1
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2023:10.1007/s10555-023-10126-x. [PMID: 37507626 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
2
|
Liu S, Li L, Ren D. Anti-Cancer Potential of Phytochemicals: The Regulation of the Epithelial-Mesenchymal Transition. Molecules 2023; 28:5069. [PMID: 37446730 DOI: 10.3390/molecules28135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A biological process called epithelial-mesenchymal transition (EMT) allows epithelial cells to change into mesenchymal cells and acquire some cancer stem cell properties. EMT contributes significantly to the metastasis, invasion, and development of treatment resistance in cancer cells. Current research has demonstrated that phytochemicals are emerging as a potential source of safe and efficient anti-cancer medications. Phytochemicals could disrupt signaling pathways related to malignant cell metastasis and drug resistance by suppressing or reversing the EMT process. In this review, we briefly describe the pathophysiological properties and the molecular mechanisms of EMT in the progression of cancers, then summarize phytochemicals with diverse structures that could block the EMT process in different types of cancer. Hopefully, these will provide some guidance for future research on phytochemicals targeting EMT.
Collapse
Affiliation(s)
- Shuangyu Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lingyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
3
|
Deng Z, Xu Y, Cai Y, Lin W, Zhang L, Jiang A, Zhou Y, Zhao R, Zhao H, Liu Z, Yan T. Inhibition of Ribosomal RNA Processing 15 Homolog (RRP15) Suppressed Tumor Growth, Invasion and Epithelial to Mesenchymal Transition (EMT) of Colon Cancer. Int J Mol Sci 2023; 24:ijms24043528. [PMID: 36834940 PMCID: PMC9965612 DOI: 10.3390/ijms24043528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Although ribosomal RNA processing 15 Homolog (RRP15) has been implicated in the occurrence of various cancers and is considered a potential target for cancer treatment, its significance in colon cancer (CC) is unclear. Thus, this present study aims to determine RRP15 expression and biological function in CC. The results demonstrated a strong expression of RRP15 in CC compared to normal colon specimens, which was correlated with poorer overall survival (OS) and disease-free survival (DFS) of the patients. Among the nine investigated CC cell lines, RRP15 demonstrated the highest and lowest expression in HCT15 and HCT116 cells, respectively. In vitro assays demonstrated that the knockdown of RRP15 inhibited the growth, colony-forming ability and invasive ability of the CC cells whereas its overexpression enhanced the above oncogenic function. Moreover, subcutaneous tumors in nude mice showed that RRP15 knockdown inhibited the CC growth while its overexpression enhanced their growth. Additionally, the knockdown of RRP15 inhibited the epithelial-mesenchymal transition (EMT), whereas overexpression of RRP15 promoted the EMT process in CC. Collectively, inhibition of RRP15 suppressed tumor growth, invasion and EMT of CC, and might be considered a promising therapeutic target for treating CC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhaoguo Liu
- Correspondence: (Z.L.); (T.Y.); Tel.: +86-513-8505-1726 (Z.L. & T.Y.); Fax: +86-513-8505-1728 (Z.L. & T.Y.)
| | - Tingdong Yan
- Correspondence: (Z.L.); (T.Y.); Tel.: +86-513-8505-1726 (Z.L. & T.Y.); Fax: +86-513-8505-1728 (Z.L. & T.Y.)
| |
Collapse
|
4
|
Ma X, Li Y, Lv C, Liu B, Yuan C, Huang W, Luo Q, Xiao Y, Sun C, Li T, Zhang J. Modulation of Keap1-Nrf2-ARE signaling pathway by oxyresveratrol, a derivative of resveratrol from grape skin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Kong W, Zhu H, Zheng S, Yin G, Yu P, Shan Y, Liu X, Ying R, Zhu H, Ma S. Larotrectinib induces autophagic cell death through AMPK/mTOR signalling in colon cancer. J Cell Mol Med 2022; 26:5539-5550. [PMID: 36251949 DOI: 10.1111/jcmm.17530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023] Open
Abstract
Larotrectinib (Lar) is a highly selective and potent small-molecule inhibitor used in patients with tropomyosin receptor kinase (TRK) fusion-positive cancers, including colon cancer. However, the underlying molecular mechanisms specifically in patients with colon cancer have not yet been explored. Our data showed that Lar significantly suppressed proliferation and migration of colon cancer cells. In addition, Lar suppressed the epithelial-mesenchymal transition (EMT) process, as evidenced by elevation in E-cadherin (E-cad), and downregulation of vimentin and matrix metalloproteinase (MMP) 2/9 expression. Furthermore, Lar was found to activate autophagic flux, in which Lar increased the ratio between LC3II/LC3I and decreased the expression of p62 in colon cancer cells. More importantly, Lar also increased AMPK phosphorylation and suppressed mTOR phosphorylation in colon cancer cells. However, when we silenced AMPK in colon cancer cells, Lar-induced accumulation of autolysomes as well as Lar-induced suppression of the EMT process were significantly diminished. An in vivo assay also confirmed that tumour volume and weight decreased in Lar-treated mice than in control mice. Taken together, this study suggests that Lar significantly suppresses colon cancer proliferation and migration by activating AMPK/mTOR-mediated autophagic cell death.
