1
|
Raghavan P, Perez CA, Sorrentino TA, Kading JC, Finbloom JA, Desai TA. Physicochemical Design of Nanoparticles to Interface with and Degrade Neutrophil Extracellular Traps. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8862-8874. [PMID: 39884672 PMCID: PMC11826501 DOI: 10.1021/acsami.4c17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Neutrophil extracellular traps (NETs) are networks of decondensed chromatin, histones, and antimicrobial proteins released by neutrophils in response to an infection. NET overproduction can cause an exacerbated hyperinflammatory response in a variety of diseases and can lead to host tissue damage without clearance of infection. Nanoparticle drug delivery is a promising avenue for creating materials that can both target NETs and deliver sustained amounts of NET-degrading drugs to alleviate hyperinflammation. Here, we study how particle physicochemical properties can influence NET interaction and leverage our findings to create NET-interfacing and NET-degrading particles. We fabricated a panel of particles of varying sizes (200 to 1000 nm) and charges (positive, neutral, negative) and found that positive charge is the main driver of NET-particle interaction, with smaller 200 nm positive particles having a 10-fold increase in binding compared to larger 1000 nm positive particles. Negative and neutral particles were mostly noninteracting, except for small negatively charged particles that exhibited very low levels of NET localization. Interaction strength of particles with NETs was quantified via shear flow assays and atomic force microscopy. This information was leveraged to create DNase-loaded particles that could adhere to NETs at varying degrees and therefore degrade NETs at different rates in vitro. Positively charged, 200 nm DNase-loaded particles showed the highest degree of interaction with NETs and therefore led to faster degradation compared with larger sizes, underscoring the importance of physicochemical design for NET-targeting drug delivery. Overall, this work provides fundamental knowledge of the drivers of particle-NET interaction and a basis for designing NET-targeting particles for various disease states.
Collapse
Affiliation(s)
- Preethi Raghavan
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cynthia A. Perez
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Thomas A. Sorrentino
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jacqueline C. Kading
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Joel A. Finbloom
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tejal A. Desai
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
2
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
3
|
Li Y, Yang T, Jiang B. Neutrophil and neutrophil extracellular trap involvement in neutrophilic asthma: A review. Medicine (Baltimore) 2024; 103:e39342. [PMID: 39183388 PMCID: PMC11346896 DOI: 10.1097/md.0000000000039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.
Collapse
Affiliation(s)
- Yuemu Li
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Tianyi Yang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Baihua Jiang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| |
Collapse
|
4
|
Wang J, Wang Y, Li J, Ying J, Mu Y, Zhang X, Zhou X, Sun L, Jiang H, Zhuo W, Shen Y, Zhou T, Liu X, Zhou Q. Neutrophil Extracellular Traps-Inhibiting and Fouling-Resistant Polysulfoxides Potently Prevent Postoperative Adhesion, Tumor Recurrence, and Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400894. [PMID: 38636448 DOI: 10.1002/adma.202400894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment.
Collapse
Affiliation(s)
- Jiafeng Wang
- Department of Pharmacology, and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yechun Wang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Junjun Li
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jiajia Ying
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yongli Mu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xuanhao Zhang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xuefei Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Leimin Sun
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Wei Zhuo
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tianhua Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Xiangrui Liu
- Department of Pharmacology, and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Quan Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
5
|
Liang Y, Wu G, Tan J, Xiao X, Yang L, Saw PE. Targeting NETosis: nature's alarm system in cancer progression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:28. [PMID: 39143953 PMCID: PMC11322967 DOI: 10.20517/cdr.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Neutrophils are recognized active participants in inflammatory responses and are intricately linked to cancer progression. In response to inflammatory stimuli, neutrophils become activated, releasing neutrophils extracellular traps (NETs) for the capture and eradication of pathogens, a phenomenon termed NETosis. With a deeper understanding of NETs, there is growing evidence supporting their role in cancer progression and their involvement in conferring resistance to various cancer therapies, especially concerning tumor reactions to chemotherapy, radiation therapy (RT), and immunotherapy. This review summarizes the roles of NETs in the tumor microenvironment (TME) and their mechanisms of neutrophil involvement in the host defense. Additionally, it elucidates the mechanisms through which NETs promote tumor progression and their role in cancer treatment resistance, highlighting their potential as promising therapeutic targets in cancer treatment and their clinical applicability.
Collapse
Affiliation(s)
- Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
- Authors contributed equally
| | - Guo Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
- Authors contributed equally
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Linbin Yang
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
| |
Collapse
|
6
|
Huang L, Tan X, Xuan W, Luo Q, Xie L, Xi Y, Li R, Li L, Li F, Zhao M, Jiang Y, Wu X. Ficolin-A/2 Aggravates Severe Lung Injury through Neutrophil Extracellular Traps Mediated by Gasdermin D-Induced Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:989-1006. [PMID: 38442803 DOI: 10.1016/j.ajpath.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influenced NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of Fcna, but not Fcnb, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in Fcna knockout mice. In vitro, neutrophils derived from Fcna-/- mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, GSDMD knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas Fcn2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D-mediated pyroptosis.
