1
|
Jones RR, Odenkirk MT, Bertoldo J, Prenni JE. Contextualizing toxic elements in the diet: a case for integration of toxic element data into food databases. Front Nutr 2024; 11:1473282. [PMID: 39360280 PMCID: PMC11445017 DOI: 10.3389/fnut.2024.1473282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Food composition data plays a key role in the practice of nutrition. However, nutrition professionals may currently lack the resources they need to integrate information about toxic elements - such as arsenic, cadmium, and lead - in food into the advice they give consumers. Geographic, sociocultural, and individual factors may impact not only the toxic element content of food, but also how the balance between potentially toxic and health-promoting components of food must be weighed. Better integration and contextualization of toxic element data into key food databases could allow for more nuanced, comprehensive nutrition guidance.
Collapse
Affiliation(s)
- Rachel R Jones
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Melanie T Odenkirk
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | | | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Ashcraft LE, Cabrera KI, Lane-Fall MB, South EC. Leveraging Implementation Science to Advance Environmental Justice Research and Achieve Health Equity through Neighborhood and Policy Interventions. Annu Rev Public Health 2024; 45:89-108. [PMID: 38166499 DOI: 10.1146/annurev-publhealth-060222-033003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Environmental justice research is increasingly focused on community-engaged, participatory investigations that test interventions to improve health. Such research is primed for the use of implementation science-informed approaches to optimize the uptake and use of interventions proven to be effective. This review identifies synergies between implementation science and environmental justice with the goal of advancing both disciplines. Specifically, the article synthesizes the literature on neighborhood-, community-, and policy-level interventions in environmental health that address underlying structural determinants (e.g., structural racism) and social determinants of health. Opportunities to facilitate and scale the equitable implementation of evidence-based environmental health interventions are highlighted, using urban greening as an illustrative example. An environmental justice-focused version of the implementation science subway is provided, which highlights these principles: Remember and Reflect, Restore and Reclaim, and Reinvest. The review concludes with existing gaps and future directions to advance the science of implementation to promote environmental justice.
Collapse
Affiliation(s)
- Laura Ellen Ashcraft
- Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of General Internal Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Keven I Cabrera
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Urban Health Lab, Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meghan B Lane-Fall
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Implementation Science Center (PISCE), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugenia C South
- Urban Health Lab, Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Aktar S, Islam ARMT, Mia MY, Jannat JN, Islam MS, Siddique MAB, Masud MAA, Idris AM, Pal SC, Senapathi V. Assessing metal(loid)s-Induced long-term spatiotemporal health risks in Coastal Regions, Bay of Bengal: A chemometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33141-z. [PMID: 38625466 DOI: 10.1007/s11356-024-33141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.
Collapse
Affiliation(s)
- Shammi Aktar
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Jannatun Nahar Jannat
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| |
Collapse
|
4
|
Di Duca F, Montuori P, De Rosa E, De Simone B, Russo I, Nubi R, Triassi M. Assessing Heavy Metals in the Sele River Estuary: An Overview of Pollution Indices in Southern Italy. TOXICS 2024; 12:38. [PMID: 38250994 PMCID: PMC10819315 DOI: 10.3390/toxics12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Rapid industrialization, coupled with a historical lack of understanding in toxicology, has led in an increase in estuary pollution, frequently resulting in unexpected environmental situations. Therefore, the occurrence of heavy metals (HMs) constitutes a major environmental issue, posing a serious risk both to aquatic ecosystems and public health. This study aimed to evaluate the levels of eight HMs (As, Hg, Cd, Cr, Cu, Ni, Pb, and Zn) in water, suspended particles, and sediment near the Sele River estuary (Italy) in order to assess their environmental impacts on the sea and health risks for humans. The results revealed an increasing order of HM concentration according to the scheme suspended particulate matter (SPM) > sediment (SED) > dissolved phase (DP) and a moderate contamination status in sediment. The health risk assessment indicated that the non-carcinogenic risk was negligible. Carcinogenic risk, expressed as the incremental lifetime cancer risk (ILCR), was negligible for Cd and Ni and within tolerable limits for As, Pb, and Cr. The findings suggested that, even if there are currently no specific limits for chemical parameters in the transitional waters of Italy, monitoring systems should be implemented to determine pollution levels and implement effective steps to improve river water quality and reduce human health risks.
