1
|
Yang J, Song Y, Yu Y, Yang X, Zhang X, Zhang W. Research progress on extraction techniques, structure-activity relationship, and biological functional mechanism of berry polysaccharides: A review. Int J Biol Macromol 2024; 282:137155. [PMID: 39505177 DOI: 10.1016/j.ijbiomac.2024.137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
In recent years, polysaccharides extracted from berries have received great attention due to their various bioactivities. However, the preparation and application of berry polysaccharides have been greatly limited due to the lack of efficient extraction techniques, unclear structure-activity relationships, and ambiguous functional mechanisms. This review discusses the technological progress in solvent extraction, assisted extraction, critical extraction, and combination extraction. The structure-activity relationship and functional mechanism (antioxidation, hypoglycemic, immunoregulation etc.) of berry polysaccharides are reviewed. After systematic exploration, we believe that industrial production is more suitable for using efficient and low-cost extraction methods, such as ultrasonic assisted extraction and microwave assisted extraction. And some of the bioactivities (antioxidant activity, hypoglycemic activity, etc.) of berry polysaccharides are closely related to their structure (molecular weight, monosaccharide composition, branching structure, etc.). Besides, berry polysaccharides exhibit bioactivities by regulating enzyme activity, cellular metabolism, gene expression, and other pathways to exert their effects on the body. These findings indicate the potential of berry polysaccharides as functional foods and drugs. This paper will contribute to the preparation, bioactivity research, and application of berry polysaccharides.
Collapse
Affiliation(s)
- Jun Yang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Yao Song
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| | - Yuhe Yu
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xu Yang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
2
|
Zu-Man D, Yu-Long Z, Chun-Yang T, Chuang L, Jia-Qin F, Qiang H, Chun C, Li-Jun Y, Chin-Ping T, Hui N, Xiong F. Construction of blackberry polysaccharide nano-selenium particles: Structure features and regulation effects of glucose/lipid metabolism in HepG2 cells. Food Res Int 2024; 187:114428. [PMID: 38763678 DOI: 10.1016/j.foodres.2024.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 μg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Dou Zu-Man
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhang Yu-Long
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tang Chun-Yang
- Likofu Food Co Ltd, Guangzhou Restaurant Grp, Guangzhou 511445, China
| | - Liu Chuang
- Likofu Food Co Ltd, Guangzhou Restaurant Grp, Guangzhou 511445, China
| | - Fang Jia-Qin
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huang Qiang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - You Li-Jun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Niu Hui
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
3
|
Qiang X, Xia T, Geng B, Zhao M, Li X, Zheng Y, Wang M. Bioactive Components of Lycium barbarum and Deep-Processing Fermentation Products. Molecules 2023; 28:8044. [PMID: 38138534 PMCID: PMC10745962 DOI: 10.3390/molecules28248044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Lycium barbarum, a homology of medicine and food, contains many active ingredients including polysaccharides, polyphenol, betaine, and carotenoids, which has health benefits and economic value. The bioactive components in Lycium barbarum exhibit the effects of antioxidation, immune regulation, hypoglycemic effects, and vision improvement. Recently, the development of nutrition and health products of Lycium barbarum has been paid more and more attention with the increase in health awareness. A variety of nutrients and bioactive components in wolfberry can be retained or increased using modern fermentation technology. Through fermentation, the products have better flavor and health function, which better meet the needs of market diversification. The main products related to wolfberry fermentation include wolfberry fruit wine, wolfberry fruit vinegar, and lactic acid fermented beverage. In this review, the mainly bioactive components of Lycium barbarum and its deep-processing products of fermentation were summarized and compared. It will provide reference for the research and development of fermented and healthy products of Lycium barbarum.
