1
|
Dong X, Xu J, Du K, Chen X, Shu H, Yu S. Plateau hypoxia-induced upregulation of reticulon 4 pathway mediates altered autophagic flux involved in blood-brain barrier disruption after traumatic brain injury. Neuroreport 2025; 36:81-92. [PMID: 39661527 DOI: 10.1097/wnr.0000000000002122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study aimed to examine reticulon 4 (RTN4), neurite outgrowth inhibitor protein expression that changes in high-altitude traumatic brain injury (HA-TBI) and affects on blood-brain barrier's (BBB) function. C57BL/6J 6-8-week-old male mice were used for TBI model induction and randomized into the normal altitude group and the 5000-m high-altitude (HA) group, each group was divided into control (C) and 8h/12h/24h/48h-TBI according to different times post-TBI. Brain water content (BWC) and modified Neurological Severity Score were measured, RTN4 and autophagy-related indexes (Beclin1, LC3B, and SQSTM1/p62) were detected by western blot, immunofluorescence technique, and PCR in peri-injury cortical tissues. The expression of NgR1, Lingo-1, TROY, P75, PirB, S1PR2, and RhoA receptors' downstream of RTN4 was detected by PCR. HA-TBI caused increased neurological deficits including motor, sensory, balance and reflex deficits, increased BWC, earlier peak RTN4 expression and a longer duration of high expression in peri-injury cortical tissues, and enhanced levels of Beclin1, LC3B, and SQSTM1/p62 to varying degrees. Concurrently, the transcription of S1PR2 and PirB, the main signaling molecules downstream of RTN4, was significantly increased. In HA-TBI's early stages, the increased RTN4 may regulate enhanced autophagic initiation and impaired autolysosome degradation in vascular endothelial cells via S1PR2 receptor activation, thereby reducing BBB function. This suggests that autophagy could be a new target using RTN4 intervention as a clinical HA-TBI mechanism.
Collapse
Affiliation(s)
- Xinning Dong
- College of Medicine, Southwest Jiaotong University
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jing Xu
- College of Medicine, Southwest Jiaotong University
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kejun Du
- College of Medicine, Southwest Jiaotong University
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Haifeng Shu
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Sixun Yu
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Gong M, Yuan Y, Shi X, Huang H, Liu J, Zhao J, Xu Q. Compound oolong tea ameliorates lipid accumulation through AMPK-PPAR pathway of hepatic lipid metabolism and modulates gut microbiota in HFD induced mice. Food Res Int 2024; 196:115041. [PMID: 39614556 DOI: 10.1016/j.foodres.2024.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Based on the modified traditional Chinese formula, Compound Oolong tea (WLT) is composed of six herbal medicines which have beneficial effects. The present study aimed to assess the effects of WLT on lipid metabolism and gut microbiota in the mouse obesity model.Totally 32 mice were randomized into 4 groups including normal control (NC), high-fat diet model (HFD), positive control (PC) receiving atorvastatin 10 mg/kg/d, and WLT group with WLT water extra 300 mg/kg/d. The HFD, PC, WLT groups were fed a High-fat Diet. The results show that body weight, Lee's index, liver index and fat index were reduced in WLT. Moreover, the accumulation of TC, TG, and LDL-C were lower, and the level of serum HDL-C in WLT was higher than HFD. The activities of ALT and AST were reduced, and the glucose tolerance was improved in WLT. Furthermore, the relative gene expression of hepatic such as Pparγ, Lxr, Srebp-1c, Srebp-2, Scd-1, Acc-1, Fas were upregulated, and Hmgcr was downregulated in WLT compared to HFD. The relative protein expression of PPARγ, SREBP-1, FAS, and SCD-1 were decreased, and p-AMPK/AMPK and p-ACC-1/ACC-1 were increased in WLT compared with HFD. In addition, the diversity of gut microbiota was increased in mice, with an increase in Bacteroidota and a decrease in Firmicutes and Desulfovibrionales were decreased in WLT, compared with HFD. Briefly, WLT improves hepatic lipid metabolism through the AMPK-PPAR pathway and regulates the gut microbiome. These findings suggest that WLT could potentially be used as a functional food ingredients for preventing obesity.
