivity of 155.38 a.u/log µM in the concentration range 0.5 to 10 µM and 84.01 a.u/ log µM in the concentration range 10 to 280 µM. CuCD also exhibited the lowest limit of detection of 0.0907 µM and the lowest limit of quantification of 0.3023 µM. All the carbon dots showed negligible interference in the presence of biomolecules and metal ions present in human serum implying the remarkable selectivity of the method to bilirubin detection. Further, the carbon dots were successfully tested for their real-time application in human serum using bilirubin-spiked serum samples.
Collapse
Affiliation(s)
- A Lakshmi Devi
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - M Sreelakshmi
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - P V Suneesh
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - T G Satheesh Babu
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Amrita Biomedical Engineering Centre, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| |
Collapse
|
2
|
Kayani KF, Ghafoor D, Mohammed SJ, Shatery OBA. Carbon dots: synthesis, sensing mechanisms, and potential applications as promising materials for glucose sensors. NANOSCALE ADVANCES 2024; 7:42-59. [PMID: 39583130 PMCID: PMC11583430 DOI: 10.1039/d4na00763h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
The disruption of glucose (Glu) metabolism in the human body can lead to conditions such as diabetes and hyperglycemia. Therefore, accurately determining Glu levels is crucial for clinical diagnosis and other applications. Carbon dots (CDs) are a novel category of carbon nanomaterials that exhibit outstanding optical properties, excellent biocompatibility, high water solubility, low production costs, and straightforward synthesis. Recently, researchers have developed various carbon dot sensors for fast and real-time Glu monitoring. In this context, we provide a comprehensive introduction to Glu and CDs for the first time. We categorize the synthetic methods for CDs and the sensing mechanisms, further classifying the applications of carbon dot probes into single-probe sensing, ratiometric sensing, and visual detection. Finally, we discuss the future development needs for CD-based Glu sensors. This review aims to offer insights into advancing Glu sensors and modern medical treatments.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| | - Dlzar Ghafoor
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology Sulaymaniyah 46001 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani, Kurdistan Regional Government Qlyasan Street Sulaymaniyah 46001 Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| |
Collapse
|
3
|
Díaz-García D, Díaz-Sánchez M, Álvarez-Conde J, Gómez-Ruiz S. Emergence of Quantum Dots as Innovative Tools for Early Diagnosis and Advanced Treatment of Breast Cancer. ChemMedChem 2024; 19:e202400172. [PMID: 38724442 DOI: 10.1002/cmdc.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Indexed: 06/20/2024]
Abstract
Quantum dots (QDs) semiconducting nanomaterials, have garnered attention due to their distinctive properties, including small size, high luminescence, and biocompatibility. In the context of triple-negative breast cancer (TNBC), notorious for its resistance to conventional treatments, QDs exhibit promising potential for enhancing diagnostic imaging and providing targeted therapies. This review underscores recent advancements in the utilization of QDs in imaging techniques, such as fluorescence tomography and magnetic resonance imaging, aiming at the early and precise detection of tumors. Emphasis is placed on the significance of QD design, synthesis and functionalization processes as well as their use in innovative strategies for targeted drug delivery, capitalizing on their ability to selectively deliver therapeutic agents to cancer cells. As the research in this field advances rapidly, this review covers a classification of QDs according to their composition, the characterization techniques than can be used to determine their properties and, subsequently, emphasizes recent findings in the field of TNBC-targeting, highlighting the imperative need to address challenges, like potential toxicity or methodologies standardization. Collectively, the findings explored thus far suggest that QDs could pave the way for early diagnosis and effective therapy of TNBC, representing a significant stride toward precise and personalized strategies in treating TNBC.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Javier Álvarez-Conde
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| |
Collapse
|
4
|
Li Z, Li S, Jiang L, Xiao J, Niu J, Zhang Y, Chen C, Zhou Q. Construction of nitrogen-doped carbon dots-based fluorescence probe for rapid, efficient and sensitive detection of chlortetracycline. CHEMOSPHERE 2024; 361:142535. [PMID: 38844108 DOI: 10.1016/j.chemosphere.2024.142535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Antibiotics are widely used in clinical medicine due to their excellent antibacterial abilities. As typical emerging pollutants, their misuse can lead to excess antibiotics entering the environment, causing antimicrobial resistance and leading to serious health problems via food chain. Herein, a nano-fluorescent probe based on nitrogen-doped carbon dots (N-CDs) was constructed for the sensitive detection of chlortetracycline (CTC). N-CDs with stable fluorescence were synthesized by hydrothermal method using alizarin red and melamine as raw materials. The N-CDs exhibited significant independence to excitation wavelength. The fluorescence of N-CDs was significantly quenched by CTC ascribing to the fluorescence resonance energy transfer mechanism. The concentration of N-CDs, solution pH and incubation time were optimized to obtain the optimal detection parameters. Under optimal conditions, CTC exhibited excellent linearity over the range of 20-1200 μg/L, and the detection limit was 8.74 μg/L. The method was validated with actual water samples and achieved satisfied spiked recoveries of 97.6-102.6%. Therefore, the proposed method has significant application value in the detection of CTC in waters.
