1
|
Ueda Y, Kawabata T. Streamlined Synthesis of Ellagitannins: Site-Selective Functionalization of the Glucose Core and Stereodivergent Construction of the Hexahydroxydiphenoic Groups. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39465500 DOI: 10.1021/acs.jafc.4c07615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Ellagitannins are a class of plant polyphenols with a structural diversity of around 1000. Because those with attractive biological activities have been reported, synthetic studies have been performed. The purpose of this perspective is to provide an outlook toward future developments on ellagitannin chemistry and medicinal applications by overviewing synthetic studies. In particular, we summarize recent synthetic efforts of ellagitannins via functionalization of the glucose core and stereodivergent construction of the characteristic hydroxydiphenoic groups. The development of chemical probes utilizing natural ellagitannins is also introduced.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takeo Kawabata
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| |
Collapse
|
2
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Lu S, Zhang Z, Zhu Y, Tao Y, Lin Q, Zhang Q, Lv X, Hua L, Chen Z, Wang H, Zhuang GL, Zhang QC, Guo C, Li X, Yu X. Enhancing Effect of Fullerene Guest and Counterion on the Structural Stability and Electrical Conductivity of Octahedral Metallo-Supramolecular Cages. Angew Chem Int Ed Engl 2024; 63:e202410710. [PMID: 38949854 DOI: 10.1002/anie.202410710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Metallo-supramolecular cages have garnered tremendous attention for their diverse yet molecular-level precision structures. However, the physical properties of these supramolecular ensembles, which are of potential significance in molecular electronics, remain largely unexplored. We herein constructed a series of octahedral metallo-cages and cage-fullerene complexes with notably enhanced structural stability. As such, we could systematically evaluate the electrical conductivity of these ensembles at both the single-molecule level and aggregated bulk state (as well-defined films). Our findings reveal that counteranions and fullerene guests play a pivotal role in determining the electrical conductivity of the aggregated state, while such effects are less significant for single-molecule conductance. Both the counteranions and fullerenes effectively tune the electronic structures and packing density of metallo-supramolecular assemblies, and facilitate efficient charge transfer between the cage hosts and fullerenes, resulting in a notable one order of magnitude increase in the electrical conductivity of the aggregated state.
Collapse
Affiliation(s)
- Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ziang Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yiying Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ye Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Quanjie Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Qian Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xin Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Gui-Lin Zhuang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Qian-Chong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
4
|
Seilkop AG, Odoh AS, Coradi NJ, Wright JI, Barroso J, Kim B. Ammonium-Binding Bifunctional Aza-Crown Ether Catalysts for Substrate-Selective Hydroxyl Functionalization. J Org Chem 2024; 89:13338-13344. [PMID: 39229859 DOI: 10.1021/acs.joc.4c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Herein, we describe a new bifunctional macrocyclic catalyst that employs multiple weak noncovalent interactions to enable substrate-selective O-silylation of ammonium alcohols over more reactive aliphatic alcohols with up to >20:1 substrate selectivity. Our catalytic strategy merges (i) the use of crown ethers as ammonium-binding receptors and (ii) the exploitation of N-methyl imidazole as a catalytic motif. Our collective mechanistic studies reveal the importance of receptor size, conformational preorganization, and the number of hydrogen-bonding acceptor units needed to achieve high selectivity within the macrocyclic binding pocket.
Collapse
Affiliation(s)
- Austin G Seilkop
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Amaechi S Odoh
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Nicholas J Coradi
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jacob I Wright
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jorge Barroso
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
5
|
Syntrivanis LD, Tiefenbacher K. Reactivity Inside Molecular Flasks: Acceleration Modes and Types of Selectivity Obtainable. Angew Chem Int Ed Engl 2024:e202412622. [PMID: 39295476 DOI: 10.1002/anie.202412622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
There is increasing interest in the discovery and application of molecular flasks-supramolecular host structures capable of catalyzing organic reactions. Reminiscent of enzymes due to possessing a host cavity akin to an active site, molecular flasks can exhibit complex catalytic mechanisms and in many cases provide selectivity not achievable in bulk solvent. In this Review, we aim to organize the increasingly diverse examples through a two-part structure. In part one, we provide an overview of the different acceleration modes that operate within molecular flasks, while in part two we showcase, through selected examples, the different types of selectivity that are obtainable through the use of molecular flasks. Particular attention is given to examples that are relevant to current challenges in synthetic organic chemistry. We believe that this structure makes the field more approachable and thus will stimulate the development of novel applications of molecular flasks.
Collapse
Affiliation(s)
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| |
Collapse
|
6
|
Zhang Z, Lv X, Mu X, Zhao M, Wang S, Ke C, Ding S, Zhou D, Wang M, Zeng R. In-situ noncovalent interaction of ammonium ion enabled C-H bond functionalization of polyethylene glycols. Nat Commun 2024; 15:4445. [PMID: 38789453 PMCID: PMC11126569 DOI: 10.1038/s41467-024-48584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The noncovalent interactions of ammonium ion with multidentate oxygen-based host has never been reported as a reacting center in catalytic reactions. In this work, we report a reactivity enhancement process enabled by non-covalent interaction of ammonium ion, achieving the C-H functionalization of polyethylene glycols with acrylates by utilizing photoinduced co-catalysis of iridium and quinuclidine. A broad scope of alkenes can be tolerated without observing significant degradation. Moreover, this cyano-free condition respectively allows the incorporation of bioactive molecules and the PEGylation of dithiothreitol-treated bovine serum albumin, showing great potentials in drug delivery and protein modification. DFT calculations disclose that the formed α-carbon radical adjacent to oxygen-atom is reduced directly by iridium before acrylate addition. And preliminary mechanistic experiments reveal that the noncovalent interaction of PEG chain with the formed quinuclidinium species plays a unique role as a catalytic site by facilitating the proton transfer and ultimately enabling the transformation efficiently.
Collapse
Affiliation(s)
- Zongnan Zhang
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueli Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Mu
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyao Zhao
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Shujiang Ding
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Dezhong Zhou
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Rong Zeng
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
7
|
Mobian P, Pham DJ, Chaumont A, Barloy L, Khalil G, Kyritsakas N. Circular Heterochiral Titanium-Based Self-Assembled Architectures. J Am Chem Soc 2024; 146:14067-14078. [PMID: 38728688 DOI: 10.1021/jacs.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Circular trinuclear helicates have been synthesized from a bis-biphenol strand (LH4), titanium isopropoxide, and various diimine ligands. These self-assembled architectures constructed around three TiO4N2 nodes have a heterochiral structure (C1 symmetry) when 2,2'-bipyridine (A), 4,4'-dimethyl-2,2'-bipyridine (B), 4,4'-bromo-2,2'-bipyridine (C), or 4,4'-dimethyl-2,2'-bipyrimidine (D) is employed. Within these complexes, one nitrogen ligand is endo-positioned inside the metallo-macrocycle, whereas the other two diimine ligands point outside the helicate framework. This investigation highlights that the nitrogen ligand which does not participate in the helicate framework of the complex controls the overall symmetry of the helicate since the 2,2'-bipyrimidine chelate (F) ends in the formation of a homochiral aggregate (C3 symmetry). The lack of symmetry found in the solid state for the trinuclear species ([Ti3L3(B)3], [Ti3L3(C)3], and [Ti3L3(D)3]) is observed for these complexes in solution (dichloromethane or chloroform). Remarkably, the 2,2'-bipyrazine ligand (ligand E) ends in the formation of a hexameric aggregate formulated as [Ti6L6(E)6], whereas the use of 4,4'-dimethyl-2,2'-bipyrimidine (ligand D) permits to generate the dinuclear complexes ([Ti2L(D)2(OiPr)4] and [Ti2L2(D)2]) in addition to the trimeric structure [Ti3L3(D)3]. The behavior of [Ti3L3(A)3] in solution, on the other hand, is unique since an equilibrium between the homochiral and the heterochiral form is reached within 17 days after the complex has been dissolved in dichloromethane (C3-[Ti3L3(A)3]/C1-[Ti3L3(A)3] ratio = 0.3). In chloroform, the heterochiral form of [Ti3L3(A)3] is stable for the same period of time, evidencing the dependence of this stereochemical transformation toward the solvent medium. The thermodynamic and kinetic parameters linked to this stereochemical equilibrium have been obtained and point to the fact that the transformation is intramolecular and not induced by the presence of external ligands. The thermodynamic constant of the C1-[Ti3L3(A)3]/C3-[Ti3L3(A)3] equilibrium is found to be K = 0.34 ± 10%. Further evidence to rationalize this solvent-induced symmetry switch is obtained via a DFT calculation and classical molecular dynamics. In particular, this computational investigation elucidates the reason why the stereochemical transformation of a heterochiral architecture into a homochiral structure is possible only for a trinuclear assembly containing ligand A.