Collapse
Affiliation(s)
| | - Paolo Montuori
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy (R.N.)
| | | | | | | | | | | |
Collapse
|
5
|
Salahel Din K, Mahmoud F. Oral and dermal exposure to natural radionuclides and heavy metals in water and sediments of Nile River, Qena, southern Egypt. Sci Rep 2023; 13:22098. [PMID: 38092865 PMCID: PMC10719346 DOI: 10.1038/s41598-023-49389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
This study assessed the levels of natural radionuclides (226Ra, 232Th, and 40K) and heavy metals (Hg, Fe, Cr, As, Zn, Cu, Cd, and Pb) in surface water and sediment samples from the Nile River in Qena Governorate, southern Egypt, using a gamma-ray spectrometer, 3" NaI (Tl) scintillation detector coupled with 1024 multi-channel analyzer, and an atomic absorption spectrometer. In surface water and sediments, the average activity concentrations of natural radionuclides were 40K (4.73 Bq L-1; 395.76 Bq kg-1) > 226Ra (0.41 Bq L-1; 18.14 Bq kg-1) > 232Th (0.30 Bq L-1; 17.98 Bq kg-1). The average heavy metal concentrations in surface water in µg L-1 were Fe (121.0) > Zn (33.80) > Cr (28.0) > Cu (8.62) > Pb (8.35) > As (1.19) > Hg (0.81) > Cd (0.12). In Nile sediments the concentrations in mg kg-1 were Fe (1670.0) > Zn (207.0) > Cr (29.40) > Cu (16.20) > Pb (4.32) > Hg (0.41) > Cd (0.31) > As (0.14). The heavy metal evaluation index (HMEI) calculations for water samples revealed that 31% of the samples were suitable for domestic use, while 69% were not. The geo-accumulation index, enrichment factor, and ecological risk factor for sediments were estimated, showing extreme enrichment for Hg and Zn with high ecological risk for Hg. Health risks for adults were evaluated due to oral and dermal exposure to Nile surface water and sediments from the study area, indicating minimal radiological risks and potential carcinogenic and non-carcinogenic risks from the metals.
Collapse
Affiliation(s)
- Khaled Salahel Din
- Physics Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| | | |
Collapse
|
6
|
Mafulul SG, Joel EB, Gushit J. Health risk assessment of potentially toxic elements (PTEs) concentrations in soil and fruits of selected perennial economic trees growing naturally in the vicinity of the abandoned mining ponds in Kuba, Bokkos Local Government Area (LGA) Plateau State, Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5893-5914. [PMID: 37183215 DOI: 10.1007/s10653-023-01600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
This study was designed to determine the level of potentially toxic elements (PTEs) contamination in soil and selected fruits and assesses the health risk of inhabitants in the abandoned tin mining community in Kuba, Bokkos LGA. Samples of the abandoned mine soil and selected fruits mango (Magnifera indica), guava (Psidium guajava), avocado pear (Persea americana), and banana (Musa spp)) from the vicinity of the abandoned mine were analyzed for the presence of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the levels of all the PTEs analysed in the abandoned mine soil samples were significantly (p < 0.05) higher than their corresponding values in the control soil from the non-mining area. Except for Cd, the mean concentrations of As, Cr, Cu, Mn, Ni, and Pb were significantly higher than the FAO/WHO maximum permissible limit. Except for Zn in guava fruits and Cd in avocado fruits, the mean concentration of PTEs in fruits from abandoned mines was significantly (p < 0.05) higher than their corresponding control values. In contrast, the mean levels of As, Cr, Cu, Mn, Ni, and Pb in the investigated fruits were significantly (p < 0.05) higher than FAO/WHO maximum permissible limits established for fruits. The studied fruits remarkably took up and bioaccumulated PTEs from the abandoned mine soil. Mango fruit significantly bioaccumulated As (5.40), Cd (3.40), and Zn (2.81). Guava fruit bioaccumulated As (1.50) and