1
|
Luo P, Ai J, Wang Q, Lou Y, Liao Z, Giampieri F, Battino M, Sieniawska E, Bai W, Tian L. Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice. Food Chem 2025; 469:142555. [PMID: 39708646 DOI: 10.1016/j.foodchem.2024.142555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Collapse
Affiliation(s)
- Peihuan Luo
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian Ai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiongyao Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yihang Lou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiwei Liao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Francesca Giampieri
- Department of Clinical Science, Polytechnic University of Marche, Ancona 60130, Italy; Research Group on Foods, Nutritional Biochemistry and Health, European University of Atlantico, Isabel Torres 21, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Science, Polytechnic University of Marche, Ancona 60130, Italy; Research Group on Foods, Nutritional Biochemistry and Health, European University of Atlantico, Isabel Torres 21, Santander 39011, Spain
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Bao C, Yan M, Diao M, Anastasiia U, Zhang X, Zhang T. Effect of Ganoderma lucidum water extract on flavor volatiles and quality characteristics of set-type yogurt. Food Chem 2025; 464:141687. [PMID: 39437680 DOI: 10.1016/j.foodchem.2024.141687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
This study investigated the effects of several concentrations of Ganoderma lucidum water extract (GLWE) (0, 0.5, 1.0, and 1.5 %) on set-type yogurt's flavor volatiles as well as the physicochemical, textural, and antioxidant activities of the yogurt during storage. The HS-SPME-GC-MS investigation found that adding GLWE increased the amount of flavor volatiles in yogurt, which improved the quality of flavor volatiles produced by the yogurt. The yogurt's water holding capacity, syneresis, color, and texture all showed optimum values at a 0.5 % GLWE concentration, and its total number of flavor volatiles reached 43. To sum up, the incorporation of GLWE at a 0.5 % concentration promotes the development of superior flavor volatiles in yogurt and enhances its qualitative attributes in contrast to the control group.
Collapse
|
3
|
Lei T, Qin Z, Liu L, Tan Z. A salt/salt aqueous two-phase system based on pH-switchable deep eutectic solvent for the extraction and separation of mulberry polysaccharides. Food Chem 2025; 462:141024. [PMID: 39217751 DOI: 10.1016/j.foodchem.2024.141024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
With the aim of expanding the potential application scope of mulberries, eleven pH-switchable deep eutectic solvents were screened for the ultrasonic-assisted extraction of mulberry polysaccharides, and a salt/salt aqueous two-phase system was constructed for the efficient separation of mulberry polysaccharides by regulating the system pH. DES-9 (tetraethylammonium chloride: octanoic acid molar ratio = 1: 2) with a critical response pH value of approximately 6.1 was concluded to be the best extraction solvent for extracting mulberry polysaccharides. A maximum polysaccharide extraction yield of 270.71 mg/g was obtained under the optimal conditions. The maximum polysaccharide extraction efficiency was 78.09 % for the pH-driven tetraethylammonium chloride/K2HPO4 aqueous two-phase system. An acidic β-pyran mulberry polysaccharide with a low-molecular weight of 9.26 kDa and a confirmed monosaccharide composition were obtained. This efficient and environmentally friendly polysaccharide separation method offers a new approach for the efficient extraction and utilization of other plant polysaccharides.
Collapse
Affiliation(s)
- Tian Lei
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Zongkui Qin
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Leilei Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China; Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China.
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
4
|
Ji C, Ma Y, Xie Y, Guo J, Ba H, Zhou Z, Zhao K, Yang M, He X, Zheng W. Isolation and purification of carbohydrate components in functional food: a review. RSC Adv 2024; 14:23204-23214. [PMID: 39045398 PMCID: PMC11265275 DOI: 10.1039/d4ra02748e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Medicinal plants, increasingly utilized in functional foods, possess potent therapeutic properties and health-promoting functions, with carbohydrates playing a crucial role and exhibiting a range of effects, such as antioxidant, antitumor, immune-enhancing, antibacterial, anticoagulant, and hypoglycemic activities. However, comprehensively, accurately, rapidly, and economically assessing the quality of carbohydrate components is challenging due to their diverse and complex nature. Additionally, the purification and identification of carbohydrates also guarantee related efficacy research. This paper offers a thorough review of research progress carried out by both domestic and international scholars in the last decade on extracting, purifying, separating, identifying, and determining the content of carbohydrate components from functional foods, which are mainly composed of medicinal plants, and also explores the potential for achieving comprehensive quantitative analysis and evaluating structure-activity relationships of carbohydrate components. These findings aim to serve as a valuable reference for the future development and application of natural carbohydrate components in functional food and medicine.