Collapse
Affiliation(s)
- Zhi Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shuangying Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Junping Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingwen Niu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yue Zhang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
5
|
Hassan Akhtar M, Azhar Hayat Nawaz M, Abbas M, Liu N, Han W, Lv Y, Yu C. Advances in pH Sensing: From Traditional Approaches to Next-Generation Sensors in Biological Contexts. CHEM REC 2024; 24:e202300369. [PMID: 38953343 DOI: 10.1002/tcr.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/18/2024] [Indexed: 07/04/2024]
Abstract
pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers' interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.
Collapse
Affiliation(s)
- Mahmood Hassan Akhtar
- College of Animal Science, Jilin University, Changchun, 130062, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS, University Islamabad, 54000, Lahore, Campus, Pakistan
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yan Lv
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Yang M, Han Y, Bianco A, Ji DK. Recent Progress on Second Near-Infrared Emitting Carbon Dots in Biomedicine. ACS NANO 2024; 18:11560-11572. [PMID: 38682810 DOI: 10.1021/acsnano.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Second near-infrared (NIR-II) carbon dots, with absorption or emission between 1000 and 1700 nm, are gaining increasing attention in the biomaterial field due to their distinctive properties, which include straightforward preparation processes, stable photophysical characteristics, excellent biocompatibility, and low cost. As a result, there is a growing focus on the controlled synthesis and modulation of the photochemical and photophysical properties of NIR-II carbon dots, with the aim to further expand their biomedical applications, a current research hotspot. This account aims to provide a comprehensive overview of the recent advancements in NIR-II carbon dots within the biomedical field. The review will cover the following topics: (i) the design, synthesis, and purification of NIR-II carbon dots, (ii) the surface modification strategies, and (iii) the biomedical applications, particularly in the domain of cancer theranostics. Additionally, this account addresses the challenges encountered by NIR-II carbon dots and will outline future directions in the realm of cancer theranostics. By exploring carbon-based NIR-II biomaterials, we can anticipate that this contribution will garner increased attention and contribute to the development of next-generation advanced functional carbon dots, thereby offering enhanced tools and strategies in the biomedical field.
Collapse
Affiliation(s)
- Mei Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yongqi Han
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Ding-Kun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| |
Collapse
|
7
|
Yin Y, Wu X, Huang C, Dong Y, Liu J, Tan Y, Liang H, Yang S. Microwave synthesized novel biomass carbon dots applied in the fluorescent detection of crystal violet. LUMINESCENCE 2024; 39:e4778. [PMID: 38772865 DOI: 10.1002/bio.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
To establish a new method for detecting crystal violet (CV), a harmful dye, herein, a genre of novel biomass carbon dots (CDs) was synthesized via a microwave method and employed as a fluorescent probe, in which water spinach and polyethylene glycol (PEG) performed as raw materials. Based on the inner filter effect (IFE) between the luminescent CDs and CV, the blue emission of this probe at 430 nm could be quenched by CV. Hence, a new strategy was proposed to selectively determine CV in aquaculture ambient. Moreover, under the optimal experiment conditions, this method showed a good linearity between the concentration of CV (c) and fluorescence quenching rate (ΔF/F0) in the concentration range of 4-200 μmol/L with the corresponding correlation coefficient (r) and the detection limit of 0.997 and 710 nmol/L, respectively. With advantages of environmental protectivity, sensitivity, affordability, and user-friendliness, the facilely fabricated CDs could be successfully applied in detecting CV in aquaculture samples, providing a technical foundation for monitoring the pollution of CV and ensuring the quality and safety of aquatic products.
Collapse
Affiliation(s)
- Yu Yin
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiwen Wu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Chongyang Huang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yaolin Dong
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinquan Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Tan
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Hao Liang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Shengyuan Yang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
8
|
Nelson DJ, Vasimalai N, John SA, Sethuraman MG. On-Off-On Fluorometric Detection of Hg(II) and L-Cysteine Using Red Emissive Nitrogen-Doped Carbon Dots for Environmental and Clinical Sample Analysis. J Fluoresc 2024:10.1007/s10895-024-03598-9. [PMID: 38300484 DOI: 10.1007/s10895-024-03598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
This research introduces a novel fluorescence sensor 'on-off-on' employing nitrogen-doped carbon dots (N-CDs) with an 'on-off-on' mechanism for the selective and sensitive detection of Hg(II) and L-cysteine (L-Cys). N-CDs was synthesized using citric acid as the carbon precursor and urea as the nitrogen source in dimethylformamide (DMF) solvent, resulting in red emissive characteristics under UV light. Comprehensive spectroscopic analyses, including UV-Vis, fluorescence, FT-IR, XRD, XPS, Raman, and Zeta potential techniques, validated the structural and optical characteristics of the synthesized N-CDs. The maximum excitation and emission of N-CDs were observed at 548 and 622 nm, respectively. The quantum yield of N-CDs was calculated to be 16.1%. The fluorescence of N-CDs effectively quenches upon the addition of Hg(II) due to the strong coordination between Hg(II) and the surface functionalities of N-CDs. Conversely, upon the subsequent addition of L-Cys, the fluorescence of N-CDs was restored. This restoration can be attributed to the stronger affinity of the -SH group in L-Cys towards Hg(II) relative to the surface functionalities of N-CDs. This dual-mode response enabled the detection of Hg(II) and L-Cys with impressive detection limits of 15.1 nM and 8.0 nM, respectively. This sensor methodology effectively detects Hg(II) in lake water samples and L-Cys levels in human urine, with a recovery range between 99 and 101%. Furthermore, the N-CDs demonstrated excellent stability, high sensitivity, and selectivity, making them a promising fluorescence on-off-on probe for both environmental monitoring of Hg(II) and clinical diagnostics of L-Cys.