Collapse
Affiliation(s)
- Pierre Mobian
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - David-Jérôme Pham
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Alain Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140 (team MSM), F-67000 Strasbourg, France
| | - Laurent Barloy
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Georges Khalil
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Nathalie Kyritsakas
- Université de Strasbourg, CNRS, CMC UMR 7140 (team LTM), F-67000 Strasbourg, France
| |
Collapse
|
8
|
Llamosí A, Szymański MP, Szumna A. Molecular vessels from preorganised natural building blocks. Chem Soc Rev 2024; 53:4434-4462. [PMID: 38497833 DOI: 10.1039/d3cs00801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Supramolecular vessels emerged as tools to mimic and better understand compartmentalisation, a central aspect of living matter. However, many more applications that go beyond those initial goals have been documented in recent years, including new sensory systems, artificial transmembrane transporters, catalysis, and targeted drug or gene delivery. Peptides, carbohydrates, nucleobases, and steroids bear great potential as building blocks for the construction of supramolecular vessels, possessing complexity that is still difficult to attain with synthetic methods - they are rich in functional groups and well-defined stereogenic centers, ready for noncovalent interactions and further functions. One of the options to tame the functional and dynamic complexity of natural building blocks is to place them at spatially designed positions using synthetic scaffolds. In this review, we summarise the historical and recent advances in the construction of molecular-sized vessels by the strategy that couples synthetic predictability and durability of various scaffolds (cyclodextrins, porphyrins, crown ethers, calix[n]arenes, resorcin[n]arenes, pillar[n]arenes, cyclotriveratrylenes, coordination frameworks and multivalent high-symmetry molecules) with functionality originating from natural building blocks to obtain nanocontainers, cages, capsules, cavitands, carcerands or coordination cages by covalent chemistry, self-assembly, or dynamic covalent chemistry with the ultimate goal to apply them in sensing, transport, or catalysis.
Collapse
Affiliation(s)
- Arturo Llamosí
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
9
|
Sawazaki T, Sasaki D, Sohma Y. Catalysis driven by an amyloid-substrate complex. Proc Natl Acad Sci U S A 2024; 121:e2314704121. [PMID: 38691589 PMCID: PMC11087796 DOI: 10.1073/pnas.2314704121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Amine modification through nucleophilic attack of the amine functionality is a very common chemical transformation. Under biorelevant conditions using acidic-to-neutral pH buffer, however, the nucleophilic reaction of alkyl amines (pKa ≈ 10) is not facile due to the generation of ammonium ions lacking nucleophilicity. Here, we disclose a unique molecular transformation system, catalysis driven by amyloid-substrate complex (CASL), that promotes amine modifications in acidic buffer. Ammonium ions attached to molecules with amyloid-binding capability were activated through deprotonation due to the close proximity to the amyloid catalyst formed by Ac-Asn-Phe-Gly-Ala-Ile-Leu-NH2 (NL6), derived from islet amyloid polypeptide (IAPP). Under the CASL conditions, alkyl amines underwent various modifications, i.e., acylation, arylation, cyclization, and alkylation, in acidic buffer. Crystallographic analysis and chemical modification studies of the amyloid catalysts suggested that the carbonyl oxygen of the Phe-Gly amide bond of NL6 plays a key role in activating the substrate amine by forming a hydrogen bond. Using CASL, selective conversion of substrates possessing equivalently reactive amine functionalities was achieved in catalytic reactions using amyloids. CASL provides a unique method for applying nucleophilic conversion reactions of amines in diverse fields of chemistry and biology.
Collapse
Affiliation(s)
- Taka Sawazaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Daisuke Sasaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Youhei Sohma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| |
Collapse
|
10
|
Hennebelle M, Cirillo Y, Manick AD, Nuel D, Martinez A, Chatelet B. Synthesis, Resolution, and Absolute Configuration of a Phosphine-Based Hemicryptophane Cage with an Endo Phosphorus Lone Pair and Formation of the Corresponding Gold Complex. J Org Chem 2024; 89:4741-4748. [PMID: 38525898 DOI: 10.1021/acs.joc.3c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The synthesis, characterization, and chiroptical properties of a new class of hemicryptophanes combining a phosphine moiety and a cyclotriveratrylene unit are reported. The synthesis was short and efficient. The racemic mixture of the cage was resolved by chiral high-performance liquid chromatography (HPLC), giving access to enantiopure molecular cages, whose absolute configurations could be assigned by electronic circular dichroism (ECD) spectroscopy. These new phosphines were then reacted with gold in order to make the corresponding enantiopure gold complexes. The X-ray structure reveals an endohedral functionalization of the cage with the gold metal entrapped in the heart of the cavity, leading to a Vbur of 58%. Moreover, the chirality of the cyclotriveratrylene unit was found to control the chiral arrangement of the aryl group linked to the phosphorus atom, located at the opposite side of the cavity.
Collapse
Affiliation(s)
- Marc Hennebelle
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13397, France
| | - Yoann Cirillo
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13397, France
| | | | - Didier Nuel
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13397, France
| | - Alexandre Martinez
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13397, France
| | - Bastien Chatelet
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13397, France
| |
Collapse
|
11
|
Li K, Qin WM, Su WX, Hu JM, Cai YP. Chiral BINOL-phosphate assembled single hexagonal nanotube in aqueous solution for confined rearrangement acceleration. Nat Commun 2024; 15:2799. [PMID: 38555282 PMCID: PMC10981660 DOI: 10.1038/s41467-024-47150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Creating microenvironments that mimic an enzyme's active site is a critical aspect of supramolecular confined catalysis. In this study, we employ the commonly used chiral 1,1'-bi-2-naphthol (BINOL) phosphates as subcomponents to construct supramolecular hollow nanotube in an aqueous medium through non-covalent intermolecular recognition and arrangement. The hexagonal nanotubular structure is characterized by various techniques, including X-ray, NMR, ESI-MS, AFM, and TEM, and is confirmed to exist in a homogeneous aqueous solution stably. The nanotube's length in solution depends on the concentration of chiral BINOL-phosphate as a monomer. Additionally, the assembled nanotube can accelerate the rate of the 3-aza-Cope rearrangement reaction by up to 85-fold due to the interior confinement effect. Based on the detailed kinetic and thermodynamic analyses, we propose that the chain-like substrates are constrained and pre-organized into a reactive chair-like conformation, which stabilizes the transition state of the reaction in the confined nanospace of the nanotube. Notably, due to the restricted conformer with less degrees of freedom, the entropic barrier is significantly reduced compared to the enthalpic barrier, resulting in a more pronounced acceleration effect.