Collapse
Affiliation(s)
- Li Huang
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiaowu Tan
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Luo
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Xie
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunzhu Xi
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Rong Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Feifan Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiyun Zhao
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongliang Jiang
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Xu Wu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Qin W, Li Y, Cui J, Yu B, Yu L, Yang C. Neutrophil extracellular traps as a unique target in the treatment of inflammatory pain. Biochem Biophys Res Commun 2024; 710:149896. [PMID: 38604072 DOI: 10.1016/j.bbrc.2024.149896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Pain is a widespread motivation for seeking healthcare and stands as a substantial global public health concern. Despite comprehensive investigations into the mechanisms of pain sensitization induced by inflammation, efficacious treatments options remain scarce. Neutrophil extracellular traps (NETs) have been associated with the progression and tissue damage of diverse inflammatory diseases. This study aims to explore the impact of NETs on the progression of inflammatory pain and explore potential therapeutic approaches. Initially, we observed neutrophil infiltration and the formation of NETs in the left hind paw of mice with inflammatory pain induced by complete Freund's adjuvant (CFA). Furthermore, we employed the peptidyl arginine deiminase 4 (PAD4) inhibitor Cl-amidine (diluted at 50 mg/kg in saline, administered via tail vein injection once daily for three days) to impede NETs formation and administered DNase1 (diluted at 10 mg/kg in saline, once daily for three days) to break down NETs. We investigated the pathological importance of peripheral NETs formation in inflammatory pain and its influence on the activation of spinal dorsal horn microglia. The findings indicate that neutrophils infiltrating locally generate NETs, leading to an increased release of inflammatory mediators that worsen peripheral inflammatory reactions. Consequently, this results in the transmission of more harmful peripheral stimuli to the spinal cord, triggering microglial activation and NF-κB phosphorylation, thereby escalating neuroinflammation and fostering pain sensitization. Suppression of peripheral NETs can mitigate peripheral inflammation in mice with inflammatory pain, reverse mechanical and thermal hypersensitivity by suppressing microglial activation in the spinal cord, ultimately diminishing inflammatory pain. In conclusion, these discoveries propose that obstructing or intervening with NETs introduces a novel therapeutic avenue for addressing inflammatory pain.
Collapse
Affiliation(s)
- Wanxiang Qin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Department of Pain Medicine, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Yuping Li
- Department of Pain Medicine, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Jian Cui
- Department of Pain Medicine, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Bao Yu
- College of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Congwen Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Kwak SB, Kim SJ, Kang YJ, Lee WW, Huh J, Park JW. Development of a rectally administrable Dnase1 to treat septic shock by targeting NETs. Life Sci 2024; 342:122526. [PMID: 38417543 DOI: 10.1016/j.lfs.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
AIMS Neutrophil extracellular trap (NET), which is formed by DNA threads, induces septic shock by aggravating systemic inflammation. An intravenous administration of deoxyribonuclease is regarded as a compelling modality for treating septic shock. However, alternative routes should be chosen when cutaneous veins are all collapsed due to hypotension. In this study, we genetically engineered this enzyme to develop a rectal suppository formulation to treat septic shock. MAIN METHODS Dnase1 was mutated at two amino acid residues to increase its stability in the blood and fused with a cell-penetrating peptide CR8 to increase its absorption through the rectal mucosa, which is designated AR-CR8. The life-saving effect of AR-CR8 was evaluated in a LPS-induced shock mouse model. KEY FINDINGS AR-CR8 was shown to remove NETs effectively in human neutrophils. When AR-CR8 was administered to the mouse rectum, the deoxyribonuclease activity in the mouse serum was significantly increased. In the LPS-induced shock model, 90 % of the control mice died over 72 h after LPS injection. In contrast, the rectal administration of AR-CR8 showed a mortality rate of 30 % by 72 h after LPS injection. The Log-rank test revealed that the survival rate is significantly higher in the AR-CR8 group. The NET markers in the mouse serum were enhanced by LPS, and significantly downregulated in the AR-CR8 group. These results suggest that AR-CR8 ameliorates LPS-induced shock by degrading NETs. SIGNIFICANCE The engineered DNASE1 could be developed as a rectal suppository formulation to treat septic shock urgently at out-of-hospital places where no syringe is available.