Cd (4.60), while avocado bioaccumulated As (3.53), Cd (3.80), and Zn (6.48). Banana bioaccumulated As (0.96), Cd (0.80), and Zn (6.78). The hazard quotient values for PTEs investigated in fruits for adults, and children were several folds greater than 1. The hazard index (HI) for the PTEs through consuming fruits for children and adults was greater than 1, indicating that possible health risks exist for both local children and adults. However, the HI values for the children were higher than those for adults, implying that children were exposed to more potential noncarcinogenic health risks from PTEs than adults. The total cancer risk (TCR) values for Cr and Ni for all the fruits studied were within 10-3-10-1, which is several-fold higher than the permissible limits (10-6 and < 10-4), indicating high carcinogenic risk. TCR values for Cd and Pb in all the fruits, except for Cd in guava and avocado fruits for children, were within the range of 10-5-10-4, indicating that they are associated with moderate risk. The CR values for all the PTEs in all the fruits for adults and children except for mango fruit adults were within 10-2-10-1, indicating high carcinogenic risk. In conclusion, the results and risk assessment provided by this study indicate that human exposure to fruits from abandoned mines suggests a high vulnerability of the local community to PTE toxicity. Long-term preventive measures to safeguard the health of the residents need to be put in place.
Collapse
Affiliation(s)
- Simon Gabriel Mafulul
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, P.M.B. 2084, Jos, Plateau State, Nigeria.
| | - Enoch Banbilbwa Joel
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, P.M.B. 2084, Jos, Plateau State, Nigeria
| | - John Gushit
- Department of Science Laboratory Technology, Faculty of Natural Sciences, University of Jos, P.M.B. 2084, Jos, Plateau State, Nigeria
| |
Collapse
|
7
|
Schiavo B, Meza-Figueroa D, Vizuete-Jaramillo E, Robles-Morua A, Angulo-Molina A, Reyes-Castro PA, Inguaggiato C, Gonzalez-Grijalva B, Pedroza-Montero M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3229-3250. [PMID: 36197533 DOI: 10.1007/s10653-022-01403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 06/01/2023]
Abstract
Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg-1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg-1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min-1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min-1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04150, Mexico City, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico.
| | - Efrain Vizuete-Jaramillo
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Agustin Robles-Morua
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Pablo A Reyes-Castro
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Martin Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
8
|
Baccarelli A, Dolinoy DC, Walker CL. A precision environmental health approach to prevention of human disease. Nat Commun 2023; 14:2449. [PMID: 37117186 PMCID: PMC10147599 DOI: 10.1038/s41467-023-37626-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/24/2023] [Indexed: 04/30/2023] Open
Abstract
Human health is determined by the interaction of our environment with the genome, epigenome, and microbiome, which shape the transcriptomic, proteomic, and metabolomic landscape of cells and tissues. Precision environmental health is an emerging field leveraging environmental and system-level ('omic) data to understand underlying environmental causes of disease, identify biomarkers of exposure and response, and develop new prevention and intervention strategies. In this article we provide real-life illustrations of the utility of precision environmental health approaches, identify current challenges in the field, and outline new opportunities to promote health through a precision environmental health framework.