Collapse
Affiliation(s)
- Kang Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Energy Conversion and Energy Storage Materials, Guangzhou, 510006, China.
- The Joint Laboratory of Energy Materials Chemistry for SCNU and TINCI, Guangzhou, 510006, China.
| | - Wei-Min Qin
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Wen-Xia Su
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jia-Min Hu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yue-Peng Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Energy Conversion and Energy Storage Materials, Guangzhou, 510006, China.
- The Joint Laboratory of Energy Materials Chemistry for SCNU and TINCI, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Becharguia N, Nierengarten I, Strub JM, Cianférani S, Rémy M, Wasielewski E, Abidi R, Nierengarten JF. Solution and Solvent-Free Stopper Exchange Reactions for the Preparation of Pillar[5]arene-containing [2] and [3]Rotaxanes. Chemistry 2024; 30:e202304131. [PMID: 38165139 DOI: 10.1002/chem.202304131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Diamine reagents have been used to functionalize a [2]rotaxane building block bearing an activated pentafluorophenyl ester stopper. Upon a first acylation, an intermediate host-guest complex with a terminal amine function is obtained. Dissociation of the intermediate occurs in solution and acylation of the released axle generates a [2]rotaxane with an elongated axle subunit. In contrast, the corresponding [3]rotaxane can be obtained if the reaction conditions are appropriate to stabilize the inclusion complex of the mono-amine intermediate and the pillar[5]arene. This is the case when the stopper exchange is performed under mechanochemical solvent-free conditions. Alternatively, if the newly introduced terminal amide group is large enough to prevent the dissociation, the second acylation provides exclusively a [3]rotaxane. On the other hand, detailed conformational analysis has been also carried out by variable temperature NMR investigations. A complete understanding of the shuttling motions of the pillar[5]arene subunit along the axles of the rotaxanes reported therein has been achieved with the help of density functional theory calculations.
Collapse
Affiliation(s)
- Nihed Becharguia
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Marine Rémy
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Emeric Wasielewski
- Plateforme RMN Cronenbourg, Université de Strasbourg et CNRS (UMR 7042, LIMA) Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
13
|
Lorenzetto T, Bordignon F, Munarin L, Mancin F, Fabris F, Scarso A. Substrate Selectivity Imparted by Self-Assembled Molecular Containers and Catalysts. Chemistry 2024; 30:e202301811. [PMID: 37466005 DOI: 10.1002/chem.202301811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Recent trends in catalysis are devoted to mimicking some peculiar features of enzymes like site selectivity, through functional group recognition, and substrate selectivity, through recognition of the entire surface of the substrate. The latter is a specific feature of enzymes that is seldomly present in homogeneous catalysis. Supramolecular catalysis, thanks to the self-assembly of simple subunits, enables the creation of cavities and surfaces whose confinement effects drive the preferential binding of a substrate among others with consequent substrate selectivity. The topic is an emerging field that exploits recognition phenomena to discriminate the reagents based on their size and shape. This review deals this cutting-edge field of research covering examples of supramolecular self-assembled molecular containers and catalysts operating in organic as well as aqueous media, with special emphasis for catalytic systems dealing with direct competitive experiments involving two or more substrates.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Francesca Bordignon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Luca Munarin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| |
Collapse
|
14
|
Abuhafez N, Ehlers AW, de Bruin B, Gramage-Doria R. Markovnikov-Selective Cobalt-Catalyzed Wacker-Type Oxidation of Styrenes into Ketones under Ambient Conditions Enabled by Hydrogen Bonding. Angew Chem Int Ed Engl 2024; 63:e202316825. [PMID: 38037901 DOI: 10.1002/anie.202316825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
The replacement of palladium catalysts for Wacker-type oxidation of olefins into ketones by first-row transition metals is a relevant approach for searching more sustainable protocols. Besides highly sophisticated iron catalysts, all the other first-row transition metal complexes have only led to poor activities and selectivities. Herein, we show that the cobalt-tetraphenylporphyrin complex is a competent catalyst for the aerobic oxidation of styrenes into ketones with silanes as the hydrogen sources. Remarkably, under room temperature and air atmosphere, the reactions were exceedingly fast (up to 10 minutes) with a low catalyst loading (1 mol %) while keeping an excellent chemo- and Markovnikov-selectivity (up to 99 % of ketone). Unprecedently high TOF (864 h-1 ) and TON (5,800) were reached for the oxidation of aromatic olefins under these benign conditions. Mechanistic studies suggest a reaction mechanism similar to the Mukaiyama-type hydration of olefins with a change in the last fundamental step, which controls the chemoselectivity, thanks to a unique hydrogen bonding network between the ethanol solvent and the cobalt peroxo intermediate.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, 35000, Rennes, France
| | - Andreas W Ehlers
- University of Amsterdam, Science Park 904, 1094 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- University of Amsterdam, Science Park 904, 1094 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Vela-Gallego S, Lewandowski B, Möhler J, Puente A, Gil-Cantero D, Wennemers H, de la Escosura A. Modifying the Catalytic Activity of Lipopeptide Assemblies with Nucleobases. Chemistry 2024; 30:e202303395. [PMID: 37877614 DOI: 10.1002/chem.202303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Biohybrid catalysts that operate in aqueous media are intriguing for systems chemistry. In this paper, we investigate whether control over the self-assembly of biohybrid catalysts can tune their properties. As a model, we use the catalytic activity of functional hybrid molecules consisting of a catalytic H-dPro-Pro-Glu tripeptide, derivatized with fatty acid and nucleobase moieties. This combination of simple biological components merged the catalytic properties of the peptide with the self-assembly of the lipid, and the structural ordering of the nucleobases. The biomolecule hybrids self-assemble in aqueous media into fibrillar assemblies and catalyze the reaction between butanal and nitrostyrene. The interactions between the nucleobases enhanced the order of the supramolecular structures and affected their catalytic activity and stereoselectivity. The results point to the significant control and ordering that nucleobases can provide in the self-assembly of biologically inspired supramolecular catalysts.
Collapse
Affiliation(s)
- Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| | - Bartosz Lewandowski
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jasper Möhler
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Alonso Puente
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| | - David Gil-Cantero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología / CSIC, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
16
|
Prasoon A, Yu X, Hambsch M, Bodesheim D, Liu K, Zacarias A, Nguyen NN, Seki T, Dianat A, Croy A, Cuniberti G, Fontaine P, Nagata Y, Mannsfeld SCB, Dong R, Bonn M, Feng X. Site-selective chemical reactions by on-water surface sequential assembly. Nat Commun 2023; 14:8313. [PMID: 38097633 PMCID: PMC10721922 DOI: 10.1038/s41467-023-44129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Controlling site-selectivity and reactivity in chemical reactions continues to be a key challenge in modern synthetic chemistry. Here, we demonstrate the discovery of site-selective chemical reactions on the water surface via a sequential assembly approach. A negatively charged surfactant monolayer on the water surface guides the electrostatically driven, epitaxial, and aligned assembly of reagent amino-substituted porphyrin molecules, resulting in a well-defined J-aggregated structure. This constrained geometry of the porphyrin molecules prompts the subsequent directional alignment of the perylenetetracarboxylic dianhydride reagent, enabling the selective formation of a one-sided imide bond between porphyrin and reagent. Surface-specific in-situ spectroscopies reveal the underlying mechanism of the dynamic interface that promotes multilayer growth of the site-selective imide product. The site-selective reaction on the water surface is further demonstrated by three reversible and irreversible chemical reactions, such as imide-, imine-, and 1, 3-diazole (imidazole)- bonds involving porphyrin molecules. This unique sequential assembly approach enables site-selective chemical reactions that can bring on-water surface synthesis to the forefront of modern organic chemistry.