Collapse
Affiliation(s)
- Mingxiu Gong
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Pharmacy Department, Lanxi people's Hospital, Jinhua 321000, China
| | - Yiwei Yuan
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Key Laboratory of Pecialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Xiaolei Shi
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Key Laboratory of Pecialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Hao Huang
- Doctor Innovation Workstation of Zhejiang Yifutang Tea Industry Co., Ltd., Hangzhou 311500, China
| | - Jun Liu
- Hangzhou Niubei Biotechnology Co., Ltd., Hangzhou 310018, China
| | - Jin Zhao
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Key Laboratory of Pecialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China.
| | - Qianqian Xu
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Key Laboratory of Pecialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
3
|
Wang L, Zhang X, Huang X, Sha X, Li X, Zheng J, Li S, Wei Z, Wu F. Homoplantaginin alleviates high glucose-induced vascular endothelial senescence by inhibiting mtDNA-cGAS-STING pathway via blunting DRP1-mitochondrial fission-VDAC1 axis. FASEB J 2024; 38:e70127. [PMID: 39436199 DOI: 10.1096/fj.202401299rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Vascular endothelial senescence is a major risk factor for diabetic vascular complications. Abnormal mitochondrial fission by dynamically related protein 1 (DRP1) accelerates vascular endothelial cell senescence. Homoplantaginin (Hom) is a flavonoid in Salvia plebeia R. Br. with protecting mitochondrial and repairing vascular properties. However, the relevant mechanism of Hom against diabetic vascular endothelial cell senescence remains unclear. Here, we used db/db mice and high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs) to assess the anti-vascular endothelial cell senescence of Hom. We found that Hom inhibited senescence-associated β-galactosidase activity, decreased the levels of senescence markers, and senescence-associated secretory phenotype factors. Additionally, Hom inhibited the expression of cGAS-STING pathway and downstream inflammatory factors. STING inhibitor H-151 delayed endothelial senescence, whereas STING overexpression attenuated the anti-endothelial senescence effect of Hom. Furthermore, we observed that Hom reduced mitochondrial fragmentation and inhibited abnormal mitochondrial fission using transmission electron microscopy. Importantly, Hom has a stronger effect on mitochondrial fission protein than mitochondrial fusion protein, especially downregulated the expression of DRP1. DRP1 inhibitor Mdivi-1 suppressed cGAS-STING pathway and vascular endothelial senescence, yet DRP1 agonist FCCP attenuated the effect of Hom. Surprisingly, Hom blunted abnormal mitochondrial fission mediated by DRP1 mitochondrial localization, suppressed interaction of DRP1 with VDAC1 and prevented VDAC1 oligomerization, which was necessary for mtDNA escape and subsequent cGAS-STING pathway activation. These results revealed a previously unrecognized mechanism that Hom alleviated vascular endothelial senescence by inhibited mtDNA-cGAS-STING signaling pathway via blunting DRP1-mitochondrial fission-VDAC1 axis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xueying Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Huang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaotong Sha
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xulu Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianmei Zheng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shitong Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feihua Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Lin Y, Xie S, Xiao L, Liu Z, Ke W, Huang JA, Liu Z, Quan W. Can drinking tea become an effective way to alleviate the extraintestinal manifestations of inflammatory bowel disease: A comprehensive review. FOOD BIOSCI 2024; 59:104168. [DOI: 10.1016/j.fbio.2024.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Gao Y, Zhang L, Zhang F, Liu R, Liu L, Li X, Zhu X, Liang Y. Traditional Chinese medicine and its active substances reduce vascular injury in diabetes via regulating autophagic activity. Front Pharmacol 2024; 15:1355246. [PMID: 38505420 PMCID: PMC10949535 DOI: 10.3389/fphar.2024.1355246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Due to its high prevalence, poor prognosis, and heavy burden on healthcare costs, diabetic vascular complications have become a significant public health issue. Currently, the molecular and pathophysiological mechanisms underlying diabetes-induced vascular complications remain incompletely understood. Autophagy, a highly conserved process of lysosomal degradation, maintains intracellular homeostasis and energy balance via removing protein aggregates, damaged organelles, and exogenous pathogens. Increasing evidence suggests that dysregulated autophagy may contribute to vascular abnormalities in various types of blood vessels, including both microvessels and large vessels, under diabetic conditions. Traditional Chinese medicine (TCM) possesses the characteristics of "multiple components, multiple targets and multiple pathways," and its safety has been demonstrated, particularly with minimal toxicity in liver and kidney. Thus, TCM has gained increasing attention from researchers. Moreover, recent studies have indicated that Chinese herbal medicine and its active compounds can improve vascular damage in diabetes by regulating autophagy. Based on this background, this review summarizes the classification, occurrence process, and related molecular mechanisms of autophagy, with a focus on discussing the role of autophagy in diabetic vascular damage and the protective effects of TCM and its active compounds through the regulation of autophagy in diabetes. Moreover, we systematically elucidate the autophagic mechanisms by which TCM formulations, individual herbal extracts, and active compounds regulate diabetic vascular damage, thereby providing new candidate drugs for clinical treatment of vascular complications in diabetes. Therefore, further exploration of TCM and its active compounds with autophagy-regulating effects holds significant research value for achieving targeted therapeutic approaches for diabetic vascular complications.