Collapse
Affiliation(s)
- Chao Ji
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Ying Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Yuxin Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Junli Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Haoran Ba
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Zheng Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Kongxiang Zhao
- The Animal, Plant & Foodstuff Inspection Center of Tianjin Customs Tianjin 300387 China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| |
Collapse
|
5
|
Pyo Y, Kwon KH, Jung YJ. Anticancer Potential of Flavonoids: Their Role in Cancer Prevention and Health Benefits. Foods 2024; 13:2253. [PMID: 39063337 PMCID: PMC11276387 DOI: 10.3390/foods13142253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The term "flavonoid" encompasses a group of plant compounds, predominantly flavonoids, present in fruits, vegetables, and other plant-based foods. These compounds deliver significant health benefits, including potent antioxidant properties that protect cells from free radicals, thereby mitigating aging and disease. We assessed study quality and bias using the Cochrane Risk of Bias tool and the Newcastle-Ottawa Scale. Inclusion criteria specified that the studies must examine a natural flavonoid from fruits, must involve animal or human trials, must be original studies, and must be English articles on the flavonoid's health and cancer-prevention effects, excluding conference abstracts and single-case studies. We conducted a comprehensive search of major databases including PubMed, Web of Science, Embase, SCOPUS, and Google Scholar, reviewing six clinical trials with total sample sizes of over 50 to 1500 participants. The results indicate that consuming flavonoid-rich fruits can aid in cancer prevention by targeting angiogenic and cancer-protective pathways. We specifically selected tomatoes, mulberries, Amazon grapes, apples, and citrus fruits due to their well-documented high levels of flavonoids and the robust clinical evidence supporting their physiological effects. In particular, citrus fruits contain additional beneficial phytochemicals that complement the action of flavonoids, enhancing their overall health effects. The anti-cancer mechanisms of flavonoids are not well-defined in the scientific literature, suggesting a gap that this study aims to address. Our study provides novel contributions by demonstrating how flavonoid supplementation induces anti-cancer effects through angiogenesis, anti-inflammatory actions, antioxidant-induced apoptosis, and modulation of pathways like PI3K/Akt and MAPK. These effects were particularly notable in the prevention and progression of breast, colon, liver, and lung cancers, with statistical significance (p < 0.05). By elucidating specific mechanisms and pathways, this study contributes to the understanding of flavonoids' role in cancer prevention and underscores the potential for developing natural anti-cancer therapeutics through the inclusion of flavonoid-rich fruits in the diet. Future research should focus on randomized controlled trials assessing long-term effects of flavonoid supplementation in diverse populations, exploring optimal dosages, and understanding interactions with conventional cancer therapies to provide comprehensive evidence for clinical applications.
Collapse
Affiliation(s)
- Yeonhee Pyo
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ki Han Kwon
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea;
| | - Yeon Ja Jung
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
6
|
Zhang L, Wang S, Zhang W, Chang G, Guo L, Li X, Gao W. Prospects of yam (Dioscorea) polysaccharides: Structural features, bioactivities and applications. Food Chem 2024; 446:138897. [PMID: 38430768 DOI: 10.1016/j.foodchem.2024.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Yam (Dioscorea) is a tuber crop cultivated for food security, revenue, and medicinal purposes. It has been used to treat diabetes, asthma, diarrhea, and other diseases. The main active ingredients in yam, polysaccharides, are regarded to be the important reason for its widespread applications. Now, a comprehensive review of research developments of yam polysaccharides (YPs) was presented to explore their prospects. We outlined the structural characteristics, biological activities, structure-activity relationships, and potential applications. Around 13 neutral components and 17 acidic components were separated. They exhibited various bioactivities, including immunomodulatory, hypoglycemic, hypolipidemic, antioxidant, gastrointestinal protective, anti-fatigue, and senile disease treatment activities, as well as prebiotic effect. Structure-activity relationships illustrated that unique structural properties, chemical modifications, and carried biopolymers could influence the bioactivities of YPs. The potential applications in medicine, food, and other fields have also been summarized.
Collapse
Affiliation(s)
- Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Shirui Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Weimei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Guanglu Chang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin 300402, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
7
|
Sang J, Zhao G, Koidis A, Wei X, Huang W, Guo Z, Wu S, Huang R, Lei H. Isolation, structural, biological activity and application of Gleditsia species seeds galactomannans. Carbohydr Polym 2024; 334:122019. [PMID: 38553218 DOI: 10.1016/j.carbpol.2024.122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Gleditsia fruits have been known as a valuable traditional Chinese herb for tens of centuries. Previous studies showed that the galactomannans are considered as one of the major bioactive components in Gleditsia fruits seeds (GSGs). Here, we systematically review the major studies of GSGs in recent years to promote their better understanding. The extraction methods of GSGs mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, acid extraction, and alkali extraction. The analysis revealed that GGSs exhibited in the form of semi-flexible coils, and its molecular weight ranged from 0.018 × 103 to 2.778 × 103 KDa. GSGs are composed of various monosaccharide constituents such as mannose, galactose, glucose, and arabinose. In terms of pharmacological effects, GSGs exhibit excellent activity in antioxidation, hypoglycemic, hypolipidemic, anti-inflammation. Moreover, GSGs have excellent bioavailability, biocompatibility, and biodegradability, which make them used in food additives, food packaging, pharmaceutical field, industry and agriculture. Of cause, the shortcomings of the current research and the potential development and future research are also highlighted. We believe our work provides comprehensive knowledge and underpinnings for further research and development of GSGs.