Collapse
Affiliation(s)
- Anupam Prasoon
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - David Bodesheim
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kejun Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Angelica Zacarias
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Nguyen Ngan Nguyen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Aerzoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062, Dresden, Germany
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany.
| |
Collapse
|
17
|
Gilissen PJ, Duez Q, Tripodi GL, Dekker MMJ, Ouyang J, Dhbaibi K, Vanthuyne N, Crassous J, Roithová J, Elemans JAAW, Nolte RJM. Kinetic enantio-recognition of chiral viologen guests by planar-chiral porphyrin cages. Chem Commun (Camb) 2023; 59:13974-13977. [PMID: 37942536 PMCID: PMC10667586 DOI: 10.1039/d3cc04934e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The kinetic enantio-recognition of chiral viologen guests by planar-chiral porphyrin cage compounds, measured in terms of ΔΔG‡on, is determined by the planar-chirality of the host and influenced by the size, as measured by ion mobility-mass spectrometry, but not the chirality of its substituents.
Collapse
Affiliation(s)
- Pieter J Gilissen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Quentin Duez
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Guilherme L Tripodi
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Magda M J Dekker
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Jiangkun Ouyang
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Kais Dhbaibi
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France
| | - Nicolas Vanthuyne
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, 13397, Marseille Cedex 20, France
| | - Jeanne Crassous
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France
| | - Jana Roithová
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Johannes A A W Elemans
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Sierra A, Bulatov E, Aragay G, Ballester P. Hydration of Propargyl Esters Catalyzed by Gold(I) Complexes with Phosphoramidite Calix[4]pyrrole Cavitands as Ligands. Inorg Chem 2023; 62:18697-18706. [PMID: 37918439 PMCID: PMC10647111 DOI: 10.1021/acs.inorgchem.3c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
We report the synthesis and characterization of two diastereomeric phosphoramidite calix[4]pyrrole cavitands and their corresponding gold(I) complexes, 2in•Au(I)•Cl and 2out•Au(I)•Cl, featuring the metal center directed inward and outward with respect to their aromatic cavity. We studied the catalytic activity of the complexes in the hydration of a series of propargyl esters as the benchmarking reaction. All substrates were equipped with a six-membered ring substituent either lacking or including a polar group featuring different hydrogen bond acceptor (HBA) capabilities. We designed the substrates with the polar group to form 1:1 inclusion complexes of different stabilities with the catalysts. In the case of 2in•Au(I)•OTf, the 1:1 complex placed the alkynyl group of the bound substrate close to the metal center. We compared the obtained results with those of a model phosphoramidite gold(I) complex lacking a calix[4]pyrrole cavity. We found that for all catalysts, the presence of an increasingly polar HBA group in the substrate provoked a decrease in the hydration rate constants. We attributed this result to the competing coordination of the HBA group of the substrate for the Au(I) metal center of the catalysts.
Collapse
Affiliation(s)
- Andrés
F. Sierra
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona 43007, Spain
| | - Evgeny Bulatov
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona 43007, Spain
| | - Gemma Aragay
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona 43007, Spain
| | - Pablo Ballester
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona 43007, Spain
- ICREA, Pg. Lluís Companys, 23, Barcelona 08018, Spain
| |
Collapse
|
19
|
Kuninobu Y. Non-Covalent Interaction-Controlled Site-Selective C-H Transformations. CHEM REC 2023; 23:e202300149. [PMID: 37236150 DOI: 10.1002/tcr.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Site-selective C-H transformations are important to obtain desired compounds as single products in a highly efficient manner. However, it is generally difficult to achieve such transformations because organic substrates contain many C-H bonds with similar reactivities. Therefore, the development of practical and efficient methods for controlling site selectivity is highly desirable. The most frequently used strategy is "directing group method". Although this method is highly effective and promotes site-selective reactions, it has several limitations. Our group recently reported other methods to achieve site-selective C-H transformations using non-covalent interactions between a substrate and a reagent or a catalyst and a substrate (non-covalent method). In this personal account, the background of site-selective C-H transformations, our reaction design to achieve site-selective C-H transformations, and recently reported reactions are explained.
Collapse
Affiliation(s)
- Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| |
Collapse
|
20
|
Liang Y, Zhou X, Gopi S, Wang R. Distinct selectivity inside self-assembled coordination cages. Front Chem 2023; 11:1269471. [PMID: 37731456 PMCID: PMC10507711 DOI: 10.3389/fchem.2023.1269471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Supramolecular containers have long been applied to regulate organic reactions with distinct selectivity, owing to their diverse functions such as the ability to pose a guest molecule(s) with a certain orientation and conformation. In this review, we try to illustrate how self-assembled coordination cages could achieve this goal. Two representative cage hosts, namely, self-assembled Pd(II)-ligand octahedral coordination cages ([Pd6L4]12+) and self-assembled Ga(III)-ligand tetrahedral coordination cages ([Ga4L6]12-) are selected as the pilot hosts that this mini review covers. Representative works in this area are presented here in brief.
Collapse
Affiliation(s)
| | | | - Sreeraj Gopi
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Rui Wang
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| |
Collapse
|
21
|
Abuhafez N, Gramage-Doria R. Boosting the activity of Mizoroki-Heck cross-coupling reactions with a supramolecular palladium catalyst favouring remote Zn⋯pyridine interactions. Faraday Discuss 2023; 244:186-198. [PMID: 37083293 DOI: 10.1039/d2fd00165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transition metal catalysis benefitting from supramolecular interactions in the secondary coordination sphere in order to pre-organize substrates around the active site and reach a specific selectivity typically occurs under long reaction times and mild reaction temperatures with the aim to maximize such subtle effects. Herein, we demonstrate that the kinetically labile Zn⋯N interaction between a pyridine substrate and a zinc-porphyrin site serving for substrate binding is a unique type of weak interaction that enables identification of supramolecular effects in transition metal catalysis after one hour at a high reaction temperature of 130 °C. Under carefully selected reaction conditions, supramolecularly-regulated palladium-catalyzed Mizoroki-Heck reactions between 3-bromopyridine and terminal olefins (acrylates or styrenes) proceeded in a more efficient manner compared to the non-supramolecular version. The supramolecular catalysis developed here also displayed interesting substrate-selectivity patterns.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
| | | |
Collapse
|
22
|
Vicens A, Vicens L, Olivo G, Lanzalunga O, Di Stefano S, Costas M. Site-selective methylene C-H oxidation of an alkyl diamine enabled by supramolecular recognition using a bioinspired manganese catalyst. Faraday Discuss 2023; 244:51-61. [PMID: 37185809 DOI: 10.1039/d2fd00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Site-selective oxidation of aliphatic C-H bonds is a powerful synthetic tool because it enables rapid build-up of product complexity and diversity from simple precursors. Besides the poor reactivity of alkyl C-H bonds, the main challenge in this reaction consists in differentiating between the multiple similar sites present in most organic molecules. Herein, a manganese oxidation catalyst equipped with two 18-benzo-6-crown ether receptors has been employed in the oxidation of the long chain tetradecane-1,14-diamine. 1H-NMR studies evidence simultaneous binding of the two protonated amine moieties to the crown ether receptors. This recognition has been used to pursue site-selective oxidation of a methylenic site, using hydrogen peroxide as oxidant in the presence of carboxylic acids as co-ligands. Excellent site-selectivity towards the central methylenic sites (C6 and C7) is observed, overcoming selectivity parameters derived from polar deactivation by simple amine protonation and selectivity observed in the oxidation of related monoprotonated amines.