Collapse
Affiliation(s)
- Wencheng Kong
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangzhang Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sixing Zheng
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang Yin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panpan Yu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqiang Shan
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinchun Liu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shenglin Ma
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Duan X, Luo M, Li J, Shen Z, Xie K. Overcoming therapeutic resistance to platinum-based drugs by targeting Epithelial–Mesenchymal transition. Front Oncol 2022; 12:1008027. [PMID: 36313710 PMCID: PMC9614084 DOI: 10.3389/fonc.2022.1008027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum-based drugs (PBDs), including cisplatin, carboplatin, and oxaliplatin, have been widely used in clinical practice as mainstay treatments for various types of cancer. Although there is firm evidence of notable achievements with PBDs in the management of cancers, the acquisition of resistance to these agents is still a major challenge to efforts at cure. The introduction of the epithelial-mesenchymal transition (EMT) concept, a critical process during embryonic morphogenesis and carcinoma progression, has offered a mechanistic explanation for the phenotypic switch of cancer cells upon PBD exposure. Accumulating evidence has suggested that carcinoma cells can enter a resistant state via induction of the EMT. In this review, we discussed the underlying mechanism of PBD-induced EMT and the current understanding of its role in cancer drug resistance, with emphasis on how this novel knowledge can be exploited to overcome PBD resistance via EMT-targeted compounds, especially those under clinical trials.
Collapse
Affiliation(s)
- Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| |
Collapse
|
7
|
Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X, Jiang Y. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol 2022; 12:956793. [PMID: 36158694 PMCID: PMC9496650 DOI: 10.3389/fonc.2022.956793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a common type of malignant digestive tract tumor with a high incidence rate worldwide. Currently, the clinical treatment of CRC predominantly include surgical resection, postoperative chemotherapy, and radiotherapy. However, these treatments contain severe limitations such as drug side effects, the risk of recurrence and drug resistance. Some natural compounds found in plants, fungi, marine animals, and bacteria have been shown to inhibit the occurrence and development of CRC. Although the explicit molecular mechanisms underlying the therapeutic effects of these compounds on CRC are not clear, classical signaling transduction pathways such as NF-kB and Wnt/β-catenin are extensively regulated. In this review, we have summarized the specific mechanisms regulating the inhibition and development of CRC by various types of natural compounds through nine signaling pathways, and explored the potential therapeutic values of these natural compounds in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Mingchuan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianjun Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tong Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianbin Cheng
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yang Jiang,
| |
Collapse
|
8
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:ijms23169353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Correspondence:
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Liu C, Jiang Y, Liu G, Guo Z, Jin Q, Long D, Zhou W, Qian K, Zhao H, Liu K. PPARGC1A affects inflammatory responses in photodynamic therapy (PDT)-treated inflammatory bowel disease (IBD). Biochem Pharmacol 2022; 202:115119. [PMID: 35667414 DOI: 10.1016/j.bcp.2022.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic inflammation of the gastrointestinal tract is a feature of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Targeting inflammatory signaling represents promising strategy for IBD treatment regimens. METHODS Dextran sulfate sodium (DSS)-induced colitis model was established in mice. Histopathological examinations were conducted by H&E staining and IHC staining. IL-1β, IL-10, and TNF-α were tested by ELISA kits. TargetScan was used to predict miRNAs that target PPARGC1A and luciferase activity assay was performed to validate the predicted binding. RESULTS DSS-induced acute colitis model was successfully established in mice; photodynamic therapy (PDT) treatment partially improved DSS-induced colonic damages and cell inflammation. Microarray assays and integrative bioinformatics analysis identified PPARG coactivator 1 alpha (PPARGC1A) as a significantly differentially-expressed gene in PDT-treated IBD compared with non-treated IBD. PPARGC1A expression was downregulated in IBD clinical samples, DSS-induced colitis mice colons, and DSS-stimulated colonic epithelial cells, whereas partially upregulated by PDT treatment in DSS-stimulated cells. Single DSS stimulation significantly promoted cellular inflammation; PDT partially attenuated, whereas sh-PPARGC1A transduction further enhanced DSS effects on cancer cell inflammation. In colitis mice, DSS decreased PPRA-α and PPRA-γ proteins in mice colons; the in vivo effects of DSS were partially attenuated by PDT treatment, whereas amplified by sh-PPARGC1A transduction. Upstream miR-301a-3p targeted and inhibited PPARGC1A expression. CONCLUSIONS Collectively, PPARGC1A, which is downregulated in DSS-induced acute colitis and DSS-stimulated colonic epithelial cells, could be upregulated by PDT treatment. PPARGC1A knockdown could attenuate PDT therapeutic effects on DSS-induced acute colitis and DSS-stimulated colonic epithelial cells.