Collapse
Affiliation(s)
- D James Nelson
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, Dindigul, 624302, Tamilnadu, India
| | - N Vasimalai
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, Tamilnadu, India
| | - S Abraham John
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, Dindigul, 624302, Tamilnadu, India.
| | - M G Sethuraman
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, Dindigul, 624302, Tamilnadu, India.
| |
Collapse
|
9
|
Domena JB, Ferreira BCLB, Cilingir EK, Zhou Y, Chen J, Johnson QR, Chauhan BPS, Bartoli M, Tagliaferro A, Vanni S, Graham RM, Leblanc RM. Advancing glioblastoma imaging: Exploring the potential of organic fluorophore-based red emissive carbon dots. J Colloid Interface Sci 2023; 650:1619-1637. [PMID: 37494859 DOI: 10.1016/j.jcis.2023.07.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Over time, the interest in developing stable photosensitizers (PS) which both absorb and emit light in the red region (650 and 950 nm) has gained noticeable interest. Recently, carbon dots (CDs) have become the material of focus to act as a PS due to their high extinction coefficient, low cytotoxicity, and both high photo and thermal stability. In this work, a Federal and Drug Association (FDA) approved Near Infra-Red (NIR) organic fluorophore used for photo-imaging, indocyanine green (ICG), has been explored as a precursor to develop water-soluble red emissive CDs which possess red emission at 697 nm. Furthermore, our material was found to yield favorable red-imaging capabilities of glioblastoma stem-like cells (GSCs) meanwhile boasting low toxicity. Additionally with post modifications, our CDs have been found to have selectivity towards tumors over healthy tissue as well as crossing the blood-brain barrier (BBB) in zebrafish models.
Collapse
Affiliation(s)
- Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Emel K Cilingir
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Qiaxian R Johnson
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Rd, Wayne, NJ 07470, USA
| | - Bhanu P S Chauhan
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Rd, Wayne, NJ 07470, USA
| | - M Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - A Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Steven Vanni
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; HCA Florida University Hospital, 3476 S University Dr, Davie, FL 33328, USA; Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Regina M Graham
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136, USA; Dr. Kiran C. Patel College of Allopathic Medicine, Ft. Lauderdale, FL 33328, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
10
|
Thakur S, Mohiuddin I, Singh R, Kaur V, Kamboj R, Singh S. Biomass-Derived Core-Shell Carbon Dots with Embedded Tripodal Receptors for the Selective Recognition of Mefenamic Acid in Pharmaceutical Formulations and Urine. ACS APPLIED BIO MATERIALS 2023; 6:4403-4412. [PMID: 37766456 DOI: 10.1021/acsabm.3c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A tripodal amine (TPA) with -OH, N, and S donors is synthesized to functionalize a core-shell carbon dot composite (FCDs@SiO2-TPA) for sensing application. The TPA is characterized by spectroscopic and spectrometric techniques, and the composite is characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectra (EDS) techniques. The composite has the ability to recognize mefenamic acid (MFA) selectively even in the presence of other drugs like ibuprofen sodium, acetylsalicylic acid, naproxen sodium, diclofenac sodium, and ketoprofen. It can also be used for the quantification of MFA by recording the emission quenching response of the sample at λexc. = 350 nm and λems. = 460 nm (linear range = 1-8 μM and LOD = 197 nM). The density functional theory calculations and 1H NMR titration suggest quenching of the emission signal due to photoinduced electron transfer via hydrogen bonding between the probe and MFA. The composite FCDs@SiO2-TPA has been demonstrated as a reliable and cost-effective sensing probe for the detection of MFA in pharmaceutical formulations, water samples, and cow urine samples.