Collapse
Affiliation(s)
- Jiaqi Sang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Anastasios Koidis
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DJ, UK
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
8
|
Li R, Wang J, Liu J, Li M, Lu J, Zhou J, Zhang M, Ferri N, Chen H. Mulberry leaf and its effects against obesity: A systematic review of phytochemistry, molecular mechanisms and applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155528. [PMID: 38555774 DOI: 10.1016/j.phymed.2024.155528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Obesity and hyperlipidemia can induce a variety of diseases, and have become major health problems worldwide. How to effectively prevent and control obesity has become one of the hot-spots of contemporary research. Mulberry leaf is the dried leaf of Morus alba L., which is approved by the Ministry of Health as a "homology of medicine and food", rich in diverse active constituents and with a variety of health effects including anti-obesity and anti-hyperlipidemia activities. PURPOSE The review attempts to summarize and provide the molecular basis, mechanism, safety and products for further exploration and application of mulberry leaf on the treatment on the control of weight gain and obesity. METHODS This review is conducted by using ScienceDirect, PubMed, CNKI and Web of Science databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS Based on the research progress of domestic and foreign scholars, the effective phytochemicals, molecular mechanisms and product applications of mulberry leaf in the prevention and treatment of obesity and related metabolic diseases were summarized. CONCLUSION Mulberry leaf has excellent medicinal and health care value in obesity treatment. However, its pharmacodynamic substance basis and molecular mechanisms need to be further studied.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, Padua 535131, Italy
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
9
|
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int J Mol Sci 2024; 25:5333. [PMID: 38791372 PMCID: PMC11121110 DOI: 10.3390/ijms25105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.A.); (Y.T.); (J.W.); (J.Z.); (X.W.); (D.S.)
| |
Collapse
|
10
|
Wang Y, Ai Q, Gu M, Guan H, Yang W, Zhang M, Mao J, Lin Z, Liu Q, Liu J. Comprehensive overview of different medicinal parts from Morus alba L.: chemical compositions and pharmacological activities. Front Pharmacol 2024; 15:1364948. [PMID: 38694910 PMCID: PMC11061381 DOI: 10.3389/fphar.2024.1364948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Morus alba L., a common traditional Chinese medicine (TCM) with a centuries-old medicinal history, owned various medicinal parts like Mori folium, Mori ramulus, Mori cortex and Mori fructus. Different medical parts exhibit distinct modern pharmacological effects. Mori folium exhibited analgesic, anti-inflammatory, hypoglycemic action and lipid-regulation effects. Mori ramulus owned anti-bacterial, anti-asthmatic and diuretic activities. Mori cortex showed counteraction action of pain, inflammatory, bacterial, and platelet aggregation. Mori fructus could decompose fat, lower blood lipids and prevent vascular sclerosis. The main chemical components in Morus alba L. covered flavonoids, phenolic compounds, alkaloids, and amino acids. This article comprehensively analyzed the recent literature related to chemical components and pharmacological actions of M. alba L., summarizing 198 of ingredients and described the modern activities of different extracts and the bioactive constituents in the four parts from M. alba L. These results fully demonstrated the medicinal value of M. alba L., provided valuable references for further comprehensive development, and layed the foundation for the utilization of M. alba L.