Collapse
Affiliation(s)
- Yankui Gao
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lei Zhang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Fei Zhang
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Lanzhou, China
| | - Rong Liu
- Department of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Liu
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoyan Li
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangdong Zhu
- Department of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Yonglin Liang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
6
|
Chen L, Qiu H, Chen Q, Xiang P, Lei J, Zhang J, Lu Y, Wang X, Wu S, Yu C, Ma L. N-acetylneuraminic acid modulates SQSTM1/p62 sialyation-mediated ubiquitination degradation contributing to vascular endothelium dysfunction in experimental atherosclerosis mice. IUBMB Life 2024; 76:161-178. [PMID: 37818680 DOI: 10.1002/iub.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Sialic acid (SIA) has been reported to be a risk factor for atherosclerosis (AS) due to its high plasma levels in such patients. However, the effect of increasing SIA in circulation on endothelial function during AS progression remains unclear. In the present study, ApoE-/- mice and endothelial cells line (HUVEC cells) were applied to investigate the effect of SIA on AS progression and its potential molecular mechanism. In vivo, mice were injected intraperitoneally with Neu5Ac (main form of SIA) to keep high-level SIA in circulation. ORO, H&E, and Masson staining were applied to detect the plaque progression. In vitro, HUVECs were treated with Neu5Ac at different times, CCK-8, RT-PCR, western blot, and immunoprecipitation methods were used to analyze its effects on endothelial function and the potential involved mechanism. Results from the present study showed that high plasma levels of Neu5Ac in ApoE-/- mice could aggravate the plaque areas as well as increase necrotic core areas and collagen fiber contents. Remarkably, Neu5Ac levels in circulation displayed a positive correlation with AS plaque areas. Furthermore, results from HUVECs showed that Neu5Ac inhibited cells viability in a time/dose-dependent manner, by then induced the activation of inflammation makers such as ICAM-1 and IL-1β. Mechanism study showed that the activation of excessive autophagy medicated by SQSTM1/p62 displayed an important role in endothelium inflammatory injury. Neu5Ac could modify SQSTM1/p62 as a sialylation protein, and then increase its level with ubiquitin binding, further inducing ubiquitination degradation and being involved in the excessive autophagy pathway. Inhibition of sialylation by P-3Fax-Neu5Ac, a sialyltransferase inhibitor, reduced the binding of SQSTM1/p62 to ubiquitin. Together, these findings indicated that Neu5Ac increased SQSTM1/p62-ubiquitin binding through sialylation modification, thereby inducing excessive autophagy and subsequent endothelial injury. Inhibition of SQSTM1/p62 sialylation might be a potential strategy for preventing such disease with high levels of Neu5Ac in circulation.