Collapse
Affiliation(s)
- Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Abstract
Taking stock of environmental justice (EJ) is daunting. It is at once a scholarly field, an ongoing social movement, and an administrative imperative adopted by government agencies and incorporated into legislation. Moreover, within academia, it is multidisciplinary and multimethodological, comprising scholars who do not always speak to one another. Any review of EJ is thus necessarily restrictive. This article explores several facets of EJ activism. One is its coalitional and "inside-outside" orientation. EJ activists are constantly forming alliances with other stakeholders, but these coalitions do not flout the importance of engaging with formal institutions. The review next turns to one set of such institutions-the courts and regulatory agencies-to see how well EJ claims have fared there. I then survey scientific findings that have been influenced by EJ. The review concludes with future directions for activists and scholars to consider: the changing nature of EJ coalitions, fragmentation within EJ and with other fields, the historical roots of environmental injustice, and opportunities for stronger infusion of the EJ lens.
Collapse
Affiliation(s)
- Merlin Chowkwanyun
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA;
| |
Collapse
|
10
|
Muscatell KA, Alvarez GM, Bonar AS, Cardenas MN, Galvan MJ, Merritt CC, Starks MD. Brain-body pathways linking racism and health. AMERICAN PSYCHOLOGIST 2022; 77:1049-1060. [PMID: 36595402 PMCID: PMC9887645 DOI: 10.1037/amp0001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Racial disparities in health are a major public health problem in the United States, especially when comparing chronic disease morbidity and mortality for Black versus White Americans. These health disparities are primarily due to insidious anti-Black racism that permeates American history, current culture and institutions, and interpersonal interactions. But how does racism get under the skull and the skin to influence brain and bodily processes that impact the health of Black Americans? In the present article, we present a model describing the possible neural and inflammatory mechanisms linking racism and health. We hypothesize that racism influences neural activity and connectivity in the salience and default mode networks of the brain and disrupts interactions between these networks and the executive control network. This pattern of neural functioning in turn leads to greater sympathetic nervous system signaling, hypothalamic-pituitary-adrenal axis activation, and increased expression of genes involved in inflammation, ultimately leading to higher levels of proinflammatory cytokines in the body and brain. Over time, these neural and physiological responses can lead to chronic physical and mental health conditions, disrupt well-being, and cause premature mortality. Given that research in this area is underdeveloped to date, we emphasize opportunities for future research that are needed to build a comprehensive mechanistic understanding of the brain-body pathways linking anti-Black racism and health. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Keely A Muscatell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Gabriella M Alvarez
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Adrienne S Bonar
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Megan N Cardenas
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Manuel J Galvan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Carrington C Merritt
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Maurryce D Starks
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| |
Collapse
|
11
|
Santos M, Moreira H, Cabral JA, Gabriel R, Teixeira A, Bastos R, Aires A. Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13715. [PMID: 36294295 PMCID: PMC9603381 DOI: 10.3390/ijerph192013715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 05/07/2023]
Abstract
Home gardening has a long history that started when humans became sedentary, being traditionally considered an accessible source of food and medicinal plants to treat common illnesses. With trends towards urbanization and industrialization, particularly in the post-World War II period, the importance of home gardens as important spaces for growing food and medicinal plants reduced and they began to be increasingly seen as decorative and leisure spaces. However, the growing awareness of the negative impacts of agricultural intensification and urbanization for human health, food quality, ecosystem resilience, and biodiversity conservation motivated the emergence of new approaches concerning home gardens. Societies began to question the potential of nearby green infrastructures to human wellbeing, food provisioning, and the conservation of traditional varieties, as well as providers of important services, such as ecological corridors for wild species and carbon sinks. In this context. and to foster adaptive and resilient social-ecological systems, our supported viewpoint intends to be more than an exhaustive set of perceptions, but a reflection of ideas about the important contribution of home gardens to sustainable development. We envision these humble spaces strengthening social and ecological components, by providing a set of diversified and intermingled goods and services for an increasingly urban population.