Collapse
Affiliation(s)
- Sahil Thakur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Raman Kamboj
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| | - Shaminder Singh
- Department of Physics, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
11
|
Cho S, Jung CW, Lee D, Byun Y, Kim H, Han H, Kim JH, Kwon W. Predictable incorporation of nitrogen into carbon dots: insights from pinacol rearrangement and iminium ion cyclization. NANOSCALE ADVANCES 2023; 5:5613-5626. [PMID: 37822896 PMCID: PMC10563847 DOI: 10.1039/d3na00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Nitrogen-doped carbon dots (CDs) have attracted considerable attention across various research areas and applications due to their enhanced optical properties and photostability. However, the mechanism of nitrogen incorporation in CDs remains elusive, hampering the precise control over nitrogen-incorporated structures and the investigation of the effects of nitrogen on the electronic structure and optical properties of CDs. In this study, we employed a rational design approach, utilizing glucosamine and ethylene glycol as the carbon source and co-reagent, respectively, to synthesize N-doped CDs. Our synthesis strategy involved pinacol rearrangement and iminium ion cyclization reactions, enabling the reliable formation of N-doped CDs. Notably, the resulting CDs exhibited distinctive emissive states attributed to heteroatomic defect structures, including oxygenic and nitrogenic polycyclic aromatic hydrocarbons. To gain further insights into their energy levels and electronic transitions, we conducted comprehensive investigations, employing extended Hückel calculations and pump-probe spectroscopy. The synthesized CDs displayed great promise as bioimaging and photodynamic therapy agents, highlighting their potential for biomedical applications. Moreover, our study significantly contributes valuable insights into the rational design of N-doped CDs with controllable chemical and electronic structures, thereby paving the way for advancements in their diverse range of applications.
Collapse
Affiliation(s)
- Soohyun Cho
- Department of Chemical and Biological Engineering, Sookmyung Women's University Seoul 04310 South Korea
| | - Chan-Woo Jung
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
| | - Dajin Lee
- Department of Chemical and Biological Engineering, Sookmyung Women's University Seoul 04310 South Korea
| | - Yerim Byun
- Department of Chemical and Biological Engineering, Sookmyung Women's University Seoul 04310 South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University Seoul 05029 South Korea
| | - Hyunho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine Seoul 03722 South Korea
| | - Ji-Hee Kim
- Department of Physics, Pusan National University Busan 46241 South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University Seoul 04310 South Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University Seoul 04310 South Korea
| |
Collapse
|
12
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
13
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Eco-Friendly Synthesis of Functionalized Carbon Nanodots from Cashew Nut Skin Waste for Bioimaging. Catalysts 2023. [DOI: 10.3390/catal13030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
In this study, Anacardium occidentale (A. occidentale) nut skin waste (cashew nut skin waste) was used as a raw material to synthesize functionalized carbon nanodots (F-CNDs). A. occidentale biomass-derived F-CNDs were synthesized at a low temperature (200 °C) using a facile, economical hydrothermal method and subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman Spectroscopy, ATR-FTIR, and Ultraviolet-visible (UV–vis) absorption and fluorescence spectroscopy to determine their structures, chemical compositions, and optical properties. The analysis revealed that dispersed, hydrophilic F-CNDs had a mean diameter of 2.5 nm. XPS and ATR-FTIR showed F-CNDs had a crystalline core and an amorphous surface decorated with –NH2, –COOH, and C=O. In addition, F-CNDs had a quantum yield of 15.5% and exhibited fluorescence with maximum emission at 406 nm when excited at 340 nm. Human colon cancer (HCT-116) cell assays showed that F-CNDs readily penetrated into the cells, had outstanding biocompatibility, high photostability, and minimal toxicity. An MTT assay showed that the viability of HCT-116 cells incubated for 24 h in the presence of F-CNDs (200 μg mL–1) exceeded 95%. Furthermore, when stimulated by filters of three different wavelengths (405, 488, and 555 nm) under a laser scanning confocal microscope, HCT-116 cells containing F-CNDs emitted blue, red, and green, respectively, which suggests F-CNDs might be useful in the biomedical field. Thus, we describe the production of a fluorescent nanoprobe from cashew nut waste potentially suitable for bioimaging applications.
Collapse
|
15
|
C G S, Balakrishna RG. Phase transferred and non-coated, water soluble perovskite quantum dots for biocompatibility and sensing. J Mater Chem B 2023; 11:2184-2190. [PMID: 36779786 DOI: 10.1039/d2tb02198f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Despite the excellent optoelectronic properties exhibited by CsPbBr3 QDs (PQDs) for sensing applications, their poor resistance to water does not allow their utilization as probes to detect analytes in aqueous media. The present work provides water soluble PQDs (dispersed in water) prepared by an appropriate phase engineering of the ligand. The dicarboxylate functional ligands at a particular pH allow the protonated state to form solvated carboxyl dimers, which interconnects PQDs, thus avoiding Ostwald ripening and enhancing the photoluminescence quantum yield (PLQY). As a proof of concept, this probe was applied to detect bioamines in water, namely histamine, hexamethylenediamine, phenethylamine, dopamine and thiamine. The probe is highly selective to histamine at concentrations below 500 nM and this selectivity of histamine over dopamine is very interesting and rarely reported. More importantly, this work offers a standard protocol for transferring PQDs from the organic to aqueous phase, for the detection of such biomolecules in water.