Collapse
Affiliation(s)
- Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qing Ai
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Wenqin Yang
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhao Lin
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
11
|
Hu B, Zhou W, Deng X, Sun M, Sun R, Li Q, Ren J, Jiang W, Wang Y, Liu S, Zhan J. Structural analysis of polysaccharide from Inonotus obliquus and investigate combined impact on the sex hormones, intestinal microbiota and metabolism in SPF male mice. Int J Biol Macromol 2024; 262:129686. [PMID: 38331071 DOI: 10.1016/j.ijbiomac.2024.129686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
The dysregulation of sex hormone levels is associated with metabolic disorders such as obesity. Inonotus obliquus polysaccharide (IOP) exhibits a promising therapeutic effect on conditions like obesity and diabetes, potentially linked to its influence on intestinal microbiota and metabolism. The exact cause and mechanisms that link sex hormones, gut microbiota and metabolism are still unknown. In this research, we examined the molecular weight, monosaccharide composition, and glycosidic bond type of IOP. We found that IOP mostly consists of alpha-structured 6‑carbon glucopyranose, with a predominant (1 → 4) linkage to monosaccharides and a uniform distribution. Following this, we administered two different concentrations of IOP to mice through gavage. The results of the enzyme-linked immunosorbent assay (ELISA) demonstrated a significant increase in testosterone (T) levels in the IOP group as compared to the control group. Additionally, the results of tissue immunofluorescence indicated that increased IOP led to a decrease in adiponectin content and an increase in SET protein expression. The study also revealed changes in the intestinal microbiota and metabolic changes in mice through 16S rRNA data and non-targeted LC-MS data, respectively. The study also found that IOP mainly affects pathways linked to glycerophospholipid metabolism. In addition, it has been observed that there is an increase in the number of beneficial bacteria, such as the Eubacterium coprostanoligenes group and g.Lachnospiraceae NK4A136 group, while the levels of metabolites that are linked to obesity or diabetes, such as 1,5-anhydrosorbitol, are reduced. Furthermore, biomarker screening has revealed that the main microorganism responsible for the differences between the three groups is g.Erysipelatoclostridiaceae. In summary, these findings suggest that IOP exerts its therapeutic effects through a synergistic interplay between sex hormones, gut microbiome composition, and metabolic processes.
Collapse
Affiliation(s)
- Binhong Hu
- College of Chemistry and life Sciences, Chengdu Normal University, China; Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China.
| | - Wenjing Zhou
- College of Chemistry and life Sciences, Chengdu Normal University, China; College of Veterinary Medicine, Yangzhou University (Institute of Comparative Medicine), Yangzhou, China
| | - Xin Deng
- College of Chemistry and life Sciences, Chengdu Normal University, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mengxue Sun
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Rong Sun
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Qing Li
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Jingyuan Ren
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Wei Jiang
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Yanping Wang
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Songqing Liu
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
12
|
Chen R, Zhou X, Deng Q, Yang M, Li S, Zhang Q, Sun Y, Chen H. Extraction, structural characterization and biological activities of polysaccharides from mulberry leaves: A review. Int J Biol Macromol 2024; 257:128669. [PMID: 38092124 DOI: 10.1016/j.ijbiomac.2023.128669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
In recent years, plant polysaccharides have garnered attention for their impressive biological activity. Mulberry leaves have a long history of medicinal and edible use in China, polysaccharide is one of the main active components of mulberry leaves, mainly consist of xylose, arabinose, fructose, galactose, glucose and mannose, etc. The extraction methods of mulberry leaves polysaccharides (MLPs) mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, enzyme-assisted extraction, and co-extraction. The separation and purification of MLPs involve core steps such as decolorization, protein removal, and chromatographic separation. In terms of pharmacological effects, MLPs exhibit excellent activity in reducing blood glucose, anti-oxidation, immune regulation, anti-tumor, antibacterial, anti-coagulation, and regulation of gut microbiota. Currently, there is a considerable amount of research on MLPs, however, there is a lack of systematic summarization. This review summarizes the research progress on the extraction, structural characterization, and pharmacological activities of MLPs, and points out existing shortcomings and suggests reference solutions, aiming to provide a basis for further research and development of MLPs.
Collapse
Affiliation(s)
- Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Maohui Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
13
|
Ye L, Zhang QQ, Lin S, Zhang Q, Yan J, Wu DT, Liu SX, Qin W. A Polysaccharide from Ficus carica L. Exerts Immunomodulatory Activity in Both In Vitro and In Vivo Experimental Models. Foods 2024; 13:195. [PMID: 38254496 PMCID: PMC10814953 DOI: 10.3390/foods13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Polysaccharides from Ficus carica L. (FCP) exert multiple biological activities. As a biological macromolecule, the available knowledge about the specific structures and mechanisms of the biological activity of purified 'Brunswick' fig polysaccharides is currently limited. In the present study, chemical purification and characteristics were identified via chemical and instrumental analysis, and then the impact of FCP on immunomodulation activity in vitro and in vivo was examined. Structural characteristics showed that the molecular weight of the FCP sample was determined to be 127.5 kDa; the primary monosaccharides present in the FCP sample were galacturonic acid (GalA), arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), and xylose (Xyl) at a ratio of 0.321:0.287:0.269:0.091:0.013:0.011. Based on the investigation of in vitro immunomodulatory activity, FCP was found to stimulate the production of NO, TNF-α, and IL-6, and increased the pinocytic activity of macrophages. Further analysis revealed that FCP activated macrophages by interacting with Toll-like receptor 4 (TLR4). Moreover, the in vivo test results indicate that FCP showed a significant increase in serum pro-inflammatory factors in immunosuppressed mice. Overall, this study suggests that FCP has the potential to be utilized as a novel immunomodulator in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Lin Ye