Collapse
Affiliation(s)
- Su-Bin Kwak
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sang-Jin Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation, Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation, Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Biomedical Science, BK21-plus education program, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
9
|
Mengozzi L, Barison I, Malý M, Lorenzoni G, Fedrigo M, Castellani C, Gregori D, Malý P, Matěj R, Toušek P, Widimský P, Angelini A. Neutrophil Extracellular Traps and Thrombolysis Resistance: New Insights for Targeting Therapies. Stroke 2024; 55:963-971. [PMID: 38465650 PMCID: PMC10962437 DOI: 10.1161/strokeaha.123.045225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Thrombosis is linked to neutrophil release of neutrophil extracellular traps (NETs). NETs are proposed as a mechanism of resistance to thrombolysis. This study intends to analyze the composition of thrombi retrieved after mechanical thrombectomy, estimate the age and organization of thrombi, and evaluate associations with the use of thrombolysis, antiplatelets, and heparin. METHODS This retrospective observational study involved 72 samples (44 from cerebral and 28 coronary arteries), which were stained with hematoxylin and eosin, anti-NE (neutrophil elastase) antibody, and anti-histone H2B (histone H2B) antibody, representing different components in NET formation, all detectable during the later stages of NETosis, for histochemical and digital quantification of NET content. The histological and morphological evaluations of the specimens were correlated, through univariate and mediation analyses, with clinical information and therapy administered before intervention. RESULTS The results demonstrated that the composition of cerebral and coronary thrombi differs, and there were significantly more lytic cerebral thrombi than coronary thrombi (66% versus 14%; P=0.005). There was a considerably higher expression of NETs in the cerebral thrombi as testified by the higher expression of H2B (P=0.031). Thrombolysis was remarkably associated with higher NE positivity (average marginal effect, 6.461 [95% CI, 0.7901-12.13]; P=0.02555), regardless of the origin of thrombi. There was no notable association between the administration of antiaggregant therapy/heparin and H2B/NE amount when adjusted for the thrombus location. Importantly, the age of the thrombus was the only independent predictor of NET content without any mediation of the thrombolytic treatment (P=0.014). CONCLUSIONS The age of the thrombus is the driving force for NET content, which correlates with impaired clinical outcomes. The therapy that is currently administered does not modify NET content. This study supports the need to investigate new pharmacological approaches added to thrombolysis to prevent NET formation or enhance their disruption, such as recombinant human DNase I (deoxyribonuclease I).
Collapse
Affiliation(s)
- Luca Mengozzi
- Cardiac Centre (L.M., P.T., P.W.), Charles University, Czechia
| | - Ilaria Barison
- Cardiovascular Pathology (I.B., M.F., C.C., A.A.), Department of Pathology, Cardiac, Thoracic and Vascular Sciences, Public Health, University of Padua, Italy
| | - Martin Malý
- Third Faculty of Medicine and University Hospital Královské Vinohrady, Military University Hospital in Prague, First Faculty of Medicine (M.M., P.M.), Charles University, Czechia
| | - Giulia Lorenzoni
- Unit of Biostatistics, Epidemiology, and Public Health (G.L., D.G.), Department of Pathology, Cardiac, Thoracic and Vascular Sciences, Public Health, University of Padua, Italy
| | - Marny Fedrigo
- Cardiovascular Pathology (I.B., M.F., C.C., A.A.), Department of Pathology, Cardiac, Thoracic and Vascular Sciences, Public Health, University of Padua, Italy
| | - Chiara Castellani
- Cardiovascular Pathology (I.B., M.F., C.C., A.A.), Department of Pathology, Cardiac, Thoracic and Vascular Sciences, Public Health, University of Padua, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology, and Public Health (G.L., D.G.), Department of Pathology, Cardiac, Thoracic and Vascular Sciences, Public Health, University of Padua, Italy
| | - Petr Malý
- Third Faculty of Medicine and University Hospital Královské Vinohrady, Military University Hospital in Prague, First Faculty of Medicine (M.M., P.M.), Charles University, Czechia
| | - Radoslav Matěj
- Department of Pathology (R.M.), Charles University, Czechia
| | - Petr Toušek
- Cardiac Centre (L.M., P.T., P.W.), Charles University, Czechia
| | - Petr Widimský
- Cardiac Centre (L.M., P.T., P.W.), Charles University, Czechia
| | - Annalisa Angelini
- Cardiovascular Pathology (I.B., M.F., C.C., A.A.), Department of Pathology, Cardiac, Thoracic and Vascular Sciences, Public Health, University of Padua, Italy
| |
Collapse
|
10
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
12
|
Liu S, Liu M, Xiu J, Zhang T, Zhang B, Cun D, Yang C, Li K, Zhang J, Zhao X. Celastrol-loaded bovine serum albumin nanoparticles target inflamed neutrophils for improved rheumatoid arthritis therapy. Acta Biomater 2024; 174:345-357. [PMID: 38013018 DOI: 10.1016/j.actbio.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Inflammatory neutrophils (INEs), motivated by cytokines, continue to migrate into the inflamed joints, driving the development of RA. Hence, inducing apoptosis of INEs to reduce recruitment at inflamed joints is an effective strategy for the treatment of RA. However, simply apoptotic INEs may trigger the release of neutrophil extracellular traps (NETs) and accelerate the inflammatory process. To overcome these drawbacks, an RGD-modified bovine serum albumin (BSA) nanoparticles (CBR NPs) was fabricated to selectively target INEs in situ for intracellular delivery of CLT. Studies have demonstrated that CBR NPs can selectively target circulating INEs and induce INEs apoptosis. Meanwhile, CBR NPs inhibited the activation of NETs via NF-κB pathway and the release of Cit-H3 thereby blocking the release process of NETs. In collagen-induced arthritis (CIA) mouse model, CBR NPs suppressed the inflammatory response, and reduced the toxic effects of CLT. In summary, this study shed light on an innovative approach to treat RA by inducing apoptosis of circulating INEs and inhibiting NETs. STATEMENT OF SIGNIFICANCE: RGD-modified bovine serum albumin (BSA) nanoparticles for delivering celastrol, abbreviated as CBR NPs, were constructed to inhibit the infiltration of circulating inflammatory neutrophils (INEs) into inflamed joints while inhibiting the release of NETs to alleviate tissue damage. CBR NPs were prepared for the first time to induce apoptosis of INEs; CBR NPs could inhibit the release of NETs while inducing apoptosis of INEs in vivo and vitro cellular experiments; CBR NPs had favorable anti-inflammatory effects and low toxicity side-effects in collagen-induced arthritis (CIA) mouse models. The application of nanotechnology to induce apoptosis of INEs while inhibiting the release of NETs was a promising approach for the treatment of RA.