Collapse
Affiliation(s)
- Le Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Hongmei Qiu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Qingqiu Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Peng Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Jin Lei
- Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
| | - Jun Zhang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Yining Lu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Xianmin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| |
Collapse
|
7
|
Ye J, Gong M, Zhang Y, Xu Q, Zhao J. Effects of Fermented Extracts of Wuniuzao Dark Loose Tea on Hepatic Sterol Regulatory Element-Binding Protein Pathway and Gut Microbiota Disorder in Obese Mice. J Nutr 2024; 154:626-637. [PMID: 38110182 DOI: 10.1016/j.tjnut.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Artificially fermented dark loose tea is a type of novel dark tea prepared via fermentation by Eurotium cristatum. The effects of artificially fermented dark loose tea on lipid metabolism are still unclear. OBJECTIVES This study aimed to explore if artificially fermented dark loose tea has the same effects as naturally fermented dark loose tea in regulating hepatic lipid metabolism. METHODS Thirty-six 8-wk-old male C57BL/6 mice were randomly divided into 6 treatment groups, including normal control (NC), high-fat diet (HFD), positive control (PC), Wuniuzao dark raw tea (WDT), Wuniuzao naturally fermented dark loose tea (NFLT), and Wuniuzao artificially fermented dark loose tea (AFLT) groups. The HFD, PC, WDT, NFLT, and AFLT groups were fed a HFD. The PC group was supplemented with atorvastatin (10 mg/kg). The WDT group was supplemented with WDT (300 mg/kg), the NFLT group with NFLT (300 mg/kg), and the AFLT group with AFLT (300 mg/kg). RESULTS The study compared the effect of WDT, NFLT, and AFLT on liver steatosis and gut microbiota disorder in obese mice. All 3 tea extracts reduced body weight, glucose tolerance, and serum lipid concentrations. Via sterol-regulatory element binding protein (SREBP)-mediated lipid metabolism, all 3 tea extracts alleviated hepatic steatosis in mice with obesity. Furthermore, NFLT and AFLT intervened in the abundance of Firmicutes, Bacteroidetes, Clostridia, Muribaculaceae, and Lachnospiraceae. CONCLUSION In mice with obesity induced by a HFD, WDT, NFLT, and AFLT may improve hepatic steatosis through an SREBP-mediated lipid metabolism. Moreover, NFLT and AFLT improved the composition of gut microbiota.
Collapse
Affiliation(s)
- Jiangcheng Ye
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mingxiu Gong
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yifan Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianqian Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jin Zhao
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
8
|
Zhao J, Liu GW, Tao C. Hotspots and future trends of autophagy in Traditional Chinese Medicine: A Bibliometric analysis. Heliyon 2023; 9:e20142. [PMID: 37780780 PMCID: PMC10539644 DOI: 10.1016/j.heliyon.2023.e20142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Objective To discuss the hotspots and future trends of autophagy in traditional Chinese medicine (TCM) and provide a reference for researchers in this field. Method Using visual analysis tools, metrological statistics and visual research on the pertinent literature in the area of autophagy use in TCM were undertaken in the core collection database of the Web of Science. By examining the authors, keywords, research circumstances, research hotspots, and trends of linked research, the use of autophagy in TCM was investigated. Results and Conclusions A total of 916 studies were included, among which Beijing University Chinese Medicine was the largest number of advantageous research institutions, followed by Shanghai University Traditional Chinese Medicine and Guangzhou University Chinese Medicine.The keywords of literature research primarily comprise apoptosis, activation, inhibition, pathway, mechanism, oxidative stress, proliferation, NF-κB, cancer, mtor, etc. At present, the research on autophagy in the field of TCM is increasing on a year-to-year basis. The research has focused on the role played by TCM in malignant tumors, atherosclerosis, Alzheimer's disease through autophagy, and the regulation of autophagy signaling pathways (e.g., PI3K/AKT/mTOR signaling pathway, TLR4 signaling pathway,nrf2 signaling pathway and NF-κB signaling pathway). In the future, the therapeutic effect of TCM on chemotherapy-resistant tumor cells through autophagy pathway, the role of TCM mediating mitophagy and activating autophagy function, and the therapeutic effect of TCM components represented by luteolin on tumors, asthma, myocardial injury and other diseases through autophagy mechanism will be the research hotspots in the future.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Guang-wei Liu
- Department of Gastrointestinal surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Cheng Tao
- Scientific Research Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
9
|