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Qin-Qiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Shang Lin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Jing Yan
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Shu-Xiang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| |
Collapse
|
14
|
Luo L, Zhang X, Wu X, Liu W, Liu J. Identification of Gonatophragmium mori Causing Mulberry Zonate Leaf Spot Disease and Characterization of Their Biological Enemies in Guangxi, China. PLANT DISEASE 2024; 108:162-174. [PMID: 37552161 DOI: 10.1094/pdis-04-23-0738-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Mulberry zonate leaf spot disease (MZLSD) is an important fungal disease of mulberry trees, which seriously affects the productivity and quality of mulberry leaves. MZLSD has been widely reported in sericultural production areas in Guangxi, China, in recent years. In this study, the causal agent of MZLSD was isolated from symptomatic samples and identified as Gonatophragmium mori (Acrospermaceae) based on morphological characterization and molecular analyses using nucleotide sequences of the internal transcribed spacer (ITS) and large subunit ribosomal DNA (LSU rDNA). Pathogenicity tests confirmed that G. mori is the pathogen responsible for MZLSD. Furthermore, we isolated antagonistic endophytic bacteria (AEB) from healthy mulberry leaves. Plate confrontation experiments showed that the lipopeptide crude extracts (LPCE) of three endophytic bacteria can inhibit the growth of G. mori, and the diameter of the antibacterial circle reaches more than 60 mm when their concentration of LPCE is 200 mg/ml. Light microscopy and scanning electron microscopy revealed that LPCE caused drastic changes in mycelial morphology. Fluorescence microscopy and transmission electron microscopy showed that the LPCE-induced apoptosis-like cell death in G. mori hyphae. Finally, based on morphological and molecular features, we identified the three isolates as Bacillus subtilis DS07, B. subtilis DS32, and B. velezensis Q6, respectively. To our knowledge, this is the first time to identify G. mori by combining characterization and molecular analyses, and we provide timely information about the use of biocontrol agents for suppression of G. mori.
Collapse
Affiliation(s)
- Longhui Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
- Integrative Microbiology Research Center, College of Plant Protection, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Xingnan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Xiaomei Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Weifu Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Jiping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
15
|
Xue H, Gao Y, Wu L, Cai X, Liao J, Tan J. Research progress in extraction, purification, structure of fruit and vegetable polysaccharides and their interaction with anthocyanins/starch. Crit Rev Food Sci Nutr 2023:1-26. [PMID: 38108271 DOI: 10.1080/10408398.2023.2291187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Fruits and vegetables contain polysaccharides, polyphenols, antioxidant enzymes, and various vitamins, etc. Fruits and vegetables polysaccharides (FVPs), as an important functional factor in health food, have various biological activities such as lowering blood sugar, blood lipids, blood pressure, inhibiting tumors, and delaying aging, etc. In addition, FVPs exhibit good physicochemical properties including low toxicity, biodegradability, biocompatibility. Increasing research has confirmed that FVPs could enhance the stability and biological activities of anthocyanins, affecting their bioavailability to improve food quality. Simultaneously, the addition of FVPs in natural starch suspension could improve the physicochemical properties of natural starch such as viscosity, gelling property, water binding capacity, and lotion stability. Hence, FVPs are widely used in the modification of natural anthocyanins/starch. A systematic review of the latest research progress and future development prospects of FVPs is very necessary to better understand them. This paper systematically reviews the latest progress in the extraction, purification, structure, and analysis techniques of FVPs. Moreover, the review also introduces the potential mechanisms, evaluation methods, and applications of the interaction between polysaccharides and anthocyanins/starch. The findings can provide important references for the further in-depth development and utilization of FVPs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Liu Wu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, Yichun, Jiangxi, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| |
Collapse
|
16
|
Wan J, Zhu J, Zeng J, Zhou H, He Y. Effect of Galactooligosaccharide on PPARs/PI3K/Akt Pathway and Gut Microbiota in High-Fat and High-Sugar Diet Combined with STZ-Induced GDM Rat Model. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10186-z. [PMID: 37953344 DOI: 10.1007/s12602-023-10186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, characterized by underlying glucose intolerance, diabetes onset or first diagnosis during pregnancy. Galactooligosaccharide (GOS) is essential for consumer protection as food supplementation. However, there is limited understanding of the effects of GOS on GDM. We successfully established a GDM rat model to explore GOS whether participated in PPARs/PI3K/Akt pathway and gut microbiota metabolites to treat for GDM. In this study, compared with the GDM group, GOS administration lowered the levels of TG, LDL-C, and HDL-C in rat serum, as well as improved the pathological changes pancreatic, liver, and kidney tissues. Compared with the GDM group, the protein expressions of PPARα, PPARγ, and PPARβ/δ markedly enhanced in GOS-treated groups (P < 0.01). Moreover, GOS administration upregulated the protein expressions of PPARα, PPARβ, PPARγ, PI3K, Akt, GLUT4, Bax, and Bcl2. GOS administration altered gut microbiota metabolites, including both SCFAs and BAs. Correlation analysis revealed close relationships between gut microbiota and experimental indicators. This study indicated that GOS effectively improved GDM in rats through the modulation of PPARs/PI3K/Akt pathway and gut microbiota. Thus, the GOS could be recommended as a candidate for novel therapy of GDM.