Collapse
Affiliation(s)
- Siyi Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Min Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Jingya Xiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Tian Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Bowen Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Dongyun Cun
- Department of Hepatopancreatobiliary Surgery, The Second Afliated Hospital of Kunming Medical University, Kunming 650101, PR China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515000, PR China
| | - Kexin Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Jiulong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China.
| | - Xiuli Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China.
| |
Collapse
|
13
|
Li Z, Yuan T. Neutrophil extracellular traps in adult diseases and neonatal bacterial infectious diseases: A review. Heliyon 2024; 10:e23559. [PMID: 38173520 PMCID: PMC10761809 DOI: 10.1016/j.heliyon.2023.e23559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Neutrophils, the most abundant type of white blood cells, are pivotal in fighting bacterial infections due to their immunological and anti-infection capabilities. In recent years, scientists have discovered a novel mechanism known as neutrophil extracellular traps, which are fibrous networks primarily released by neutrophils that combat bacterial infections. There is a growing interest in studying NETs and their role in human infectious diseases, particularly in neonates susceptible to bacterial infections. NETs and their components have been found in various samples from neonatal-infected patients, providing a new route for early diagnosis of neonatal infectious diseases. This paper aims to summarize the studies on NETs in adult diseases and mainly discuss NETs in neonatal sepsis, necrotizing enterocolitis, and purulent meningitis, to provide scientific evidence for early monitoring, diagnosis, and treatment of neonatal infections.
Collapse
Affiliation(s)
- Ziheng Li
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| |
Collapse
|
14
|
Wang N, Ma J, Song W, Zhao C. An injectable hydrogel to disrupt neutrophil extracellular traps for treating rheumatoid arthritis. Drug Deliv 2023; 30:2173332. [PMID: 36724178 PMCID: PMC9897762 DOI: 10.1080/10717544.2023.2173332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease, is characterized by inflammatory cell infiltration that damages cartilage, disrupts bone, and impairs joint function. The therapeutic efficacy of RA treatments with the severely affected side remains unsatisfactory despite current treatment methods that primarily focus on anti-inflammatory activity, largely because of the complicatedly pathological mechanisms. A recently identified mechanism for RA development involves the interaction of RA autoantibodies with various proinflammatory cytokines to facilitate the formation of neutrophil extracellular traps (NETs), which increased inflammatory responses to express inflammatory cytokines and chemokines. Therefore, NETs architecture digestion may inhibit the positive-feedback inflammatory signal pathway and lessen joint damage in RA. In this work, deoxyribonuclease I (DNase) is connected to oxidized hyaluronic acid (OHA) via Schiff base reaction to extend the half-life of DNase. The modification does not influence the DNase activity for plasmid deoxyribonucleic acid hydrolysis and NETs' architecture disruption. Carboxymethyl chitosan is crosslinked with DNase-functionalised OHA (DHA) to form an injectable, degradable, and biocompatible hydrogel (DHY) to further strengthen the adhesive capability of DHA. Importantly, the collagen-induced arthritis model demonstrates that intra-articular injection of DHY can significantly reduce inflammatory cytokine expression and alleviate RA symptoms, which can be significantly improved by combining methotrexate. Here, a DNase-functionalised hydrogel has been developed for RA treatment by constantly degrading the novel drug target of NETs to decrease inflammatory response in RA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Ma
- Department of Clinical pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wenxia Song
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Chengwu Zhao
- Department of Sports Medicine, The First Hospital of Jilin University, Changchun, China,CONTACT Chengwu Zhao Department of Sports Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Liu J, Zhang S, Jing Y, Zou W. Neutrophil extracellular traps in intracerebral hemorrhage: implications for pathogenesis and therapeutic targets. Metab Brain Dis 2023; 38:2505-2520. [PMID: 37486436 DOI: 10.1007/s11011-023-01268-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Intracerebral hemorrhage is a common neurological disease, and its pathological mechanism is complex. As the first recruited leukocyte subtype after intracerebral hemorrhage, neutrophils play an important role in tissue damage. In the past, it was considered that neutrophils performed their functions through phagocytosis, chemotaxis, and degranulation. In recent years, studies have found that neutrophils also have the function of secreting extracellular traps. Extracellular traps are fibrous structure composed of chromatin and granular proteins, which plays an important role in innate immunity. Studies have shown a large number of neutrophil extracellular traps in hematoma samples, plasma samples, and drainage samples after intracerebral hemorrhage. In this paper, we summarized the related mechanisms of neutrophil external traps and injury after intracerebral hemorrhage. Neutrophil extracellular traps are involved in the process of brain injury after intracerebral hemorrhage. The application of related inhibitors to inhibit the formation of neutrophil external traps or promote their dissolution can effectively alleviate the pathological damage caused by intracerebral hemorrhage.