Collapse
Affiliation(s)
- Mário Santos
- Laboratory of Fluvial and Terrestrial Ecology, Innovation and Development Center, University of Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal
- Laboratory of Ecology and Conservation, Federal Institute of Education, Science and Technology of Maranhão, Rua do Comercio, 100, Buriticupu 65393-000, MA, Brazil
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro) and Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Helena Moreira
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro) and Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department of Sports, Exercise and Health Sciences, University of Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal
- CIDESD—Research Center in Sports Sciences, Health Sciences and Human Development, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - João Alexandre Cabral
- Laboratory of Fluvial and Terrestrial Ecology, Innovation and Development Center, University of Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro) and Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Ronaldo Gabriel
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro) and Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department of Sports, Exercise and Health Sciences, University of Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal
| | - Andreia Teixeira
- Department of Sports, Exercise and Health Sciences, University of Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal
| | - Rita Bastos
- Laboratory of Fluvial and Terrestrial Ecology, Innovation and Development Center, University of Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal
- CIBIO/InBIO/BioPolis, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Alfredo Aires
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro) and Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
Mafulul SG, Potgieter JH, Longdet IY, Okoye ZSC, Potgieter-Vermaak SS. Health Risks for a Rural Community in Bokkos, Plateau State, Nigeria, Exposed to Potentially Toxic Elements from an Abandoned Tin Mine. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:47-66. [PMID: 35678870 DOI: 10.1007/s00244-022-00936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The past mining activities in Bokkos Local Government Area (LGA) were performed in an uncontrolled way and gave rise to many abandoned ponds now serving as domestic and irrigation water sources. Past research focused mainly on the environmental impact, and we show for the first time what the human health risk through consumption of contaminated food crops is in these communities. This study was designed to determine the level of Potentially Toxic Elements (PTEs) contamination in pond water, soil, and food crops and assess the health risk of inhabitants in the abandoned tin mining community in Bokkos LGA. Samples of the mining pond water, soil, and selected food crops from farms irrigated with the pond water: bitter leaf (Vernonia amygdalina), pepper (Piper nigrum), okra (Albelmoschus esculentus), maize (Zea mays), sweet potato (Ipomoea batatas), and Irish potato (Solanum tuberosum) were analyzed for each of the eight PTEs (viz. Cu, Cr, Fe, Mn, Ni, Zn, Cd, and Pb) using inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained showed that the levels of all the PTEs analyzed in the soil, pond water, and selected food crops except for Fe and Mn in soil and Cd in sweet potato were greater than their corresponding background area values (p < 0.05). Also, the mean concentrations of all the PTEs except for Cu in pond water were significantly (p < 0.05) higher than the WHO maximum permissible limit. With the exception of Fe, Ni, and Zn for pepper and okra, Cu and Fe for maize grains as well as Cu, Ni, and Zn for sweet and Irish potatoes and Fe and Cd for sweet potato, the mean concentrations of PTEs in the food crops were significantly higher than WHO maximum permissible limit. The EF values of Cd (0.39); Cu (3.59) and Ni (2.81); Cr (9.38) and Pb (17.84); and Mn (178.13) and Zn (83.22) classified the soil as minimally, moderately, significantly, and extremely highly enriched, respectively. The PI values of all the PTEs in the soil studied were all greater than 5, indicating that the soils were severely contaminated. There was evidence that food crops significantly bioaccumulated PTEs either as a result of contaminated soil and/or irrigation water. The bioaccumulation was not uniform and was dominated by transfer from the polluted irrigation water. The bitter leaf, okra, and to some extent maize had the highest transfer of PTEs, and Mn, Cu, and Zn had the highest bioaccumulation in the food crops investigated. The hazardous index (HI) for the eight PTEs through the consumption of food crops was 107 for children and 33 for adults which greatly exceeded the recommended limit of 1, thus indicating that possible health risks exist for both local children and adults. For every PTE, the values of HI for children are many-fold higher than those for adults, which is of particular concern due to the high HI values for Pb found for maize consumption, a typical staple food. The cancer risk values for Cr and Ni for all the food crops were within 10-3-10-1 which is several fold higher than the permissible limits (10-6 and < 10-4) indicating the high carcinogenic risk. It can be concluded based on the results and risk assessment provided by this study that human exposure to mining pond water and soil in farms around the mining pond through the food chain suggests the high vulnerability of the local community to PTE toxicity. Long-term preventive measures to safeguard the health of the residents need to be put in place.