Collapse
Affiliation(s)
- Sanjayan C G
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Bangalore 562112, Karnataka, India.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Bangalore 562112, Karnataka, India.
| |
Collapse
|
16
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
17
|
Wang X, Sun X, Ma C, Zhang Y, Kong L, Huang Z, Hu Y, Wan H, Wang P. Multifunctional AuNPs@HRP@FeMOF immune scaffold with a fully automated saliva analyzer for oral cancer screening. Biosens Bioelectron 2023; 222:114910. [PMID: 36542992 DOI: 10.1016/j.bios.2022.114910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Delayed diagnosis of cancer-causing death is a worldwide concern. General diagnosis methods are invasive, time-consuming, and operation complicated, which are not suitable for preliminary screening. To address these challenges, the sensing platform based on immune scaffold and fully automated saliva analyzer (FASA) was proposed for oral cancer screening for the first time by non-invasive detection of Cyfra21-1 in saliva. Through one-step synthesis method with unique covalent and electrostatic adsorption strategy, AuNPs@HRP@FeMOF immune scaffold features multiple functions including antibody carrier, catalytic activity, and signal amplification. Highly integrated FASA with the immune scaffold provides automatic testing to avoid false-positive results and reduce pretreatment time without any user intervention. Compared with the commercial analyzer, FASA has comparable performance for Cyfra21-1 detection with a detection range of 3.1-50.0 ng/mL and R2 of 0.971, and superior features in full automation, high integration, time saving and low cost. Oral cancer patients could be distinguished accurately by the platform with an excellent correlation (R2 of 0.904) and average RSD (5.578%) without sample dilution. The proposed platform provides an effective and promising tool for cancer screening in point-of-care applications, which can be further extended for biomarker detection in universal body fluids, disease screening, prognosis review and homecare monitoring.
Collapse
Affiliation(s)
- Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanchi Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuoru Huang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanjie Hu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
18
|
Zhang Y, Chen Y, Bai X, Cheng G, Cao T, Dong L, Zhao J, Zhang Y, Qu H, Kong H, Zhao Y. Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice. Molecules 2023; 28:molecules28041830. [PMID: 36838814 PMCID: PMC9962818 DOI: 10.3390/molecules28041830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
With the extension of the human life span and the increasing pressure of women's work and life, menopause syndrome (MPS) refers to a problem that puzzles almost all women worldwide. Hormone replacement treatment (HRT) can effectively mitigate the symptoms but can also exert adverse effects to a certain extent. Glycyrrhizae radix et rhizome (GRR) is commonly made into a charcoal processed product, termed GRR Carbonisatas (GRRC), for use in traditional Chinese medicine (TCM). GRRC is widely used to treat MPS and other gynecological diseases. In this study, GRRC was prepared through pyrolysis. Subsequently, GRR-derived carbon dots (GRR-CDs) were purified through dialysis and characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron microscopy, and high-performance liquid chromatography. The effects of GRR-CDs on MPS were examined and confirmed using ovariectomized female mice models. The GRR-CDs ranged from 1.0 to 3.0 nm in diameter and with multiple surface chemical groups, as indicated by the results. GRR-CDs can elevate the estradiol (E2) level of healthy female mice. Moreover, GRR-CDs can alleviate MPS using the typical ovariectomized mice model, as confirmed by elevating the estradiol (E2) level and reducing the degree of follicle stimulating hormone (FSH) and luteinizing hormone (LH) and raising the degree of uterine atrophy. The results of this study suggested that GRR-CDs may be a potential clinical candidate for the treatment of MPS, which also provides a possibility for nanodrugs to treat hormonal diseases.
Collapse
Affiliation(s)
- Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guoliang Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyou Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| |
Collapse
|
19
|
Xing Y, Yang M, Chen X. Fabrication of P and N Co-Doped Carbon Dots for Fe 3+ Detection in Serum and Lysosomal Tracking in Living Cells. BIOSENSORS 2023; 13:230. [PMID: 36831996 PMCID: PMC9954533 DOI: 10.3390/bios13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Doping with heteroatoms allows the retention of the general characteristics of carbon dots while allowing their physicochemical and photochemical properties to be effectively modulated. In this work, we report the preparation of ultrastable P and N co-doped carbon dots (PNCDs) that can be used for the highly selective detection of Fe3+ and the tracking of lysosomes in living cells. Fluorescent PNCDs were facilely prepared via a hydrothermal treatment of ethylenediamine and phytic acid, and they exhibited a high quantum yield of 22.0%. The strong coordination interaction between the phosphorus groups of PNCDs and Fe3+ rendered them efficient probes for use in selective Fe3+ detection, with a detection limit of 0.39 μM, and we demonstrated their practicability by accurately detecting the Fe3+ contents in bio-samples. At the same time, PNCDs exhibited high lysosomal location specificity in different cell lines due to surface lipophilic amino groups, and real-time tracking of the lysosome morphology in HeLa cells was achieved. The present work suggests that the fabrication of heteroatom-doped CDs might be an effective strategy to provide promising tools for cytology, such as organelle tracking.