Guo J, Li K, Lin Y, Liu Y. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Front Nutr 2023; 10:1202378. [PMID: 37448666 PMCID: PMC10336229 DOI: 10.3389/fnut.2023.1202378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is the most important factor contributing to cardiovascular diseases (CVDs), and the incidence and severity of cardiovascular events tend to increase with age. Currently, CVD is the leading cause of death in the global population. In-depth analysis of the mechanisms and interventions of cardiovascular aging and related diseases is an important basis for achieving healthy aging. Tea polyphenols (TPs) are the general term for the polyhydroxy compounds contained in tea leaves, whose main components are catechins, flavonoids, flavonols, anthocyanins, phenolic acids, condensed phenolic acids and polymeric phenols. Among them, catechins are the main components of TPs. In this article, we provide a detailed review of the classification and composition of teas, as well as an overview of the causes of aging-related CVDs. Then, we focus on ten aspects of the effects of TPs, including anti-hypertension, lipid-lowering effects, anti-oxidation, anti-inflammation, anti-proliferation, anti-angiogenesis, anti-atherosclerosis, recovery of endothelial function, anti-thrombosis, myocardial protective effect, to improve CVDs and the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Kai Li
- General Surgery Department, The First People’s Hospital of Tai’an City, Tai’an, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Feng X, Yang S, Pan Y, Zhou S, Ma S, Ou C, Fan F, Gong S, Chen P, Chu Q. Yellow tea: more than turning green leaves to yellow. Crit Rev Food Sci Nutr 2023; 64:7836-7853. [PMID: 37009836 DOI: 10.1080/10408398.2023.2193271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Yellow tea (YT), a slightly-fermented tea originated from Ming Dynasty with distinctive "Three yellows," mild-sweet smell, and mellow taste attributed to the unique yellowing process. Based on current literature and our previous work, we aim to comprehensively illustrate the key processing procedures, characteristic chemical compounds, health benefits and applications, as well as the interlocking relationships among them. Yellowing is the most vital procedure anchored on the organoleptic quality, characteristic chemical components, and bioactivities of YT, which is influenced by temperature, moisture content, duration, and ventilation conditions. Pheophorbides, carotenoids, thearubigins and theabrownins are the major pigments contributing to the "three yellows" appearance. Alcohols, such as terpinol and nerol, are attributed to the refreshing and sweet aroma of bud and small-leaf YT, while heterocyclics and aromatics forming during roasting result in the crispy rice-like large-leaf YT. Hygrothermal effects and enzymatic reactions during yellowing result in the decline of astringent substances. Meanwhile, multiple bioactive compounds such as catechins, ellagitannins, and vitexin, endow YT with antioxidant, anti-metabolic syndrome, anti-cancer, gut microbiota regulation, and organ injury protection effects. Future studies focusing on the standard yellowing process technology, quality evaluation system, and functional factors and mechanisms, possible orientations, and perspectives are guaranteed.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shiyan Yang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
11
|
Tang D, Shen Y, Li F, Yue R, Duan J, Ye Z, Lin Y, Zhou W, Yang Y, Chen L, Wang H, Zhao J, Li P. Integrating metabolite and transcriptome analysis revealed the different mechanisms of characteristic compound biosynthesis and transcriptional regulation in tea flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:1016692. [PMID: 36247612 PMCID: PMC9557745 DOI: 10.3389/fpls.2022.1016692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The flowers of tea plants (Camellia sinensis), as well as tea leaves, contain abundant secondary metabolites and are big potential resources for the extraction of bioactive compounds or preparation of functional foods. However, little is known about the biosynthesis and transcriptional regulation mechanisms of those metabolites in tea flowers, such as terpenoid, flavonol, catechins, caffeine, and theanine. This study finely integrated target and nontarget metabolism analyses to explore the metabolic feature of developing tea flowers. Tea flowers accumulated more abundant terpenoid compounds than young leaves. The transcriptome data of developing flowers and leaves showed that a higher expression level of later genes of terpenoid biosynthesis pathway, such as Terpene synthases gene family, in tea flowers was the candidate reason of the more abundant terpenoid compounds than in tea leaves. Differently, even though flavonol and catechin profiling between tea flowers and leaves was similar, the gene family members of flavonoid biosynthesis were selectively expressed by tea flowers and tea leaves. Transcriptome and phylogenetic analyses indicated that the regulatory mechanism of flavonol biosynthesis was perhaps different between tea flowers and leaves. However, the regulatory mechanism of catechin biosynthesis was perhaps similar between tea flowers and leaves. This study not only provides a global vision of metabolism and transcriptome in tea flowers but also uncovered the different mechanisms of biosynthesis and transcriptional regulation of those important compounds.