Collapse
Affiliation(s)
- Simon Gabriel Mafulul
- Department of Biochemistry, Faculty of Medical Sciences, University of Jos, Plateau State, P.M.B. 2084, Jos, Nigeria.
| | - Johannes H Potgieter
- Ecology & Environment Research Centre, Department of Natural Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Private Bag X3, PO Wits, Johannesburg, 2050, South Africa
| | - Ishaya Yohanna Longdet
- Department of Biochemistry, Faculty of Medical Sciences, University of Jos, Plateau State, P.M.B. 2084, Jos, Nigeria
| | - Zebulon S C Okoye
- Department of Biochemistry, Faculty of Medical Sciences, University of Jos, Plateau State, P.M.B. 2084, Jos, Nigeria
| | - Sanja S Potgieter-Vermaak
- Ecology & Environment Research Centre, Department of Natural Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, PO Wits, Johannesburg, 2050, South Africa
| |
Collapse
|
13
|
Masri S, LeBrón AMW, Logue MD, Flores P, Ruiz A, Reyes A, Rubio JM, Wu J. Use of Radioisotope Ratios of Lead for the Identification of Historical Sources of Soil Lead Contamination in Santa Ana, California. TOXICS 2022; 10:toxics10060304. [PMID: 35736912 PMCID: PMC9229492 DOI: 10.3390/toxics10060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022]
Abstract
Lead (Pb) is an environmental neurotoxicant that has been associated with a wide range of adverse health conditions, and which originates from both anthropogenic and natural sources. In California, the city of Santa Ana represents an urban environment where elevated soil lead levels have been recently reported across many disadvantaged communities. In this study, we pursued a community-engaged research approach through which trained “citizen scientists” from the surrounding Santa Ana community volunteered to collect soil samples for heavy metal testing, a subset of which (n = 129) were subjected to Pb isotopic analysis in order to help determine whether contamination could be traced to specific and/or anthropogenic sources. Results showed the average 206Pb/204Pb ratio in shallow soil samples to be lower on average than deep samples, consistent with shallow samples being more likely to have experienced historical anthropogenic contamination. An analysis of soil Pb enrichment factors (EFs) demonstrated a strong positive correlation with lead concentrations, reinforcing the likelihood of elevated lead levels being due to anthropogenic activity, while EF values plotted against 206Pb/204Pb pointed to traffic-related emissions as a likely source. 206Pb/204Pb ratios for samples collected near historical urban areas were lower than the averages for samples collected elsewhere, and plots of 206Pb/204Pb against 206Pb/207 showed historical areas to exhibit very similar patterns to those of shallow samples, again suggesting lead contamination to be anthropogenic in origin, and likely from vehicle emissions. This study lends added weight to the need for health officials and elected representatives to respond to community concerns and the need for soil remediation to equitably protect the public.
Collapse
Affiliation(s)
- Shahir Masri
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA 92697, USA;
- Correspondence: (S.M.); (J.W.)
| | - Alana M. W. LeBrón
- Department of Health, Society, and Behavior, Program in Public Health, University of California, Irvine, CA 92697, USA;
- Department of Chicano/Latino Studies, University of California, Irvine, CA 92697, USA
| | - Michael D. Logue
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA 92697, USA;
| | - Patricia Flores
- Orange County Environmental Justice, Santa Ana, CA 92705, USA;
| | - Abel Ruiz
- Jóvenes Cultivando Cambios, Santa Ana, CA 92705, USA;
| | - Abigail Reyes
- Community Resilience, University of California, Irvine, CA 92697, USA;
| | - Juan Manuel Rubio
- School of Humanities, University of California, Irvine, CA 92697, USA;
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA 92697, USA;
- Correspondence: (S.M.); (J.W.)