Collapse
Affiliation(s)
- Arnau Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| |
Collapse
|
23
|
Mei S, Ou Q, Tang X, Xu JF, Zhang X. Stabilization of Carbocation Intermediate by Cucurbit[7]uril Enables High Photolysis Efficiency. Org Lett 2023; 25:5291-5296. [PMID: 37428144 DOI: 10.1021/acs.orglett.3c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A cucurbit[7]uril-based host-guest strategy is employed to enhance the efficiency of photolysis reactions that release caged molecules from photoremovable protecting groups. The photolysis of benzyl acetate follows a heterolytic bond cleavage mechanism, thereby leading to the formation of a contact ion pair as the key reactive intermediate. The Gibbs free energy of the contact ion pair is lowered by 3.06 kcal/mol through the stabilization of cucurbit[7]uril, as revealed by DFT calculations, which results in a 40-fold increase in the quantum yield of the photolysis reaction. This methodology is also applicable to the chloride leaving group and the diphenyl photoremovable protecting group. We anticipate that this research presents a novel strategy to improve reactions involving active cationics, thereby enriching the field of supramolecular catalysis.
Collapse
Affiliation(s)
- Shan Mei
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
- DP Technology, Beijing 100080, China
| | - Xingchen Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Liu HK, Ronson TK, Wu K, Luo D, Nitschke JR. Anionic Templates Drive Conversion between a Zn II9L 6 Tricapped Trigonal Prism and Zn II6L 4 Pseudo-Octahedra. J Am Chem Soc 2023. [PMID: 37440669 PMCID: PMC10375523 DOI: 10.1021/jacs.3c03981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dong Luo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
25
|
Plett C, Katbashev A, Ehlert S, Grimme S, Bursch M. ONIOM meets xtb: efficient, accurate, and robust multi-layer simulations across the periodic table. Phys Chem Chem Phys 2023. [PMID: 37378957 DOI: 10.1039/d3cp02178e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The computational treatment of large molecular structures is of increasing interest in fields of modern chemistry. Accordingly, efficient quantum chemical approaches are needed to perform sophisticated investigations on such systems. This engaged the development of the well-established "Our own N-layered integrated molecular orbital and molecular mechanics" (ONIOM) multi-layer scheme [L. W. Chung et al., Chem. Rev., 2015, 115, 5678-5796]. In this work, we present the specific implementation of the ONIOM scheme into the xtb semi-empirical extended tight-binding program package and its application to challenging transition-metal complexes. The efficient and broadly applicable GFNn-xTB and -FF methods are applied in the ONIOM framework to elucidate reaction energies, geometry optimizations, and explicit solvation effects for metal-organic systems with up to several hundreds of atoms. It is shown that an ONIOM-based combination of density functional theory, semi-empirical, and force-field methods can be used to drastically reduce the computational costs and thus enable the investigation of huge systems at almost no significant loss in accuracy.
Collapse
Affiliation(s)
- Christoph Plett
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Abylay Katbashev
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Sebastian Ehlert
- Microsoft Research AI4Science, Evert van de Beekstraat 254, 1118 CZ Schiphol, The Netherlands
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
26
|
Tang X, Chen T, Li W, Mao D, Liu C, Wu Q, Huang N, Hu S, Sun F, Pan Q, Zhu X. Throwing and manipulating and cheating with a DNA nano-dice. Nat Commun 2023; 14:2440. [PMID: 37117228 PMCID: PMC10147716 DOI: 10.1038/s41467-023-38164-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Artificial molecular machines have captured the imagination of researchers, given their clear potential to mimic and influence human life. Key to behavior simulation is to reproduce the specific properties of physical or abstract systems. Dice throwing, as a stochastic model, is commonly used for result judgment or plan decision in real life. In this perspective we utilize DNA cube framework for the design of a dice device at the nanoscale to reproduce probabilistic events in different situations: equal probability, high probability, and low probability. We first discuss the randomness of DNA cube, or dice, adsorbing on graphene oxide, or table, and then explore a series of events that change the probability through the way in which the energy released from entropy-driven strand displacement reactions or changes in intermolecular forces. As such, the DNA nano-dice system provides guideline and possibilities for the design, engineering, and quantification of behavioral probability simulation, a currently emerging area of molecular simulation research.
Collapse
Affiliation(s)
- Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Qi Wu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Song Hu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China.
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China.
| |
Collapse
|
27
|
Xue W, Wu K, Ouyang N, Brotin T, Nitschke JR. Allosterically Regulated Guest Binding Determines Framework Symmetry for an Fe II 4 L 4 Cage. Angew Chem Int Ed Engl 2023; 62:e202301319. [PMID: 36866857 PMCID: PMC10947561 DOI: 10.1002/anie.202301319] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Self-assembly of a flexible tritopic aniline and 3-substituted 2-formylpyridine subcomponents around iron(II) templates gave rise to a low-spin FeII 4 L4 capsule, whereas a high-spin FeII 3 L2 sandwich species formed when a sterically hindered 6-methyl-2-formylpyridine was used. The FeII 4 L4 cage adopted a new structure type with S4 symmetry, having two mer-Δ and two mer-Ʌ metal vertices, as confirmed by NMR and X-ray crystallographic analysis. The flexibility of the face-capping ligand endows the resulting FeII 4 L4 framework with conformational plasticity, enabling it to adapt structurally from S4 to T or C3 symmetry upon guest binding. The cage also displayed negative allosteric cooperativity in simultaneously binding different guests within its cavity and at the apertures between its faces.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kai Wu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Nianfeng Ouyang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Thierry Brotin
- Laboratoire de chimieUniversité LyonEns de Lyon, CNRS UMR 518269342LyonFrance
| | | |
Collapse
|
28
|
Xue W, Pesce L, Bellamkonda A, Ronson TK, Wu K, Zhang D, Vanthuyne N, Brotin T, Martinez A, Pavan GM, Nitschke JR. Subtle Stereochemical Effects Influence Binding and Purification Abilities of an Fe II4L 4 Cage. J Am Chem Soc 2023; 145:5570-5577. [PMID: 36848676 PMCID: PMC9999408 DOI: 10.1021/jacs.3c00294] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A tetrahedral FeII4L4 cage assembled from the coordination of triangular chiral, face-capping ligands to iron(II). This cage exists as two diastereomers in solution, which differ in the stereochemistry of their metal vertices, but share the same point chirality of the ligand. The equilibrium between these cage diastereomers was subtly perturbed by guest binding. This perturbation from equilibrium correlated with the size and shape fit of the guest within the host; insight as to the interplay between stereochemistry and fit was provided by atomistic well-tempered metadynamics simulations. The understanding thus gained as to the stereochemical impact on guest binding enabled the design of a straightforward process for the resolution of the enantiomers of a racemic guest.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | | | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Thierry Brotin
- Laboratoire de Chimie, Université Lyon, Ens de Lyon, CNRS UMR 5182, Lyon F69342, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland.,Department of Applied Science and Techology, Politecnico di Torino, 10129 Torino, Italy
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
29
|
Knezevic M, Tiefenbacher K. Tweezer-Based C-H Oxidation Catalysts Overriding the Intrinsic Reactivity of Aliphatic Ammonium Substrates. Chemistry 2023; 29:e202203480. [PMID: 36469523 DOI: 10.1002/chem.202203480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The site-selective C-H oxygenation of alkyl chains as well as deactivated positions remains a great challenge for chemists. Here, we report the synthesis and application of four new supramolecular tweezer-based oxidation catalysts. They consist of the well-explored M(pdp/mcp) oxidation moiety and a molecular tweezer capable of binding ammonium salts. All catalysts display preferential oxidation of the strongly deactivated C3/C4 positions, however to different degrees. Furthermore, the best performing catalyst Fe(pdp)Twe was explored with an expanded substrate scope. It was demonstrated that the deactivated positions C3/C4 are also preferentially oxidized in these cases.