Collapse
Affiliation(s)
- Jiayang Wan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Zhu
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jieqiong Zeng
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
17
|
Chen X, Wu J, Fu X, Wang P, Chen C. Fructus mori polysaccharide alleviates diabetic symptoms by regulating intestinal microbiota and intestinal barrier against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 249:126038. [PMID: 37516223 DOI: 10.1016/j.ijbiomac.2023.126038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Fructus mori polysaccharide (FMP) has a variety of biological activities. In this study, the results showed that FMP alleviated hyperglycemia, insulin resistance, hyperlipidemia, endotoxemia, and high metabolic inflammation levels in type 2 diabetic (T2DM) mice. Next, it was found that the above beneficial effects of FMP on diabetic mice were significantly attenuated after antibiotics eliminated intestinal microbiota (IM) of mice. In addition, FMP suppressed intestinal inflammation and oxidative stress levels by inhibiting the activation of the TLR4/MyD88/NF-κB pathway, and indirectly upregulated the expression of the tight junction proteins Claudin-1, Occludin, and Zonula occlusionn-1 (ZO-1) to repair the intestinal barrier. Interestingly, the protective effect of FMP on the intestinal barrier was also attributed to its regulation of IM. The 16S rRNA and Spearman correlation analysis showed that FMP could repair the intestinal barrier to improve T2DM by remodeling specific IM, especially by significantly inhibiting 93.66 % of endotoxin-producing Shigella and promoting the proliferation of probiotic Allobaculum and Bifidobacterium by 16.31 % and 19.07 %, respectively. This study provided a theoretical support for the application of FMP as a novel probiotic in functional foods for diabetes.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Junlin Wu
- Guangzhou Wondfo Health Science and Technology Co., Ltd, China.
| | - Xiong Fu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Pingping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
18
|
Lu H, Shen M, Chen Y, Yu Q, Chen T, Xie J. Alleviative effects of natural plant polysaccharides against DSS-induced ulcerative colitis via inhibiting inflammation and modulating gut microbiota. Food Res Int 2023; 167:112630. [PMID: 37087227 DOI: 10.1016/j.foodres.2023.112630] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Ulcerative colitis (UC) treatment usually involves either drug therapy or surgery. Natural food polysaccharides have showed great potential for preventing UC. In this study, the therapeutic effects of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharide (CP) and Chinese yam polysaccharide (CYP) on dextran sodium sulfate (DSS)-induced mice UC model and their underlying mechanisms were explored. The results suggested that CP and CYP could improve colitis symptoms in DSS-induced mice, enhance the production of IL-10, inhibit cytokines (IL-1β, TNF-α) and reduce MPO activity. Furthermore, they maintained the integrity of intestine by improving the expression of mucin MUC-2, ZO-1 and occludin, which in turn reduced the contents of lipopolysaccharide binding protein (LBP) and endotoxin (ET) in serum and oxidative stress in liver. Finally, they modulated the composition and metabolism of gut microbiota. Notably, Alistipes and Bacteroides were the specific genera in CP and CYP groups, respectively. These findings indicated that polysaccharides might alleviate the development of colitis and inform other relevant studies.