Collapse
Affiliation(s)
- Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yunnan Jing
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
16
|
Zeng J, Wang Y, Zhu M, Wu M, Zhou Y, Wang Q, Xu Y, Lin F, Wang J, Li Y, Liang S, Wang Z, Xie L, Liu X. Neutrophil extracellular traps boost laser-induced mouse choroidal neovascularization through the activation of the choroidal endothelial cell TLR4/HIF-1α pathway. FEBS J 2023; 290:5395-5410. [PMID: 37552110 DOI: 10.1111/febs.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Choroidal neovascularization (CNV) is characterized by the infiltration of immune cells, particularly neutrophils. Neutrophil extracellular trap (NET) facilitates the angiogenesis of pulmonary endothelial cells via activating Toll-like receptor 4 (TLR4). TLR4 promotes the expression of transcription factor hypoxia inducible factor-1α (HIF-1α), which promotes inflammation and angiogenesis via the up-regulation of metalloproteinase-9 (MMP-9) and interleukin-1β (IL-1β). In the present study, we aimed to identify the formation of NET and its role in CNV. Our results showed that NET levels were increased in a mouse laser-induced CNV model via oxidative stress, whereas the inhibition of NET alleviated CNV. In vitro, NET activated the TLR4/HIF-1α pathway in human choroidal endothelial cells (HCECs). Additionally, NET increased the transcription and expression of MMP-9 and IL-1β in HCECs via activating the TLR4/HIF-1α pathway. Meanwhile, NET promoted the inflammatory response accompanied by the proliferation, migration and tube formation of HCECs in a MMP-9- and IL-1β-dependent manner. In conclusion, NET was up-regulated in CNV and promoted the formation of CNV via activating the TLR4/HIF-1α pathway in choroidal endothelial cells. Our data uncovered the novel role of NET in promoting the formation of CNV. The underlying mechanism of NET could be targeted to delay the process of CNV.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Manhui Zhu
- Department of Pathology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Min Wu
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Qiaoyun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqian Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Lin
- Medical College, Nantong University, China
| | - Jiaqi Wang
- Medical College, Nantong University, China
| | - Yuxuan Li
- Medical College, Nantong University, China
| | | | - Ziyu Wang
- Medical College, Nantong University, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, China
| |
Collapse
|
17
|
Yadav R, Momin A, Godugu C. DNase based therapeutic approaches for the treatment of NETosis related inflammatory diseases. Int Immunopharmacol 2023; 124:110846. [PMID: 37634446 DOI: 10.1016/j.intimp.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Neutrophils are the primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils limit pathogen transmission is NETosis, which includes releasing the nuclear content into the cytosol by forming pores in the plasma membrane. The extrusion of cellular deoxyribonucleic acid (DNA) results in neutrophil extracellular traps (NETs) composed of nuclear DNA associated with histones and granule proteins. NETosis is driven by the enzyme PAD-4 (Peptidylarginine deiminase-4), which converts arginine into citrulline, leading to decondensation of chromatin, separation of DNA, and eventual extrusion. DNase is responsible for the breakdown of NETs. On the one hand, the release of DNase may interfere with the antibacterial effects of NETs; further, DNase may protect tissues from self-destruction caused by the increased release of NET under septic conditions. NETs in physiological quantities are expected to have a role in anti-infectious innate immune responses. In contrast, abnormally high concentrations of NETs in the body that are not adequately cleared by DNases can damage tissues and cause inflammation. Through several novel approaches, it is now possible to avoid the adverse effects caused by the continued release of NETs into the extracellular environment. In this review we have highlighted the basic mechanisms of NETosis, its significance in the pathogenesis of various inflammatory disorders, and the role of DNase enzyme with a focus on the possible function of nanotechnology in its management.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Alfiya Momin
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
18
|
Zhu Z, Lu H, Jin L, Gao Y, Qian Z, Lu P, Tong W, Lo PK, Mao Z, Shi H. C-176 loaded Ce DNase nanoparticles synergistically inhibit the cGAS-STING pathway for ischemic stroke treatment. Bioact Mater 2023; 29:230-240. [PMID: 37502677 PMCID: PMC10371767 DOI: 10.1016/j.bioactmat.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
The neuroinflammatory responses following ischemic stroke cause irreversible nerve cell death. Cell free-double strand DNA (dsDNA) segments from ischemic tissue debris are engulfed by microglia and sensed by their cyclic GMP-AMP synthase (cGAS), which triggers robust activation of the innate immune stimulator of interferon genes (STING) pathway and initiate the chronic inflammatory cascade. The decomposition of immunogenic dsDNA and inhibition of the innate immune STING are synergistic immunologic targets for ameliorating neuroinflammation. To combine the anti-inflammatory strategies of STING inhibition and dsDNA elimination, we constructed a DNase-mimetic artificial enzyme loaded with C-176. Nanoparticles are self-assembled by amphiphilic copolymers (P[CL35-b-(OEGMA20.7-co-NTAMA14.3)]), C-176, and Ce4+ which is coordinated with nitrilotriacetic acid (NTA) group to form corresponding catalytic structures. Our work developed a new nano-drug that balances the cGAS-STING axis to enhance the therapeutic impact of stroke by combining the DNase-memetic Ce4+ enzyme and STING inhibitor synergistically. In conclusion, it is a novel approach to modulating central nervus system (CNS) inflammatory signaling pathways and improving stroke prognosis.