Collapse
Affiliation(s)
- Dingkun Tang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fangdong Li
- College of Science, Anhui Agricultural University, Hefei, China
| | - Rui Yue
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianwei Duan
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ying Lin
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yilin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lixiao Chen
- Municipal Research Institute for Processing of Agricultural and Featured Products, Shiyan Academy of Agricultural Science, Shiyan, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Ke JP, Yu JY, Gao B, Hu FL, Xu FQ, Yao G, Bao GH. Two new catechins from Zijuan green tea enhance the fitness and lifespan of Caenorhabditis elegans via insulin-like signaling pathways. Food Funct 2022; 13:9299-9310. [PMID: 35968754 DOI: 10.1039/d2fo01795d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Green tea polyphenols show positive effects on human health and longevity. However, knowledge of the antiaging properties of green tea is limited to the major catechin epigallocatechin gallate (EGCG). The search for new ingredients in tea with strong antiaging activity deserves further study. Here we isolated and identified two new catechins from Zijuan green tea, named zijuanin E (1) and zijuanin F (2). Their structures were identified by extensive high-resolution mass spectroscopy (HR-MS), nuclear magnetic resonance (NMR), ultraviolet-vis (UV), infrared (IR) and circular dichroism (CD) spectroscopic analyses, and their 13C NMR and CD data were calculated. We used the nematode Caenorhabditis elegans (C. elegans) to analyze the health benefits and longevity effects of 1 and 2. Compounds 1 and 2 (100 μM) remarkably prolonged the lifespan of C. elegans by 67.2% and 56.0%, respectively, delaying the age-related decline of phenotypes, enhancing stress resistance, and reducing ROS and lipid accumulation. Furthermore, 1 and 2 did not affect the lifespan of daf-16, daf-2, sir-2.1, and skn-1 mutant worms, suggesting that they might work via the insulin/IGF and SKN-1/Nrf2 signaling pathways. Meanwhile, 1 and 2 also exhibited strong antioxidant activity in vitro. Surface plasmon resonance (SPR) evidence suggests that zijuanins E and F have strong human serum albumin (HSA) binding ability. Together, zijuanins E and F represent a new valuable class of tea components that promote healthspan and could be developed as potential dietary therapies against aging.
Collapse
Affiliation(s)
- Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Jing-Ya Yu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Feng-Lin Hu
- Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, 230036, China.
| | - Feng-Qing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| |
Collapse
|
13
|
Hu S, Hu C, Luo L, Zhang H, Zhao S, Liu Z, Zeng L. Pu-erh tea increases the metabolite Cinnabarinic acid to improve circadian rhythm disorder-induced obesity. Food Chem 2022; 394:133500. [PMID: 35749873 DOI: 10.1016/j.foodchem.2022.133500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
Abstract
Obesity is one of the circadian rhythm disorders (CRD)-mediated metabolic disorder syndromes. Pu-erh tea is a viable dietary intervention for CRD, however its effect on CRD-induced obesity is unclear. Here, we found that Pu-erh tea improved obesity in CRD-induced mice, which stemmed from the production of Cinnabarinic acid (CA). CA promoted adipose tissue lipolysis and thermogenic response (HSL, ATGL, Pparα, CKB, UCP1) and increased adipocyte sensitivity to hormones and neurotransmitters by targeting the expression of adipose tissue receptor proteins (Q6KAT8, P51655, A2AKQ0, M0QWX7, Q6ZQ33, and mGluR4). This improved mitochondrial activity and facilitated adipose tissue metabolic processes, thereby accelerating glucolipid metabolism. Also, CA-induced alterations in gut microbes and short-chain fatty acids further improved CRD-mediated lipid accumulation. These results suggest that the increase of CA caused by Pu-erh tea, targeted to adipose tissue via the metabolite-blood circulation-adipose tissue axis, maybe a key mechanism for reducing the development of CRD-induced obesity.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|