| |
Collapse
|
14
|
Fernández-Viña N, Chen Y, Schwarz K. The Current State of Community Engagement in Urban Soil Pollution Science. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.800464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental burdens disproportionately impact the health of communities of color and low-income communities. Contemporary and legacy industry and land development may pollute soils with pesticides, petroleum products, and trace metals that can directly and indirectly impact the health of frontline communities. Past efforts to study environmental injustice have often excluded those most impacted, created distrust of researchers and other experts among frontline communities, and resulted in little to no structural change. Prevailing research methods value formal knowledge systems, while often dismissing the knowledge of those most harmed by environmental hazards. Community science has emerged as a process of doing science that centers the participation of community members, who may co-develop research questions, inform study methods, collect data, interpret findings, or implement projects. While community science is one of several research methods that can advance community goals, it can also be implemented in ways that are extractive or harm communities. Research on best practices for community science is robust; however, how community science has been used in urban soil research is not well understood. We identified sixteen relevant urban soil studies published between 2008 and 2021 that used community science methods or engaged with community members around soil pollution. We then assessed the selected studies using two community engagement models to better understand community engagement practices in urban soil pollution science. The Spectrum of Community Engagement to Ownership (SCEO) model, which organizes engagement from level 0 (ignore) to 5 (defer to) was used to assess all studies. Studies that explicitly aimed to co-develop research with the community were additionally assessed using the Urban Sustainability Directors Network High Impact Practices (USDN HIPs). The majority of the studies assessed were aligned with levels 1–3 of the SCEO. Studies assessed as levels 4–5 of the SCEO were associated with delegating power to communities, community engages decision-making, creating space for community voices, and remediation efforts. We propose that future urban remediation soil pollution work that engages at higher levels of the SCEO and employs USDN HIPs, will be more effective at addressing crucial environmental health challenges by supporting, equitable, inclusive, and sustainable solutions.
Collapse
|
15
|
Fajardo C, Martín C, Garrido E, Sánchez-Fortún S, Nande M, Martín M, Costa G. Copper and Chromium toxicity is mediated by oxidative stress in Caenorhabditis elegans: The use of nanoparticles as an immobilization strategy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103846. [PMID: 35288336 DOI: 10.1016/j.etap.2022.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Environmental contamination by heavy metals (HMs) has impelled searching for stabilization strategies, where the use of zero-valent iron nanoparticles (nZVI) is considered a promising option. We have evaluated the combined effect of Cu(II)-Cr(VI) on two Caenorhabditis elegans strains (N2 and RB1072 sod-2 mutant) in aqueous solutions and in a standard soil, prior and after treatment with nZVI (5% w/w). The results showed that HMs aqueous solutions had an intense toxic effect on both strains. Production of reactive oxygen species and enhanced expression of the heat shock protein Hsp-16.2 was observed, indicating increased HM-mediated oxidative stress. Toxic effects of HM-polluted soil on worms were higher for sod-2 mutant than for N2 strain. However, nZVI treatment significantly diminished all these effects. Our findings highlighted C. elegans as a sensitive indicator for HMs pollution and its usefulness to assess the efficiency of the nanoremediation strategy to decrease the toxicity of Cu(II)-Cr(VI) polluted environments.