Collapse
Affiliation(s)
- Zhixin Zhu
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haipeng Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pan Lu
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
| |
Collapse
|
19
|
Chen XQ, Tu L, Tang Q, Zou JS, Yun X, Qin YH. DNase I targeted degradation of neutrophil extracellular traps to reduce the damage on IgAV rat. PLoS One 2023; 18:e0291592. [PMID: 37906560 PMCID: PMC10617705 DOI: 10.1371/journal.pone.0291592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/30/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND In the past two years, studies have found a significant increase in neutrophil extracellular traps (NETs) in patients with IgA vasculitis (IgAV), which is correlated with the severity of the disease. NETs have been reported as an intervention target in inflammatory and autoimmune diseases. This study aimed to investigate the effect of targeted degradation of NETs using DNase I in IgAV rat model. METHODS Twenty-four Sprague-Dawley rats were randomly divided into three groups: the IgAV model group, the DNase I intervention group and the normal control group, with an average of 8 rats in each group. The model group was established by using Indian ink, ovalbumin, and Freund's complete adjuvant. In the intervention group, DNase I was injected through tail vein 3 days before the end of established model. The circulating cell free-DNA (cf-DNA) and myeloperoxidase-DNA (MPO-DNA) were analyzed. The presence of NETs in the kidney, gastric antrum and descending duodenum were detected using multiple fluorescences immunohistochemistry and Western blots. Morphological changes of the tissues were observed. RESULTS After the intervention of DNase I, there was a significant reduction in cf-DNA and MPO-DNA levels in the intervention group compared to the IgAV model group (all P<0.001). The presence of NETs in renal, gastric, and duodenal tissues of the intervention group exhibited a significant decrease compared to the IgAV model group (P < 0.01). Moreover, the intervention group demonstrated significantly lower levels of renal MPO and citrullinated histone H3 (citH3) protein expression when compared to the IgAV model group (all P < 0.05). The HE staining results of intervention group demonstrated a significant reduction in congestion within glomerular and interstitial capillaries. Moreover, there was a notable improvement in gastric and intestinal mucosa necrosis, congestion and bleeding. Additionally, there was a substantial decrease in inflammatory cells infiltration. CONCLUSION The degradation of NETs can be targeted by DNase I to mitigate tissue damage in IgAV rat models. Targeted regulation of NETs holds potential as a therapeutic approach for IgAV.
Collapse
Affiliation(s)
- Xiu-Qi Chen
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Li Tu
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Qing Tang
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jia-Sen Zou
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiang Yun
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yuan-Han Qin
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
21
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023:10.1038/s41423-023-01032-x. [PMID: 37198402 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
22
|
Hosseinnejad A, Ludwig N, Mersmann S, Winnerbach P, Bleilevens C, Rossaint R, Rossaint J, Singh S. Bioactive Nanogels Mimicking the Antithrombogenic Nitric Oxide-Release Function of the Endothelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205185. [PMID: 36635040 DOI: 10.1002/smll.202205185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Nitric oxide (NO) plays a significant role in controlling the physiology and pathophysiology of the body, including the endothelial antiplatelet function and therefore, antithrombogenic property of the blood vessels. This property of NO can be exploited to prevent thrombus formation on artificial surfaces like extracorporeal membrane oxygenators, which when come into contact with blood lead to protein adsorption and thereby platelet activation causing thrombus formation. However, NO is extremely reactive and has a very short biological half-life in blood, so only endogenous generation of NO from the blood contacting material can result into a stable and kinetically controllable local delivery of NO. In this regards, highly hydrophilic bioactive nanogels are presented which can endogenously generate NO in blood plasma from endogenous NO-donors thereby maintaining a physiological NO flux. It is shown that NO releasing nanogels could initiate cGMP-dependent protein kinase signaling followed by phosphorylation of vasodilator-stimulated phosphoprotein in platelets. This prevents platelet activation and aggregation even in presence of highly potent platelet activators like thrombin, adenosine 5'-diphosphate, and U46619 (thromboxane A2 mimetic).