Collapse
Affiliation(s)
- Melina Knezevic
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 24, 4058, Basel, Switzerland
| |
Collapse
|
30
|
Han X, Guo C, Xu C, Shi L, Liu B, Zhang Z, Bai Q, Song B, Pan F, Lu S, Zhu X, Wang H, Hao XQ, Song MP, Li X. Water-Soluble Metallo-Supramolecular Nanoreactors for Mediating Visible-Light-Promoted Cross-Dehydrogenative Coupling Reactions. ACS NANO 2023; 17:3723-3736. [PMID: 36757357 DOI: 10.1021/acsnano.2c10856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Water-soluble metallo-supramolecular cages with well-defined nanosized cavities have a wide range of functions and applications. Herein, we design and synthesize two series of metallo-supramolecular octahedral cages based on the self-assembly of two congeneric truxene-derived tripyridyl ligands modified with two polyethylene glycol (PEG) chains, i.e., monodispersed tetraethylene glycol (TEG) and polydispersed PEG-1000, with four divalent transition metals (i.e., Pd, Cu, Ni, and Zn). The resulting monodispersed cages C1-C4 are fully characterized by electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR) spectroscopy, and single-crystal X-ray diffraction. The polydispersed cages C5-C8 display good water solubilities and can act as nanoreactors to mediate visible-light-promoted C(sp3)-C(sp2) cross-dehydrogenative coupling reactions in an aqueous phase. In particular, the most robust Pd(II)-linked water-soluble polydispersed nanoreactor C5 is characterized by ESI-MS and capable of mediating the reactions with the highest efficiencies. Detailed host-guest binding studies in conjunction with control studies suggest that these cages could encapsulate the substrates simultaneously inside its hydrophobic cavity while interacting with the photosensitizer (i.e., eosin Y).
Collapse
Affiliation(s)
- Xin Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Linlin Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Binghui Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Fangfang Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xinju Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xin-Qi Hao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mao-Ping Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
31
|
Hegarty IN, Henwood AF, Bradberry SJ, Gunnlaugsson T. Generating water/MeOH-soluble and luminescent polymers by grafting 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligands onto a poly(ethylene- alt-maleic anhydride) polymer and cross-linking with terbium(III). Org Biomol Chem 2023; 21:1549-1557. [PMID: 36723129 DOI: 10.1039/d2ob02259a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis of two new polymers made from P(E-alt-MA) (poly(ethylene-alt-maleic anhydride) and possessing 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligand side chains in 3 and 6 mol%, respectively (P1 and P2, respectively) is described. These polymers were shown to be soluble in MeOH solution and, in the case of P1, also in water, while P2 needed prolonged heating to enable water dissolution. Btp ligands are known for coordinating both d- and f-metal ions and so, herein, we demonstrate by using both UV-Vis absorption, fluorescence emission, as well as time-gated phosphorescence spectroscopies, that both P1 and P2 can bind to Tb(III) ions to give rise to luminescent polymers. From the analysis of the titration data, which demonstrated large changes in the emission intensity properties of the polymer upon Tb(III) binding (ground state changes were also clearly observed, with the absorption being red-shifted at lower energy), we show that the dominant stoichiometry in solution is 1 : 2 (M : L; Tb(III) : btp ratio) which implies that two btp ligands from the polymer background are able to crosslink through lanthanide coordination and that the backbone of the polymer is very likely to aid in coordinating the ions.
Collapse
Affiliation(s)
- Isabel N Hegarty
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Adam F Henwood
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Samuel J Bradberry
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
32
|
Manick AD, Li C, Antonetti E, Albalat M, Cotelle Y, Nava P, Dutasta JP, Chatelet B, Martinez A. Probing the Importance of Host Symmetry on Carbohydrate Recognition. Chemistry 2023; 29:e202203212. [PMID: 36563113 DOI: 10.1002/chem.202203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/24/2022]
Abstract
The design of molecular cages with low symmetry could allow for more specific tuning of their properties and better mimic the unsymmetrical and complex environment of protein pockets. However, the added value of lowering symmetry of molecular receptors has been rarely demonstrated. Herein, C3 - and C1 -symmetrical cages, presenting the same recognition sites, have been synthesized and investigated as hosts for carbohydrate recognition. Structurally related derivatives of glucose, galactose and mannose were found to have greater affinity to the receptor with the lowest symmetry than to their C3 -symmetrical analogue. According to the host cavity modelling, the C1 symmetry receptor exhibits a wider opening than its C3 -symmetrical counterpart, providing easier access and thus promoting guest proximity to binding sites. Moreover, our results show the high stereo- and substrate selectivity of the C1 symmetry cage with respect to its C3 counterpart in the recognition of sugars.
Collapse
Affiliation(s)
- Anne-Doriane Manick
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Chunyang Li
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China.,Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Elise Antonetti
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Muriel Albalat
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Yoann Cotelle
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Paola Nava
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Bastien Chatelet
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
33
|
Kundu S, Valiyev I, Mondal D, Rajasekaran VV, Goswami A, Schmittel M. Proton transfer network with luminescence display controls OFF/ON catalysis that generates a high-speed slider-on-deck. RSC Adv 2023; 13:5168-5171. [PMID: 36777932 PMCID: PMC9909384 DOI: 10.1039/d3ra00062a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
A three-component network for OFF/ON catalysis was built from a protonated nanoswitch and a luminophore. Its activation by addition of silver(i) triggered the proton-catalyzed formation of a biped and the assembly of a fast slider-on-deck (k 298 = 540 kHz).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Vishnu Verman Rajasekaran
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Abir Goswami
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| |
Collapse
|
34
|
Yan M, Zhou J. Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules 2023; 28:molecules28031470. [PMID: 36771136 PMCID: PMC9919256 DOI: 10.3390/molecules28031470] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Supramolecular polymers have attracted considerable interest due to their intriguing features and functions. The dynamic reversibility of noncovalent interactions endows supramolecular polymers with tunable physicochemical properties, self-healing, and externally stimulated responses. Among them, pillararene-based supramolecular polymers show great potential for biomedical applications due to their fascinating host-guest interactions and easy modification. Herein, we summarize the state of the art of pillararene-based supramolecular polymers for cancer therapy and illustrate its developmental trend and future perspective.
Collapse
|
35
|
Tomoda M, Kondo M, Izu H, Masaoka S. Brønsted Acid/Base Site Isolated in a Pentanuclear Scaffold. Chemistry 2023; 29:e202203253. [PMID: 36507625 DOI: 10.1002/chem.202203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
The concept of Brønsted-Lowry acids and bases is long and widely recognized as the most reasonable theory to explain the behavior of H+ ions. Here, we report a Brønsted acid/base pair that does not follow this theory. Two heteronuclear metal complexes, in which Brønsted acid/base sites are sterically isolated, were synthesized and characterized. These sterically isolated sites exhibited anomalous behavior, wherein the H+ species encapsulated in the Brønsted acid site did not undergo a deprotonation reaction, and the corresponding protonation reaction at the Brønsted base site failed to proceed. As a result, two states that are in a relationship of a Brønsted acid/base pair stably exist over a wide pH range without any interconversion, generating a thermodynamically metastable state. Additionally, these two states exhibited distinct electron transfer abilities and reactivities. The system presented in this study is in sharp contrast with the traditional concept of Brønsted-Lowry acids and bases.