Collapse
Affiliation(s)
- Carmen Fajardo
- Dpt. Biomedicine and Biotechnology, Faculty of Pharmacy, Universidad de Alcalá, 28805 Madrid, Spain.
| | - Carmen Martín
- Dpt. of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Technical University of Madrid (UPM), 3 Complutense Ave., 28040 Madrid, Spain
| | - Elena Garrido
- Dpt of Physiology. Faculty of Veterinary Sciences. Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Sebastian Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Mar Nande
- Dpt. of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Margarita Martín
- Dpt. of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Gonzalo Costa
- Dpt of Physiology. Faculty of Veterinary Sciences. Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| |
Collapse
|
16
|
Dietrich M, Shukle JT, Krekeler MPS, Wood LR, Filippelli GM. Using Community Science to Better Understand Lead Exposure Risks. GEOHEALTH 2022; 6:e2021GH000525. [PMID: 35372744 PMCID: PMC8859494 DOI: 10.1029/2021gh000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a neurotoxicant that particularly harms young children. Urban environments are often plagued with elevated Pb in soils and dusts, posing a health exposure risk from inhalation and ingestion of these contaminated media. Thus, a better understanding of where to prioritize risk screening and intervention is paramount from a public health perspective. We have synthesized a large national data set of Pb concentrations in household dusts from across the United States (U.S.), part of a community science initiative called "DustSafe." Using these results, we have developed a straightforward logistic regression model that correctly predicts whether Pb is elevated (>80 ppm) or low (<80 ppm) in household dusts 75% of the time. Additionally, our model estimated 18% false negatives for elevated Pb, displaying that there was a low probability of elevated Pb in homes being misclassified. Our model uses only variables of approximate housing age and whether there is peeling paint in the interior of the home, illustrating how a simple and successful Pb predictive model can be generated if researchers ask the right screening questions. Scanning electron microscopy supports a common presence of Pb paint in several dust samples with elevated bulk Pb concentrations, which explains the predictive power of housing age and peeling paint in the model. This model was also implemented into an interactive mobile app that aims to increase community-wide participation with Pb household screening. The app will hopefully provide greater awareness of Pb risks and a highly efficient way to begin mitigation.
Collapse
Affiliation(s)
- Matthew Dietrich
- Department of Earth SciencesIndiana University–Purdue University IndianapolisIndianapolisINUSA
| | - John T. Shukle
- Department of Earth SciencesIndiana University–Purdue University IndianapolisIndianapolisINUSA
| | - Mark P. S. Krekeler
- Department of Geology & Environmental Earth ScienceMiami UniversityOxfordOHUSA
- Department of Mathematical and Physical SciencesMiami University HamiltonHamiltonOHUSA
| | - Leah R. Wood
- Department of Earth SciencesIndiana University–Purdue University IndianapolisIndianapolisINUSA
| | - Gabriel M. Filippelli
- Department of Earth SciencesIndiana University–Purdue University IndianapolisIndianapolisINUSA
- Environmental Resilience InstituteIndiana University BloomingtonBloomingtonINUSA
| |
Collapse
|
17
|
Nguyen KT, Ahmed MB, Mojiri A, Huang Y, Zhou JL, Li D. Advances in As contamination and adsorption in soil for effective management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113274. [PMID: 34271355 DOI: 10.1016/j.jenvman.2021.113274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a heavy metal that causes widespread contamination and toxicity in the soil environment. This article reviewed the levels of As contamination in soils worldwide, and evaluated how soil properties (pH, clay mineral, organic matter, texture) and environmental conditions (ionic strength, anions, bacteria) affected the adsorption of As species on soils. The application of the adsorption isotherm models for estimating the adsorption capacities of As(III) and As(V) on soils was assessed. The results indicated that As concentrations in contaminated soil varying significantly from 1 mg/kg to 116,000 mg/kg, with the highest concentrations being reported in Mexico with mining being the dominating source. Regarding the controlling factors of As adsorption, soil pH, clay mineral and texture had demonstrated the most significant impacts. Both Langmuir and Freundlich isotherm models can be well fitted with As(III) and As(V) adsorption on soils. The Langmuir adsorption capacity varied in the range of 22-42400 mg/kg for As(V), which is greater than 45-8901 mg/kg for As(III). The research findings have enhanced our knowledge of As contamination in soil and its underlying controls, which are critical for the effective management and remediation of As-contaminated soil.
Collapse
Affiliation(s)
- Kien Thanh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| |
Collapse
|