Collapse
Affiliation(s)
- Yanzhi Xing
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
20
|
Madhu M, Krishna Kumar AS, Lu CY, Tseng WL. Peptide-modified carbon dot aggregates for ultrasensitive detection of lipopolysaccharide through aggregation-induced emission enhancement. Talanta 2023; 253:123851. [PMID: 36108518 DOI: 10.1016/j.talanta.2022.123851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 12/13/2022]
Abstract
This study fabricated yellow-emitting CDs (Y-CDs) by hydrothermal treatment of citric acid and urea and applied them as a fluorescence turn-on platform for sensitive and selective detection of lipopolysaccharide (LPS) based on the non-shifted AIEE of peptide-stabilized CD aggregates. The designed peptide (named K3) consisting of aggregation-active and LPS-recognition units triggered the aggregation of Y-CDs, switching on their fluorescence through the blue-shifted AIEE process. The formed K3-stabilized Y-CD aggregates (K3-YCDAs) specifically interacted with LPS at neutral pH, demonstrating that the sequence of the decorated peptide was highly connected with their selectivity and sensitivity. The K3-YCDAs provided a fast response time (within 5 min) to detect LPS with a quantification range of 0.5-100.0 nM and a limit of detection (LOD, signal-to-noise ratio of 3) of 300.0 pM. By integrating ultrafiltration membranes as a concentration device with K3-YCDAs as a sensing probe, the LOD for LPS was further reduced to 3.0 pM. The determination of picomolar levels of plasma LPS by the K3-YCDAs coupled to the centrifugation ultrafiltration was demonstrated to fall within the specificity range of clinical interest for sepsis patients. Also, the K3-YCDAs served as a fluorescent probe to selectively image and quantify E. coli cells. The distinct advantages of the K3-YCDAs for LPS include fast response time, wide linear range, low detection limit, and excellent selectivity compared to previously reported sensors.
Collapse
Affiliation(s)
- Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - A Santhana Krishna Kumar
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Poland
| | - Chi-Yu Lu
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung, 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung, 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., 80708, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Wu S, Wang J, Liu T, Guo X, Ma L. Sulfosalicylic acid modified carbon dots as effective corrosion inhibitor and fluorescent corrosion indicator for carbon steel in HCl solution. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Filik H, Avan AA, Altaş Puntar N, Özyürek M, Çakıcı M, Güngör ZB, Kucur M, Kamış H. Electrochemical immunosensor for individual and simultaneous determination of Cytokeratin fragment antigen 21-1 and Neuron-specific enolase using carbon dots-decorated multiwalled carbon nanotube electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Podkolodnaya YA, Kokorina AA, Goryacheva IY. A Facile Approach to the Hydrothermal Synthesis of Silica Nanoparticle/Carbon Nanostructure Luminescent Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8469. [PMID: 36499966 PMCID: PMC9737401 DOI: 10.3390/ma15238469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Luminescent carbon nanostructures (CNSs) have been intensively researched, but there is still no consensus on a fundamental understanding of their structure and properties that limits their potential applications. In this study, we developed a facile approach to the synthesis of luminescent composite SiO2 nanoparticles/CNSs by the targeted formation of a molecular fluorophore, as the significant luminescent component of CNSs, on the surface of a silica matrix during a one-stage hydrothermal synthesis. Silica nanoparticles were synthesized by reverse microemulsion and used as a matrix for luminescent composites. The as-prepared silica nanoparticles had a functional surface, a spherical shape, and a narrow size distribution of about 29 nm. One-stage hydrothermal treatment of citric acid and modified silica nanoparticles made it possible to directly form the luminescent composite. The optical properties of composites could be easily controlled by changing the hydrothermal reaction time and temperature. Thus, we successfully synthesized luminescent composites with an emission maximum of 450 nm, a quantum yield (QY) of 65 ± 4%, and an average size of ~26 nm. The synthesis of fluorophore doped composite, in contrast to CNSs, makes it possible to control the shape, size, and surface functionality of particles and allows for avoiding difficult and time-consuming fractionation steps.
Collapse
|
25
|
Padhan S, Rout TK, Nair UG. N-doped and Cu,N-doped carbon dots as corrosion inhibitor for mild steel corrosion in acid medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Guthula LS, Yeh KT, Huang WL, Chen CH, Chen YL, Huang CJ, Chau LK, Chan MWY, Lin SH. Quantitative and amplification-free detection of SOCS-1 CpG methylation percentage analyses in gastric cancer by fiber optic nanoplasmonic biosensor. Biosens Bioelectron 2022; 214:114540. [PMID: 35834975 DOI: 10.1016/j.bios.2022.114540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 01/16/2023]
Abstract
A new innovative approach is essential for early and effective diagnosis of gastric cancer, using promoter hypermethylation of the tumor suppressor, SOCS-1, that is frequently inactivated in human cancers. We have developed an amplification-free fiber optic nanoplasmonic biosensor for detecting DNA methylation of the SOCS-1 human genome. The method is based on the fiber optic nanogold-linked sorbent assay of PCR-free DNA from human gastric tumor tissue and cell lines. We designed a specific DNA probe fabricated on the fiber core surface while the other probe is bioconjugated with gold nanoparticles in free form to allow percentage determination and differentiating the methylated and unmethylated cell lines, further demonstrating the SOCS-1 methylation occurs in cancer patients but not in normal cell lines. The observed detection limit is 0.81 fM for methylated DNA, and the detection time is within 15 min. In addition, our data were significantly correlated to the data obtained from PCR-based pyrosequencing, and yet with superior accuracy. Hence our results provide new insight to the quantitative evaluation of methylation status of the human genome and can act as an alternative to PCR with a great potential.