Collapse
Affiliation(s)
- Misa Tomoda
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,Department of Structural Molecular Sciences, SOKENDAI [The Graduate University for Advanced Studies] Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Mio Kondo
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Hitoshi Izu
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
36
|
Sun B, Meeus EJ, de Zwart FJ, Bobylev EO, Mooibroek TJ, Mathew S, Reek JNH. Chirality-Driven Self-Assembly of Discrete, Homochiral Fe II 2 L 3 Cages. Chemistry 2023; 29:e202203900. [PMID: 36645137 DOI: 10.1002/chem.202203900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Coordination chemistry is a powerful method to synthesize supramolecular cages with distinct features that suit specific applications. This work demonstrates the synthesis of discrete, homochiral FeII 2 L3 cages via chirality-driven self-assembly. Specifically, the installation of chirality - at both the vertices and ligand backbones - allows the formation of discrete, homochiral FeII 2 L3 cages of different sizes via stereochemical control of the iron(II) centers. We observed that larger cages require multiple chiral centra (chiral ligands and vertices). In contrast, the formation of smaller cages is stereoselective with solely chiral ligands. The latter cages can also be formed from two chiral subcomponents, but only when they have matching chirality. Single-crystal X-ray diffraction of these smaller FeII 2 L3 cages revealed several non-covalent interactions as a driving force for narcissistic chiral self-sorting. This expected behavior was confirmed utilizing the shorter ligands in racemic form, yielding discrete, homochiral FeII 2 L3 cages formed in enantiomeric pairs.
Collapse
Affiliation(s)
- Bin Sun
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eva J Meeus
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Felix J de Zwart
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eduard O Bobylev
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Non-covalent interactions in transition metal-catalyzed para-selective C H functionalization of arenes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
38
|
Gahlaut PS, Gautam D, Yadav K, Jana B. Supramolecular Gels for the Sensing and Extraction of Heavy Metal Ions from Wastewater. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Runikhina SA, Tsygankov AA, Afanasyev OI, Chusov D. Reductive α-alkylation of ketones with aldehydes at atmospheric pressure of carbon monoxide: the effect of fluoride activation in ruthenium catalysis. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
40
|
Mirabella CFM, Aragay G, Ballester P. Influence of the solvent in the self-assembly and binding properties of [1 + 1] tetra-imine bis-calix[4]pyrrole cages. Chem Sci 2022; 14:186-195. [PMID: 36605742 PMCID: PMC9769375 DOI: 10.1039/d2sc05311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
We report the self-assembly of shape-persistent [1 + 1] tetra-imine cages 1 based on two different tetra-α aryl-extended calix[4]pyrrole scaffolds in chlorinated solvents and in a 9 : 1 CDCl3 : CD3CN solvent mixture. We show that the use of a bis-N-oxide 4 (4,4'-dipyridyl-N,N'-dioxide) as template is not mandatory to induce the emergence of the cages but has a positive effect on the reaction yield. We use 1H NMR spectroscopy to investigate and characterize the binding properties (kinetic and thermodynamic) of the self-assembled tetra-imine cages 1 with pyridine N-oxide derivatives. The cages form kinetically and thermodynamically stable inclusion complexes with the N-oxides. For the bis-N-oxide 4, we observe the exclusive formation of 1 : 1 complexes independently of the solvent used. In contrast, the pyridine-N-oxide 5 (mono-topic guest) produces inclusion complexes displaying solvent dependent stoichiometry. The bis-N-oxide 4 is too short to bridge the gap between the two endohedral polar binding sites of 1 by establishing eight ideal hydrogen bonding interactions. Nevertheless, the bimolecular 4⊂1 complex results as energetically favored compared to the 52⊂1 ternary counterpart. The inclusion of the N-oxides, 4 and 5, in the tetra-imine cages 1 is significantly faster in chlorinated solvents (minutes) than in the 9 : 1 CDCl3 : CD3CN solvent mixture (hours). We provide an explanation for the similar energy barriers calculated for the formation of the 4⊂1 complex using the two different ternary counterparts 52⊂1 and (CD3CN)2⊂1 as precursors. We propose a mechanism for the in-out guest exchange processes experienced by the tetra-imine cages 1.
Collapse
Affiliation(s)
- Chiara F. M. Mirabella
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST)Avgda. Països Catalans, 1643007 TarragonaSpain,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànicac/Marcel·lí Domingo,143007 TarragonaSpain
| | - Gemma Aragay
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST)Avgda. Països Catalans, 1643007 TarragonaSpain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST)Avgda. Països Catalans, 1643007 TarragonaSpain,ICREAPasseig Lluís Companys, 2308010 BarcelonaSpain
| |
Collapse
|
41
|
Liu ZX, Yang L, Chen YG, Tian ZY, Yang ZY. Noncovalent wedging effect catalyzed the cis to syn transformation of a surface-adsorbed polymer backbone toward an unusual thermodynamically stable supramolecular product. Phys Chem Chem Phys 2022; 24:30010-30016. [PMID: 36472299 DOI: 10.1039/d2cp04184g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The significant influence of noncovalent interactions on catalytic processes has been recently appreciated but is still in its infancy. In this report, it is found that wedging Me-PTCDI (small-molecule) between the alkyl chains of PffBT4T-2OD (polymer) and a graphite substrate can reduce the energy barrier of flipping over the surface-adsorbed alkylthiophene group from the cis to syn conformation, revealing the catalytic role of Me-PTCDI via a noncovalent wedging effect. The wedging of Me-PTCDI brings the interactions between the alkyl chains and substrate to a very weak level by lifting up the alkyl chains, which eliminates the major hindrance of the flipping process to one main factor: the torsion of the dihedral angles of the thiophene group. The Me-PTCDI/syn PffBT4T-2OD arrangement shows unusual stability compared to the cis one because the syn conformation allows the alkyl chains to construct dense lamella and facilitates interactions between Me-PTCDI and the syn PffBT4T-2OD backbones. The results are helpful for boosting the development of noncovalent catalysis and bottom-up fabrications toward devices functionalized at a molecular level.
Collapse
Affiliation(s)
- Zhi-Xuan Liu
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Ling Yang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Yong-Gang Chen
- Dalian University of Technology, No. 2 Linggong road, Dalian, 116024, Liaoning province, P. R. China
| | - Zhi-Yuan Tian
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Zhi-Yong Yang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| |
Collapse
|
42
|
Zhang XX, Li J, Niu YY. A Review of Crystalline Multibridged Cyclophane Cages: Synthesis, Their Conformational Behavior, and Properties. Molecules 2022; 27:molecules27207083. [PMID: 36296675 PMCID: PMC9607443 DOI: 10.3390/molecules27207083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
This paper reviews the most stable conformation of crystalline three-dimensional cyclophane (CP) achieved by self-assembling based on changing the type of aromatic compound or regulating the type and number of bridging groups. [3n]cyclophanes (CPs) were reported to form supramolecular compounds with bind organic, inorganic anions, or neutral molecules selectively. [3n]cyclophanes ([3n]CPs) have stronger donor capability relative to compound [2n]cyclophanes ([2n]CPs), and it is expected to be a new type of electron donor for the progress of fresh electron conductive materials. The synthesis, conformational behavior, and properties of crystalline multi-bridge rings are summarized and discussed.
Collapse
Affiliation(s)
- Xing-Xing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jian Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yun-Yin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
43
|
Gillespie J, Fanourakis A, Phipps RJ. Strategies That Utilize Ion Pairing Interactions to Exert Selectivity Control in the Functionalization of C-H Bonds. J Am Chem Soc 2022; 144:18195-18211. [PMID: 36178308 PMCID: PMC9562467 DOI: 10.1021/jacs.2c08752] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Electrostatic attraction between two groups of opposite charge, typically known as ion-pairing, offers unique opportunities for the design of systems to enable selectivity control in chemical reactions. Catalysis using noncovalent interactions is an established and vibrant research area, but it is noticeable that hydrogen bonding interactions are still the main interaction of choice in system design. Opposite charges experience the powerful force of Coulombic attraction and have the ability to exert fundamental influence on the outcome of reactions that involve charged reagents, intermediates or catalysts. In this Perspective, we will examine how ion-pairing interactions have been used to control selectivity in C-H bond functionalization processes. This broad class of reactions provides an interesting and thought-provoking lens through which to examine the application of ion-pairing design strategies because it is one that encompasses great mechanistic diversity, poses significant selectivity challenges, and perhaps most importantly is of immense interest to synthetic chemists in both industry and academia. We survey reactions that proceed via radical and ionic mechanisms alongside those that involve transition metal catalysis and will deal with control of site-selectivity and enantioselectivity. We anticipate that as this emerging area develops, it will become an ever-more important design strategy for selectivity control.