Collapse
Affiliation(s)
- Chao Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuhong Jiang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ganglei Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhushu Guo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qianqian Jin
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dongju Long
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Weihan Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Qian
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hua Zhao
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kuijie Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
10
|
Prabhakar P, Pavankumar GS, Raghu SV, Rao S, Prasad K, George T, Baliga MS. Utility of Indian fruits in cancer prevention and treatment: Time to undertake translational and bedside studies. Curr Pharm Des 2022; 28:1543-1560. [PMID: 35652402 DOI: 10.2174/1381612828666220601151931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
The World Health Organization predicts a 70% increase in cancer incidents in developing nations over the next decade, and it will be the second leading cause of death worldwide. Traditional plant-based medicine systems play an important role against various diseases and provide health care to a large section of the population in developing countries. Indigenous fruits and their bioactive compounds with beneficial effects like antioxidant, antiproliferative, and immunomodulatory are shown to be useful in preventing the incidence of cancer. India is one of the biodiversity regions and is native to numerous flora and fauna in the world. Of the many fruiting trees indigenous to India, Mango (Mangifera indica), Black plum (Eugenia jambolana or Syzygium jambolana), Indian gooseberry (Emblica officinalis or Phyllanthus emblica), kokum (Garcinia indica or Brindonia indica), stone apple or bael (Aegle marmelos), Jackfruit (Artocarpus heterophyllus), Karaunda (Carissa carandas) and Phalsa (Grewia asiatica), Monkey Jackfruit (Artocarpus lakoocha) and Elephant apple (Dillenia indica) have been shown to be beneficial in preventing cancer and in the treatment of cancer in validated preclinical models of study. In this review, efforts are also made to collate the fruits' anticancer effects and the important phytochemicals. Efforts are also made at emphasizing the underlying mechanism/s responsible for the beneficial effects in cancer prevention and treatment. These fruits have been a part of the diet, are non-toxic, and easily acceptable for human application. The plants and some of their phytochemicals possess diverse medicinal properties. The authors propose that future studies should be directed at detailed studies with various preclinical models of study with both composite fruit extract/juice and the individual phytochemicals. Additionally, translational studies should be planned with the highly beneficial, well-investigated and pharmacologically multifactorial amla to understand its usefulness as a cancer preventive in the high-risk population and as a supportive agent in cancer survivors. The outcome of both preclinical and clinical studies will be useful for patients, the healthcare fraternity, pharmaceutical, and agro-based sectors.
Collapse
Affiliation(s)
- Pankaj Prabhakar
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences (IGIMS), Sheikhpura, Patna, Bihar, 800014, India
| | - Giriyapura Srikantachar Pavankumar
- Department of Biotechnology, Kuvempu University, India.,Sri Lakshmi Group of Institution, Magadi Main Road, Sunkadakatte, Bengaluru, Karnataka, India
| | - Shamprasad Varija Raghu
- Department of Applied Zoology, Mangalore University, Mangalagangotri, Konaje, Karnataka India
| | - Suresh Rao
- Radiation Oncology, c Pumpwell, Mangalore, Karnataka, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka, India
| | - Thomas George
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka, India
| | | |
Collapse
|
11
|
Amintas S, Dupin C, Boutin J, Beaumont P, Moreau-Gaudry F, Bedel A, Krisa S, Vendrely V, Dabernat S. Bioactive food components for colorectal cancer prevention and treatment: A good match. Crit Rev Food Sci Nutr 2022; 63:6615-6629. [PMID: 35128990 DOI: 10.1080/10408398.2022.2036095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer worldwide, accounts for about 10% of the total cancer cases, and ranks as the second cause of death by cancer. CRC is more prevalent in developed countries in close causal relation with occidental diets. Due to anatomy, the diet has a strong impact on CRC. High contents in meat are acknowledged risk factors whereas a diet rich in fruits and vegetables is an established CRC protective factor. Fruits and vegetables contain numerous Bioactive Food Components (BFCs), physiologically active food compounds, beneficial on health. Preventive and therapeutic benefits of BFCs in cancer have increasingly been reported over the past 20 years. BFCs show both chemopreventive and anti-tumor properties in CRC but more interestingly, abundant research describes BFCs as enhancers of conventional cancer treatments. Despite these promising results, their clinical transferability is slowed down by bioavailability interrogations and their poorly understood hormetic effect. In this review, we would like to reposition BFCs as well-fitted for applications in CRC. We provide a synthetic overview of trustworthy BFC applications in CRC, with a special highlight on combinatory approaches and conventional cancer treatment potentiation strategies.
Collapse
Affiliation(s)
- Samuel Amintas
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Tumor Biology and Tumor Bank Laboratory, Bordeaux University Hospital, Bordeaux, France
| | - Charles Dupin
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Radiotherapy Department, Bordeaux University Hospital, Bordeaux, France
| | - Julian Boutin
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Biochemistry Laboratory, Bordeaux. University Hospital, Bordeaux, France
| | | | - François Moreau-Gaudry
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Biochemistry Laboratory, Bordeaux. University Hospital, Bordeaux, France
| | - Aurélie Bedel
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Biochemistry Laboratory, Bordeaux. University Hospital, Bordeaux, France
| | | | - Véronique Vendrely
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Radiotherapy Department, Bordeaux University Hospital, Bordeaux, France
| | - Sandrine Dabernat
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Biochemistry Laboratory, Bordeaux. University Hospital, Bordeaux, France
| |
Collapse
|