Collapse
Affiliation(s)
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Q.); (B.G.); (M.Z.); (X.L.); (Y.Z.)
| | | | | | | | | | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Q.); (B.G.); (M.Z.); (X.L.); (Y.Z.)
| |
Collapse
|
4
|
Dou Z, Zhang Y, Tang W, Deng Q, Hu B, Chen X, Niu H, Wang W, Li Z, Zhou H, Zeng N. Ultrasonic effects on the degradation kinetics, structural characteristics and protective effects on hepatocyte lipotoxicity induced by palmitic acid of Pueraria Lobata polysaccharides. ULTRASONICS SONOCHEMISTRY 2023; 101:106652. [PMID: 37865008 PMCID: PMC10597800 DOI: 10.1016/j.ultsonch.2023.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
In this study, a high-molecular-weight Pueraria lobata polysaccharide (PLP) with a molecular weight of 273.54 kDa was degraded by ultrasound, and the ultrasonic degradation kinetics, structural characteristics and hepatoprotective activity of ultrasonic degraded PLP fractions (PLPs) were evaluated. The results showed that the ultrasonic treatment significantly reduced the Mw and particle size of PLP, and the kinetic equation of ultrasonic degradation of PLP followed to the midpoint fracture model (the fist-order model). The monosaccharide composition analysis, FT-IR, triple helix structure and XRD analysis all indicated that the ultrasound degradation did not destroy the primary structure of PLP, but the thermal stability of degraded fractions improved. Additionally, the scanning electron microscopy analysis demonstrated that the surface morphology of PLP was altered from smooth, flat, compact large flaky structure to a sparse rod-like structure with sparse crosslinking (PLP-7). The degraded PLP fractions (0.5 mg/mL) with lower Mw exhibited better antioxidant activities and protective effects against palmitic acid-induced hepatic lipotoxicity, which may be due to the increased exposure of active groups such as hydroxyl groups of PLP after ultrasound. Further investigation showed that PLPs not only increased Nrf2 phosphorylation and its nuclear translocation, thereby activating Nrf2/Keap1 signaling pathway, but also enhanced HO-1, NQO-1, γ-GCL gene expressions and promoted superoxide dismutase and catalase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Overall, our research might provide an in-depth insight into P. Lobata polysaccharide in ameliorating lipid metabolic disorders, and the results revealed that ultrasonic irradiation could be a promising degradation method to produce value-added polysaccharide for use in functional food.
Collapse
Affiliation(s)
- Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yulong Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Waijiao Tang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiong Deng
- School of Business Administration, Guangzhou Institute of Science and Technology, Guangzhou 510282, China
| | - Baishun Hu
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Usnciciences, Enshi 445000, China
| | - Xianwei Chen
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Hui Niu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Wenduo Wang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
5
|
Sukhikh S, Babich O, Prosekov A, Kalashnikova O, Noskova S, Bakhtiyarova A, Krol O, Tsvetkova E, Ivanova S. Antidiabetic Properties of Plant Secondary Metabolites. Metabolites 2023; 13:metabo13040513. [PMID: 37110171 PMCID: PMC10144365 DOI: 10.3390/metabo13040513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
The prevalence of diabetes mellitus is one of the major medical problems that the modern world is currently facing. Type 1 and Type 2 diabetes mellitus both result in early disability and death, as well as serious social and financial problems. In some cases, synthetic drugs can be quite effective in the treatment of diabetes, though they have side effects. Plant-derived pharmacological substances are of particular interest. This review aims to study the antidiabetic properties of secondary plant metabolites. Existing review and research articles on the investigation of the antidiabetic properties of secondary plant metabolites, the methods of their isolation, and their use in diabetes mellitus, as well as separate articles that confirm the relevance of the topic and expand the understanding of the properties and mechanisms of action of plant metabolites, were analyzed for this review. The structure and properties of plants used for the treatment of diabetes mellitus, including plant antioxidants, polysaccharides, alkaloids, and insulin-like plant substances, as well as their antidiabetic properties and mechanisms for lowering blood sugar, are presented. The main advantages and disadvantages of using phytocomponents to treat diabetes are outlined. The types of complications of diabetes mellitus and the effects of medicinal plants and their phytocomponents on them are described. The effects of phytopreparations used to treat diabetes mellitus on the human gut microbiota are discussed. Plants with a general tonic effect, plants containing insulin-like substances, plants-purifiers, and plants rich in vitamins, organic acids, etc. have been shown to play an important role in the treatment of type 2 diabetes mellitus and the prevention of its complications.