Collapse
Affiliation(s)
| | | | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
44
|
Tomasini M, Caporaso L, Trouvé J, Poater J, Gramage‐Doria R, Poater A. Unravelling Enzymatic Features in a Supramolecular Iridium Catalyst by Computational Calculations. Chemistry 2022; 28:e202201970. [PMID: 35788999 PMCID: PMC9804516 DOI: 10.1002/chem.202201970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 01/05/2023]
Abstract
Non-biological catalysts following the governing principles of enzymes are attractive systems to disclose unprecedented reactivities. Most of those existing catalysts feature an adaptable molecular recognition site for substrate binding that are prone to undergo conformational selection pathways. Herein, we present a non-biological catalyst that is able to bind substrates via the induced fit model according to in-depth computational calculations. The system, which is constituted by an inflexible substrate-recognition site derived from a zinc-porphyrin in the second coordination sphere, features destabilization of ground states as well as stabilization of transition states for the relevant iridium-catalyzed C-H bond borylation of pyridine. In addition, this catalyst appears to be most suited to tightly bind the transition state rather than the substrate. Besides these features, which are reminiscent of the action modes of enzymes, new elementary catalytic steps (i. e. C-B bond formation and catalyst regeneration) have been disclosed owing to the unique distortions encountered in the different intermediates and transition states.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut de Química Computacional i CatàlisiDepartament de QuímicaUniversitat de Gironac/Mª Aurèlia Capmany 6917003GironaCataloniaSpain,Department of ChemistryUniversity of SalernoVia Ponte Don Melillo84084FiscianoItaly
| | - Lucia Caporaso
- Department of ChemistryUniversity of SalernoVia Ponte Don Melillo84084FiscianoItaly
| | | | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de Barcelona08028BarcelonaSpain,ICREA08010BarcelonaSpain
| | | | - Albert Poater
- Institut de Química Computacional i CatàlisiDepartament de QuímicaUniversitat de Gironac/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| |
Collapse
|
45
|
Kundu S, Mondal D, Elramadi E, Valiyev I, Schmittel M. Parallel Allosteric Inhibition of Shuttling Motion and Catalysis in a Silver(I)-loaded [2]Rotaxane. Org Lett 2022; 24:6609-6613. [PMID: 36053156 DOI: 10.1021/acs.orglett.2c02609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A dynamic silver(I)-loaded [2]rotaxane shuttle (k298 = 135 kHz) was converted allosterically into a conformationally restricted [2]rotaxane due to the creation of a bulky imine in the center of the axle component. Only the dynamic silver(I)-loaded [2]rotaxane was able to catalyze a 6-endo-cyclization reaction, whereas the static one was catalytically quiet. The mechanism of catalyst deactivation was elucidated.
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Isa Valiyev
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
46
|
Hopping protons in supramolecular catalysis. Nat Chem 2022; 14:969-971. [PMID: 36028621 DOI: 10.1038/s41557-022-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Hkiri S, Steinmetz M, Schurhammer R, Sémeril D. Encapsulated Neutral Ruthenium Catalyst for Substrate‐Selective Oxidation of Alcohols. Chemistry 2022; 28:e202201887. [DOI: 10.1002/chem.202201887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shaima Hkiri
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Maxime Steinmetz
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Rachel Schurhammer
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140-Chimie de la Matière Complexe Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
48
|
Feng A, Zhou Y, Al-Shebami MAY, Chen L, Pan Z, Xu W, Zhao S, Zeng B, Xiao Z, Yang Y, Hong W. σ-σ Stacked supramolecular junctions. Nat Chem 2022; 14:1158-1164. [PMID: 35902741 DOI: 10.1038/s41557-022-01003-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Intermolecular charge transport plays an essential role in organic electronic materials and biological systems. To date, experimental investigations of intermolecular charge transport in molecular materials and electronic devices have been restricted to conjugated systems in which π-π stacking interactions are involved. Herein we demonstrate that the σ-σ stacking interactions between neighbouring non-conjugated molecules offer an efficient pathway for charge transport through supramolecular junctions. The conductance of σ-σ stacked molecular junctions formed between two non-conjugated cyclohexanethiol or single-anchored adamantane molecules is comparable to that of π-π stacked molecular junctions formed between π-conjugated benzene rings. The current-voltage characteristics and flicker noise analysis demonstrate the existence of stacked molecular junctions formed between the electrode pairs and exhibit the characteristics of through-space charge transport. Density functional theory calculations combined with the non-equilibrium Green's function method reveal that efficient charge transport occurs between two molecules configured with σ-σ stacking interactions.
Collapse
Affiliation(s)
- Anni Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Mohammed A Y Al-Shebami
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Zhichao Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Biaofeng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
49
|
Gorai T, Lovitt JI, Umadevi D, McManus G, Gunnlaugsson T. Hierarchical supramolecular co-assembly formation employing multi-component light-harvesting charge transfer interactions giving rise to long-wavelength emitting luminescent microspheres. Chem Sci 2022; 13:7805-7813. [PMID: 35865882 PMCID: PMC9258320 DOI: 10.1039/d2sc02097a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Charge transfer (CT) interaction induced formation of a hierarchical supramolecular assembly has attracted attention due to its wide diversity of structural and functional characteristics. In the present work, we report the generation of green luminescent microspheres from the charge transfer interaction induced co-assembly of a bis-naphthyl dipicolinic amide (DPA) derivative with tetracyanobenzene (TCNB) for the first time. The properties of these self-assemblies were studied both in solution and the solid-state using spectroscopic and a variety of microscopy techniques. The X-ray crystal structure analysis showed a mixed stack arrangement of DPA and TCNB. The molecular orbital and energy level calculations confirm the charge transfer complex formation between DPA and TCNB. Furthermore, energy transfer was observed from the green luminescent CT complex to a red-emitting dye, pyronin Y, in the microsphere matrix, leading to the formation of a light-harvesting tri-component self-assembly.
Collapse
Affiliation(s)
- Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad (IITPKD) Palakkad-678557 Kerala India
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
50
|
Bierschenk SM, Pan JY, Settineri NS, Warzok U, Bergman RG, Raymond KN, Toste FD. Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. J Am Chem Soc 2022; 144:11425-11433. [PMID: 35700232 DOI: 10.1021/jacs.2c04182] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly enantioselective aza-Darzens reaction (up to 99% ee) catalyzed by an enantiopure supramolecular host has been discovered. To understand the role of host structure on reaction outcome, nine new gallium(III)-based enantiopure supramolecular assemblies were prepared via substitution of the external chiral amide. Despite the distal nature of the substitution in these catalysts, changes in enantioselectivity (61 to 90% ee) in the aziridine product were observed. The enantioselectivities were correlated to the flexibility of the supramolecular host scaffold as measured by the kinetics of exchange of a model cationic guest. This correlation led to the development of a best-in-class catalyst by substituting the gallium(III)-based host with one based on indium(III), which generated the most flexible and selective catalyst.
Collapse
Affiliation(s)
- Stephen M Bierschenk
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Judy Y Pan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ulrike Warzok
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|