Collapse
Affiliation(s)
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan; College of Medicine, National Chung Hsiung University, Taichung, Taiwan
| | - Wen-Long Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, NCU-Covestro Research Center, National Central University, Taoyuan, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan; Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan; Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan.
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan; Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan; Epigenomics and Human Disease Research Center, National Chung Cheng University, Chiayi, Taiwan.
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan; Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| |
Collapse
|
27
|
Xu J, Ning J, Wang Y, Xu M, Yi C, Yan F. Carbon dots as a promising therapeutic approach for combating cancer. Bioorg Med Chem 2022; 72:116987. [DOI: 10.1016/j.bmc.2022.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
|
28
|
Alvarez-Paguay J, Fernández L, Bolaños-Mendez D, González G, Espinoza-Montero PJ. Evaluation of an electrochemical biosensor based on carbon nanotubes, hydroxyapatite and horseradish peroxidase for the detection of hydrogen peroxide. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Musarraf Hussain M, Asiri AM, Hasnat MA, Ben Aoun S, Rahman MM. Detection of Acetylcholine in an Enzyme‐Free System Based on a GCE/V2O5 NRs/BPM Modified Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Department of Pharmacy, Faculty of Life and Earth Sciences Jagannath University Dhaka 1100 Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammad A. Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences Shahjalal University of Science and Technology Sylhet 3100 Bangladesh
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science Taibah University PO Box 30002 Al-Madinah Al-Munawarah Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
30
|
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Boyang Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Huijuan Cai
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | | | - Xiaoli Qu
- Erythrocyte Biology Laboratory School of Life Sciences Zhengzhou University Zhengzhou 450001 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
31
|
Zhu L, Zhao D, Xu L, Sun M, Song Y, Liu M, Li M, Zhang J. A Fluorescent "Turn-On" Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1262. [PMID: 35457970 PMCID: PMC9027387 DOI: 10.3390/nano12081262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
Abstract
Early diagnosis of cancer is of paramount significance for the therapeutic intervention of cancers. Although the detection of circulating cell-free DNA (cfDNA) has emerged as a promising, minimally invasive approach for early cancer diagnosis, there is an urgent need to develop a highly sensitive and rapid method to precisely identify plasma cfDNA from clinical samples. Herein, we report a robust fluorescent "turn-on" clutch probe based on non-emissive QDs-Ru complexes to rapidly recognize EGFR gene mutation in plasma cfDNA from lung cancer patients. In this system, the initially quenched emission of QDs is recovered while the red emission of Ru(II) complexes is switched on. This is because the Ru(II) complexes can specifically intercalate into the double-stranded DNA (dsDNA) to form Ru-dsDNA complexes and simultaneously liberate free QDs from the QDs-Ru complexes, which leads to the occurrence of an overlaid red fluorescence. In short, the fluorescent "turn-on" clutch probe offers a specific, rapid, and sensitive paradigm for the recognition of plasma cfDNA biomarkers from clinical samples, providing a convenient and low-cost approach for the early diagnosis of cancer and other gene-mutated diseases.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Lixin Xu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Mingrui Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| |
Collapse
|
32
|
Wang Q, Zhang Z, Yang T, Han Y, Cheng Y, Wu J, Bai J, Ma C, Niu Y, Shuang S. Multiple fluorescence quenching effects mediated fluorescent sensing of captopril Based on amino Acids-Derivative carbon nanodots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120742. [PMID: 34952441 DOI: 10.1016/j.saa.2021.120742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Carbon nanodots (CNDs) were facilely synthesized through a pyrolysis procedure with histamine, an amino acid rich in element carbon and nitrogen, being the precursor. Taking advantage of the favorable fluorescence performance of CNDs, a multiple fluorescence quenching effects mediated fluorescent sensor was established for captopril (CAP) detection. MnO2 NPs were firstly combined with CNDs via electrostatic attraction and subsequently quenched the fluorescence. The quenching mechanisms were concluded to be the combined effects of fluorescence resonance energy transfer (FRET) and inner filtration effect (IFE). Subsequently CAP triggered a unique redox reaction and decomposed the quencher so that renewed the fluorescence. Hence, the sensitive and selective detection of CAP was achieved through the indication of fluorescence recovery efficiency. A proportional range of 0.4 ∼ 60 μmol L-1 with the LOD of 0.31 μmol L-1 was obtained. The sensor was further applied to the real sample detection and the satisfactory results revealed the practical value of CNDs. The facile synthesis of CNDs and brand-new sensing mechanism made it a novel fluorescent method and could improve the analysis of CAP.