Collapse
Affiliation(s)
- Aisa Hosseinnejad
- DWI-Leibniz-Institute for Interactive Materials e.V. Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149, Münster, Germany
| | - Patrick Winnerbach
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Bleilevens
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149, Münster, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials e.V. Forckenbeckstr. 50, 52056, Aachen, Germany
- Max-Planck-Institut für medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Zhao J, Zhen N, Zhou Q, Lou J, Cui W, Zhang G, Tian B. NETs Promote Inflammatory Injury by Activating cGAS-STING Pathway in Acute Lung Injury. Int J Mol Sci 2023; 24:ijms24065125. [PMID: 36982193 PMCID: PMC10049640 DOI: 10.3390/ijms24065125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) threatens the survival of critically ill patients, the mechanisms of which are still unclear. Neutrophil extracellular traps (NETs) released by activated neutrophils play a critical role in inflammatory injury. We investigated the role of NETs and the underlying mechanism involved in acute lung injury (ALI). We found a higher expression of NETs and cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) in the airways, which was reduced by Deoxyribonuclease I (DNase I) in ALI. The administration of the STING inhibitor H-151 also significantly relieved inflammatory lung injury, but failed to affect the high expression of NETs in ALI. We isolated murine neutrophils from bone marrow and acquired human neutrophils by inducing HL-60 to differentiate. After the PMA interventions, exogenous NETs were obtained from such extracted neutrophils. Exogenous NETs intervention in vitro and in vivo resulted in airway injury, and such inflammatory lung injury was reversed upon degrading NETs with or inhibiting cGAS-STING with H-151 as well as siRNA STING. In conclusion, cGAS-STING participates in regulating NETs-mediated inflammatory pulmonary injury, which is expected to be a new therapeutic target for ARDS/ALI.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
| | - Ningxin Zhen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
| | - Qichao Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
| | - Jian Lou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
- Correspondence: (G.Z.); (B.T.)
| | - Baoping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
- Correspondence: (G.Z.); (B.T.)
| |
Collapse
|
24
|
Neutrophil Extracellular Traps in Airway Diseases: Pathological Roles and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24055034. [PMID: 36902466 PMCID: PMC10003347 DOI: 10.3390/ijms24055034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neutrophils are important effector cells of the innate immune response that fight pathogens by phagocytosis and degranulation. Neutrophil extracellular traps (NETs) are released into the extracellular space to defend against invading pathogens. Although NETs play a defensive role against pathogens, excessive NETs can contribute to the pathogenesis of airway diseases. NETs are known to be directly cytotoxic to the lung epithelium and endothelium, highly involved in acute lung injury, and implicated in disease severity and exacerbation. This review describes the role of NET formation in airway diseases, including chronic rhinosinusitis, and suggests that targeting NETs could be a therapeutic strategy for airway diseases.
Collapse
|
25
|
Shang B, Cui H, Xie R, Wu J, Shi H, Bi X, Feng L, Shou J. Neutrophil extracellular traps primed intercellular communication in cancer progression as a promising therapeutic target. Biomark Res 2023; 11:24. [PMID: 36859358 PMCID: PMC9977644 DOI: 10.1186/s40364-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
In addition to the anti-infection response, neutrophils are linked to tumor progression through the secretion of inflammation components and neutrophil extracellular traps (NETs) formation. NET is a web-like structure constituted by a chromatin scaffold coated with specific nuclear and cytoplasmic proteins, such as histone and granule peptides. Increasing evidence has demonstrated that NETs are favorable factors to promote tumor growth, invasion, migration, and immunosuppression. However, the cell-cell interaction between NETs and other cells (tumor cells and immune cells) is complicated and poorly studied. This work is the first review to focus on the intercellular communication mediated by NETs in cancer. We summarized the complex cell-cell interaction between NETs and other cells in the tumor microenvironment. We also address the significance of NETs as both prognostic/predictive biomarkers and molecular targets for cancer therapy. Moreover, we presented a comprehensive landscape of cancer immunity, improving the therapeutic efficacy for advanced cancer in the future.
Collapse
Affiliation(s)
- Bingqing Shang
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Honglei Cui
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Ruiyang Xie
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Jie Wu
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Hongzhe Shi
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Xingang Bi
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Lin Feng
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China.
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, PR, China.