Collapse
|
19
|
Shi X, Feng J, Wang S, Huang J, Yu M. Primary structure, physicochemical properties, and digestive properties of four sequentially extracted polysaccharides from Tremella fuciformis. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Zhang B, Wang Z, Huang C, Wang D, Chang D, Shi X, Chen Y, Chen H. Positive effects of Mulberry leaf extract on egg quality, lipid metabolism, serum biochemistry, and antioxidant indices of laying hens. Front Vet Sci 2022; 9:1005643. [PMID: 36187805 PMCID: PMC9523877 DOI: 10.3389/fvets.2022.1005643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Plant extracts are becoming a hot topic of research by animal husbandry practitioners following the implementation of a global policy to restrict antibiotic use in animal production. Mulberry leaf extract has received considerable attention as a new plant extract. Mulberry leaf polysaccharides and flavonoids are its main constituents, and these substances possess immunoregulatory, hypoglycemic, antioxidant, and anticoagulant properties. It is however less common to use them in poultry production. Therefore, we investigated the effects of adding MLE to the diet of laying hens on egg quality, lipid metabolism, serum biochemistry, and antioxidant indices in this study. A total of 288 Lohmann Silber layers, aged 38 weeks, were randomly assigned to four groups (six replicates of 12 hens each). Hens were fed a basal diet supplemented with 0 (control diet), 0.4, 0.8, or 1.2% MLE for 56 d. Results showed that the addition of 0.4–1.2% MLE to the diet improved aspartate transaminase (AST) activity in the serum of laying hens, reduced low-density lipoprotein (LDL-C) content in the serum, and significantly decreased yolk triglyceride (TG) and total cholesterol (TC) contents (P < 0.05). No adverse effects were observed on production performance (P > 0.10). MLE (0.4 and 1.2%) significantly reduced the TG and TC levels in the liver (P < 0.05). MLE (0.8 and 1.2%) significantly increased glutathione peroxidase (GSH-Px) activity in the serum, decreased alanine transaminase (ALT) activity, TG and TC content in the serum, and improved egg yolk color (P < 0.05). MLE (1.2%) significantly increased high-density lipoprotein (HDL-C) content and superoxide dismutase (SOD) activity in the serum and enhanced eggshell strength (P < 0.05). The liver-related lipid metabolism gene assay revealed that the relative mRNA expression of PPARα and SIRT1 in the liver was significantly upregulated and that of FASN and PPARγ was significantly decreased after the addition of MLE. In contrast, the relative mRNA expression of SREBP-1c in the liver dramatically decreased after the addition of 0.8 and 1.2% MLE (P < 0.05). The addition of MLE to the diet improved egg quality and the economic value of hens by increasing antioxidant capacity and lipid metabolism. The most appropriate amount of MLE to be added to the diet of laying hens was 0.8%. Our study provides a theoretical reference for the application of MLE in egg production and to promote the healthy and sustainable development of the livestock and poultry industry under the background of antibiotic prohibition.
Collapse
Affiliation(s)
- Bo Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Agricultural and Animal Husbandry Technology Extension Station in Tong Town, Shaanxi Province, Yulin, China
| | - Zeben Wang
- College of Management Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Chenxuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Dongmei Chang
- Zhengding County Mulberry Industry Application Research Institute, Shijiazhuang, China
| | - Xiaowei Shi
- Zhengding County Mulberry Industry Application Research Institute, Shijiazhuang, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- *Correspondence: Yifan Chen
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hui Chen
| |
Collapse
|
21
|
Wang S, Zhang X, Ai J, Yue Z, Wang Y, Bao B, Tian L, Bai W. Interaction between black mulberry pectin-rich fractions and cyanidin-3-O-glucoside under in vitro digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Wang B, Yan L, Guo S, Wen L, Yu M, Feng L, Jia X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front Nutr 2022; 9:908175. [PMID: 35669078 PMCID: PMC9163837 DOI: 10.3389/fnut.2022.908175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides, which are widely found in Chinese herbs and work as one of the important active ingredients. Its biological activity is attributed to its complex chemical structure with diverse spatial conformations. However, the structural elucidation is the foundation but a bottleneck problem because the majority of CHPs are heteropolysaccharides with more complex structures. Similarly, the studies on the relationship between structure and function of CHPs are even more scarce. Therefore, this review summarizes the structure-activity relationship of CHPs. Meanwhile, we reviewed the structural elucidation strategies and some new progress especially in the advanced structural analysis methods. The characteristics and applicable scopes of various methods are compared to provide reference for selecting the most efficient method and developing new hyphenated techniques. Additionally, the principle structural modification methods of CHPs and their effects on activity are summarized. The shortcomings, potential breakthroughs, and developing directions of the study of CHPs are discussed. We hope to provide a reference for further research and promote the application of CHPs.
Collapse
|
23
|
Ai J, Yang Z, Liu J, Schols HA, Battino M, Bao B, Tian L, Bai W. Structural Characterization and In Vitro Fermentation Characteristics of Enzymatically Extracted Black Mulberry Polysaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3654-3665. [PMID: 35311256 DOI: 10.1021/acs.jafc.1c07810] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we systematically investigated the structural characterization and in vitro fermentation patterns of crude black mulberry fruit polysaccharides (BMPs), either extracted by water (BMP) or by enzymatic treatment. Different enzymatic treatments were pectinase-extracted (PE)-BMP, pectin lyase-extracted (PL)-BMP, cellulase-extracted (CE)-BMP, and compound enzymes-extracted (M)-BMP (pectinase:pectin lyase:cellulase = 1:1:1). Our results show that enzymatic treatment improved the polysaccharide yield and led to a different chemical composition and structure for the polysaccharides. Change dynamics during the in vitro fermentation indicated that BMPs could indeed be degraded and consumed by human fecal microbiota and that different BMPs showed different degrees of fermentability. In addition, BMPs stimulated the growth of Bacteroidetes and Firmicutes, inhibited the growth of Fusobacteria and Proteobacteria (except for CE-BMP), and induced the production of short-chain fatty acids (SCFAs). Furthermore, we found that BMP and PL-BMP exhibited better fermentability and prebiotic potential than the other polysaccharides.