Collapse
Affiliation(s)
- Qi Wang
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China.
| | - Ziru Zhang
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Tian Yang
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Yejiao Han
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Ying Cheng
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Jiana Wu
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Jingjing Bai
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Chunlei Ma
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Yulan Niu
- Chemistry & Chemical Engineering Department, Department of Environment and Safety Engineering, Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
33
|
Robust and selective electrochemical sensing of hazardous photographic developing agents using a MOF-derived 3D porous flower-like Co3O4@C/graphene nanoplate composite. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
de Carvalho Lima EN, Octaviano ALM, Piqueira JRC, Diaz RS, Justo JF. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. Int J Nanomedicine 2022; 17:751-781. [PMID: 35241912 PMCID: PMC8887185 DOI: 10.2147/ijn.s341890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the world has faced an unprecedented pandemic crisis due to a new coronavirus disease, coronavirus disease-2019 (COVID-19), which has instigated intensive studies on prevention and treatment possibilities. Here, we investigate the relationships between the immune activation induced by three coronaviruses associated with recent outbreaks, with special attention to SARS-CoV-2, the causative agent of COVID-19, and the immune activation induced by carbon nanotubes (CNTs) to understand the points of convergence in immune induction and modulation. Evidence suggests that CNTs are among the most promising materials for use as immunotherapeutic agents. Therefore, this investigation explores new possibilities of effective immunotherapies for COVID-19. This study aimed to raise interest and knowledge about the use of CNTs as immunotherapeutic agents in coronavirus treatment. Thus, we summarize the most important immunological aspects of various coronavirus infections and describe key advances and challenges in using CNTs as immunotherapeutic agents against viral infections and the activation of the immune response induced by CNTs, which can shed light on the immunotherapeutic possibilities of CNTs.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| | - Ana Luiza Moraes Octaviano
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| |
Collapse
|
35
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [PMID: 35060567 DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbon dots (CDs) have received extensive attention in the last decade for their excellent optical, chemical and biological properties. In recent years, CD composites have also received significant attention due to their ability to improve the intrinsic properties and expand the application scope of CDs. In this article, the synthesis processes of four types of CD composites (metal-CD, nonmetallic inorganics-CD, and organics-CD as well as multi-components-CD composites) are systematically summarized first. Then the recent advancements in the bioapplications (bioimaging, drug delivery and biosensing) of these composites are also highlighted and discussed. Last, the current challenges and future trends of CD composites in biomedical fields are discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
36
|
Yusuf VF, Atulbhai SV, Bhattu S, Malek NI, Kailasa SK. Recent developments on carbon dots-based green analytical methods: New opportunities in fluorescence assay of pesticides, drugs and biomolecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj01401g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots (CDs) grabs huge attention in analytical and bioanalytical applications due to their high selectivity towards target analyte, specificity, photostability, and quantum yield. Cost-effective and biocompatible properties of...
Collapse
|
37
|
Ranjan P, Yadav S, Sadique MA, Khan R, Chaurasia JP, Srivastava AK. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors. BIOSENSORS 2021; 11:414. [PMID: 34821629 PMCID: PMC8615372 DOI: 10.3390/bios11110414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications. Since they have a large surface area, high conductivity, stability, and functionality, they are promising in biosensor applications. Nevertheless, the combination of ionic liquids (ILs) and carbon nanomaterials (CNMs) results in the functional ILs-CNMs hybrid nanocomposites with considerably improved surface chemistry and electrochemical properties. Moreover, the high functionality and biocompatibility of ILs favor the high loading of biomolecules on the electrode surface. They extremely enhance the sensitivity of the biosensor that reaches the ability of ultra-low detection limit. This review aims to provide the studies of the synthesis, properties, and bonding of functional ILs-CNMs. Further, their electrochemical sensors and biosensor applications for the detection of numerous analytes are also discussed.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
| | - Raju Khan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamana Prasad Chaurasia
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish Kumar Srivastava
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
38
|
Miao Q, Qi J, Li Y, Fan X, Deng D, Yan X, He H, Luo L. Anchoring zinc-doped carbon dots on a paper-based chip for highly sensitive fluorescence detection of copper ions. Analyst 2021; 146:6297-6305. [PMID: 34550118 DOI: 10.1039/d1an01268a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, zinc-doped carbon dots (Zn-CDs) were anchored on a three-dimensional wheel type paper-based microfluidic chip, and were decorated with 6-mercaptonicotinic acid (MNA) and L-cysteine (L-Cys) for highly sensitive and rapid fluorescence detection of Cu2+. Zn-CDs were first anchored on paper through the amide bonds between the carboxyl groups of the Zn-CDs and the amino groups of the paper. Afterwards, Zn-CDs were decorated with MNA and L-Cys, effectively preventing the Zn-CDs from aggregation. The nitrogen atom on the pyridine ring and the carboxylic acid groups in MNA and L-Cys coordinated with Cu2+ to form a nonfluorescent ground-state complex, causing the fluorescence quenching of the Zn-CDs. The three-dimensional rotary design could simplify the operation process and achieve simultaneous analysis of multiple samples with different concentrations. Under optimal conditions, the fluorescent sensor exhibits linear response for the determination of Cu2+ in the range from 0.1 to 60 μg L-1 with the detection limit (LOD) of 0.018 μg L-1. The proposed strategy provides a novel way for the highly sensitive detection of Cu2+ in a complex water environment.
Collapse
Affiliation(s)
- Qinglan Miao
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yuanyuan Li
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Xinxia Fan
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Xiaoxia Yan
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Haibo He
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|