| |
Collapse
|
26
|
Filipczak N, Li X, Saawant GR, Yalamarty SSK, Luther E, Torchilin VP. Antibody-modified DNase I micelles specifically recognize the neutrophil extracellular traps (NETs) and promote their degradation. J Control Release 2023; 354:109-119. [PMID: 36596341 DOI: 10.1016/j.jconrel.2022.12.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Neutrophil extracellular traps (NETs) are structures consisting of decondensed chromatin with associated proteins, including histones and antimicrobial peptides, released from activated neutrophils. They are believed to be one of the body's first lines of defense against infectious agents. Despite their beneficial effect on the immune response process, some studies indicate that their excessive formation and the associated accumulation of extracellular DNA (eDNA) together with other polyelectrolytes (F-actin) plays an important role in the pathogenesis of many diseases. Thus NETs formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity for intact nucleohistones (NS) and targets NS in NETs as we previously confirmed. Creation of a nano preparation that can specifically recognize and destroy NETs represents the aim for treatment many diseases. 2C5 antibody functionalized micelles coated with DNase I were created to achieve this aim.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Gaurav Rajan Saawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | - Ed Luther
- Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Garley M. Unobvious Neutrophil Extracellular Traps Signification in the Course of Oral Squamous Cell Carcinoma: Current Understanding and Future Perspectives. Cancer Control 2023; 30:10732748231159313. [PMID: 36814071 PMCID: PMC9950614 DOI: 10.1177/10732748231159313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Background: The current standards of treatment for oral squamous cell carcinoma (OSCC) include surgery, radiotherapy, and chemotherapy. In recent years, research on the effectiveness of immunotherapy in the treatment of OSCC has also been conducted.Purpose: Studies indicate that nonspecific immune mechanisms involved in the course of the anticancer response also need to be taken into account.Research Design: This review summarizes the results of our research on the active participation of neutrophils, which are previously underestimated, in the antitumor response in the course of OSCC, taking into account the ability of these cells to generate neutrophil extracellular traps (NETs).Results: We proved that the formation of NETs accompanies not only inflammatory changes but also the neoplastic process and that lipopolysaccharide (LPS) or interleukin 17 (IL-17) plays a critical role in inducing the formation of NETs during the OSCC. The greatest achievement of our published findings was the demonstration of the formation and release of NETs from neutrophils cocultured with tumor cells, as well as after stimulation with supernatant from the SCC culture with a PI3K-independent Akt kinase activation mechanism. Moreover, the pioneering achievement of our studies was the localization of NET structures in the tumor tissue, as well as the observation of high concentrations of NET markers in the serum of OSCC patients with low concentrations in the saliva, indicating the differences in the course of immune response between the periphery and the local reactions.Conclusions: The data presented here provide surprising but important information on the role of NETs in the course of OSCC, thus pointing to a promising new direction in the development of management strategies for early noninvasive diagnosis and monitoring of the disease course, and perhaps immunotherapy. Furthermore, this review raises further questions and elaborates on the process of NETosis in cancer.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of
Bialystok, Bialystok, Poland
| |
Collapse
|
28
|
Li S, Liu Y, Zhang T, Lin S, Shi S, He J, Xie Y, Cai X, Tian T, Lin Y. A Tetrahedral Framework DNA-Based Bioswitchable miRNA Inhibitor Delivery System: Application to Skin Anti-Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204287. [PMID: 35901292 DOI: 10.1002/adma.202204287] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Indexed: 02/05/2023]
Abstract
MicroRNA (miR)-based therapy shows strong potential; however, structural limitations pose a challenge in fully exploiting its biomedical functionality. Tetrahedral framework DNA (tFNA) has proven to be an ideal vehicle for miR therapy. Inspired by the ancient Chinese myth "Sun and Immortal Birds," a novel bioswitchable miR inhibitor delivery system (BiRDS) is designed with three miR inhibitors (the three immortal birds) and a nucleic acid core (the central sun). The BiRDS fuses miR inhibitors within the framework, maximizing their loading capacity, while allowing the system to retain the characteristics of small-sized tFNA and avoiding uncertainty associated with RNA exposure in traditional loading protocols. The RNase H-responsive sequence at the tail of each "immortal bird" enables the BiRDS to transform from a 3D to a 2D structure upon entering cells, promoting the delivery of miR inhibitors. To confirm the application potential, the BiRDS is used to deliver the miR-31 inhibitor, with antiaging effects on hair follicle stem cells, into a skin aging model. Superior skin penetration ability and RNA delivery are observed with significant anti-aging effects. These findings demonstrate the capability and editability of the BiRDS to improve the stability and delivery efficacy of miRs for future innovations.
Collapse
Affiliation(s)
- Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiyu Lin
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiajun He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
29
|
Fischer T, Tenbusch J, Möller M, Singh S. A facile method for grafting functional hydrogel films on PTFE, PVDF, and TPX polymers. SOFT MATTER 2022; 18:4315-4324. [PMID: 35621021 DOI: 10.1039/d2sm00313a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of polymeric materials in biomedical applications requires a judicious control of surface properties as they are directly related to cellular interactions and biocompatibility. The most desired chemical surface properties include hydrophilicity and the presence of functional groups for surface modification. In this work, we describe a method to graft a highly stable, ultra-thin, amine-functional hydrogel layer onto highly inert surfaces of poly(tetrafluoroethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and poly(4-methyl-1-pentene) (PMP or TPX). Covalent grafting is realized with hydrophilic poly(vinylamine-co-acetamide)s by C-H insertion crosslinking (CHic) chemistry initiated by UV light. These polyvinylamides carry tetrafluorophenyl azide groups as photo or thermo activated binding sites and contain further free amine groups, which can be used to bind peptides such as biological ligands, polysaccharides, or other hydrogel layers. The covalently bound surface layers resist intensive Soxhlet extraction confirming the stability of the coating. Fluorescent staining verified the accessibility of free primary amine groups, which can be used for the functionalization of the surface with bioactive molecules. The coating demonstrates hydrophobic wetting behavior when conditioned in air and hydrophilic wetting behavior when conditioned in water showing the presence of loosely crosslinked polymer chains that can re-orient. We believe that the reported application of CHic for the surface modification of fluorinated polymers like PTFE and PVDF as well as TPX can form the basis for advanced biocompatible and biofunctional surface engineering.
Collapse
Affiliation(s)
- Thorsten Fischer
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Jan Tenbusch
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
- Max-Planck-Institut für medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany.
| |
Collapse
|