Collapse
Affiliation(s)
- Jian Ai
- Department of Food Science and Engineering, College of Food Science, Shanghai Ocean University, Shanghai 201306, P. R. China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Zixin Yang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Jiaxin Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen, 6700 AA, The Netherlands
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Bin Bao
- Department of Food Science and Engineering, College of Food Science, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
24
|
Liu J, Wang Y, Wu J, Georgiev MI, Xu B, Wong KH, Bai W, Tian L. Isolation, Structural Properties, and Bioactivities of Polysaccharides from Mushrooms Termitomyces: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:21-33. [PMID: 34936332 DOI: 10.1021/acs.jafc.1c06443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Termitomyces are well-known wild edible and medicinal basidiomycete mushrooms. The frequent consumption of Termitomyces stimulated studies on their health-promoting properties. Numerous health benefits of Termitomyces are associated with the main categories of components in Termitomyces, polysaccharides. Although the homopolysaccharides β-glucans are believed to be the major bioactive polysaccharides of Termitomyces, other heteropolysaccharides also possess biological activities. In this review, the extraction methods, chemical structures, and biological activities of polysaccharides from Termitomyces were thoroughly reviewed. The polysaccharides from different species of Termitomyces differ in molecular weight, monosaccharide composition, and linkages of constituent sugars. The health-promoting effects, including antioxidation, ulcer-healing and analgesic properties, immunomodulation, hypolipidemic and hepatoprotective effects, and antidiabetic properties of Termitomyces polysaccharides were summarized and discussed. Further studies were needed for a better understanding of the relationship between the fine chemical structure and health-promoting properties. This review provides a theoretical overview for future studies and utilization of Termitomyces polysaccharides.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yuxin Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jianzhong Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519087, People's Republic of China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Weibin Bai
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Lingmin Tian
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
25
|
Yu YF, Chen Y, Shi X, Ye C, Wang J, Huang J, Zhang B, Deng Z. Hepatoprotective effect of different mulberry leaf extracts against acute liver injury in rats by alleviating oxidative stress and inflammatory response. Food Funct 2022; 13:8593-8604. [DOI: 10.1039/d2fo00282e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated the hepatoprotective effect of various mulberry (Morus alba L.) leaf extracts (MLEs), including mulberry ethanol extract (MEE), aqueous extract (MAE) and combination extract (MCE) against D-galactosamine (D-GalN)...
Collapse
|
26
|
Mulberry Leaf Polyphenol Extract and Rutin Induces Autophagy Regulated by p53 in Human Hepatoma HepG2 Cells. Pharmaceuticals (Basel) 2021; 14:ph14121310. [PMID: 34959709 PMCID: PMC8704259 DOI: 10.3390/ph14121310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/18/2023] Open
Abstract
The edible leaves of the mulberry (Morus alba L.) plant are used worldwide. They contain abundant polyphenolic compounds with strong anticancer properties. We previously revealed that apoptosis was mediated in p53-negative Hep3B cells, and mulberry leaf polyphenol extract (MLPE) induced autophagy in p53-transfected Hep3B cells. However, how this autophagy is induced by p53 in human hepatoma HepG2 (p53 wild type) cells remains unclear. In the current study, MLPE induced autophagy, as demonstrated by enhanced acidic vesicular organelle staining, by upregulating beclin-1, increasing LC3-II conversion, and phosphorylating AMPK. In HepG2 cells, these processes were associated with p53. Western blot also revealed phosphatidylinositol-3 kinase (PI3K), p-AKT, and fatty acid synthase (FASN) suppression in MLPE-treated cells. Moreover, treatment with the p53 inhibitor pifithrin-α (PFT-α) inhibited autophagy and increased apoptotic response in MLPE-treated HepG2 cells. PFT-α treatment also reversed MLPE-induced PI3K, p-AKT, and FASN suppression. Thus, co-treatment with MLPE and PFT-α significantly increased caspase-3, caspase-8, and cytochrome c release, indicating that p53 deficiency caused the apoptosis. In addition, rutin, a bioactive polyphenol in MLPE, may affect autophagy in HepG2 cells. This study demonstrates that MLPE is a potential anticancer agent targeting autophagy and apoptosis in cells with p53 status. Moreover, this work provides insight into the mechanism of p53 action in MLPE-induced cytotoxicity in hepatocellular carcinoma.
Collapse
|