Collapse
Affiliation(s)
- Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Olga Kalashnikova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alina Bakhtiyarova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Olesia Krol
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Elena Tsvetkova
- Department of Biochemistry, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197022 Saint-Petersburg, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
6
|
Zhang H, Yue Y, Zhang Q, Liang L, Li C, Chen Y, Li W, Peng M, Yang M, Zhao M, Cao X, Zhong L, Du J, Wang Y, Zhou X, Shu Z. Structural characterization and anti-inflammatory effects of an arabinan isolated from Rehmannia glutinosa Libosch. Carbohydr Polym 2023; 303:120441. [PMID: 36657836 DOI: 10.1016/j.carbpol.2022.120441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Considering that natural polysaccharides are potential anti-inflammatory agents, in this study, an arabinan (RGP70-2) was isolated and purified from Rehmannia glutinosa Libosch. (R. glutinosa) and its structure was characterized. RGP70-2 was a homogeneous polysaccharide with a molecular weight of 6.7 kDa, with the main backbone comprising →5)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →2,3,5)-α-L-Araf-(1→, and →2,5)-α-L-Araf-(1 → linkages and the side chain comprising an α-L-Araf-(1 → linkage. In vivo experiments showed that RGP70-2 inhibited ROS production and downregulated the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). In vitro experiments showed that RGP70-2 decreased levels of pro-inflammatory cytokines, inhibited ROS production, and attenuated NF-κB-p65 translocation from the cytoplasm to the nucleus. Our results showed that RGP70-2 may delay inflammation by regulating the ROS-NF-κB pathway. Thus, RGP70-2 has potential applications as an anti-inflammatory agent in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Han Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yimin Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanqiu Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Peng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, China National Analytical Center, Guangzhou 510006, China; Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou 510006, China
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Li QY, Dou ZM, Chen C, Jiang YM, Yang B, Fu X. Study on the Effect of Molecular Weight on the Gut Microbiota Fermentation Properties of Blackberry Polysaccharides In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11245-11257. [PMID: 36053142 DOI: 10.1021/acs.jafc.2c03091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effect of different molecular weights on the metabolic characteristics of blackberry polysaccharides (BBP). After degradation, three fractions, namely, BBP-8, BBP-16, and BBP-24, were obtained. During fermentation, all polysaccharide fractions were significantly degraded and utilized by the intestinal microbiota, and the lower-molecular-weight polysaccharides were easier to be fermented with higher gas production and carbohydrate consumption rates. Furthermore, the monosaccharide utilization sequence of all polysaccharides was glucose > galactose > arabinose > galacturonic acid. In addition, the lower-molecular-weight polysaccharides had a faster short-chain fatty acid (SCFA) production rate but did not affect the final SCFA yields. The fermentation of BBP promoted the increase of Bacteroidetes and the decrease of Firmicutes. The proportions of Bacteroidetes in BBP, BBP-8, BBP-16, and BBP-24 were 45.41, 47.50, 48.08, and 50.09%, respectively.
Collapse
Affiliation(s)
- Qiao-Yun Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zu-Man Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Yue-Ming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
8
|
Xing X, Chun C, Qiang H, Xiong F, Rui-Hai L. Investigation into the mechanisms of quercetin-3-O-glucuronide inhibiting α-glucosidase activity and non-enzymatic glycation by spectroscopy and molecular docking. Food Funct 2021; 12:7825-7835. [PMID: 34232231 DOI: 10.1039/d1fo01042e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inhibition of α-glucosidase and glycation is closely related to the treatment of type 2 diabetes mellitus (DM) and its complications. In this study, quercetin-3-O-glucuronide (Q3GA) showed reversible and mixed-mode inhibition of α-glucosidase activity, with an IC50 value of 108.11 ± 4.61 μM. This was mainly due to the spontaneous formation of Q3GA-α-glucosidase driven by hydrogen bonding and van der Waals forces, which could change the microenvironments and conformation of α-glucosidase. In addition, Q3GA showed strong suppression of the formation of glycation products, including fructosamine, advanced glycation end products (AGEs), and 5-hydroxymethylfurfural (5-HMF). Molecular docking analysis demonstrated that Q3GA entered the hydrophobic pocket of ovalbumin to form six hydrogen bonds with amino acid residues, which affected the glycation process. These findings indicate that Q3GA is an excellent inhibitor of α-glucosidase and glycation, and promote its development as a drug or dietary supplement for DM.
Collapse
Affiliation(s)
- Xie Xing
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|