1
|
Al-Gholam MAS, Abd-Elhafiz HI, Tayel SG. Effect of Alpinia officinarum Rhizome extract on experimentally induced lung fibrosis: The pertinent role of Sirt1 and Nrf2 antioxidant pathways. Morphologie 2024; 109:100940. [PMID: 39694016 DOI: 10.1016/j.morpho.2024.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a frequently reported COVID-19 sequela. It is a progressive disorder characterized by respiratory failure and death. The properties of Alpinia officinarum Rhizomes (AO) make it a highly potent antioxidant, anti-inflammatory, and antifibrotic agent. This study has evaluated AO's protective effects on bleomycin-induced PF in rats and investigated the underlying mechanisms. MATERIAL AND METHODS Bleomycin (5mg/kg, intratracheally) was used to induce PF in albino rats, and then, AO extract (200mg/kg/daily, orally) was administrated for 28days post-bleomycin-instillation. After euthanizing the rats, the biochemical, quantitative real-time polymerase chain reaction (qPCR) and histopathological examination of lung tissue were determined. RESULTS Findings have revealed that bleomycin significantly increased the tissue level of malondialdehyde, tumor necrosis factor-alpha, and interleukin-6, Silent information regulator 1 (Sirt1), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA levels. Furthermore, the total antioxidant capacity level decreased in the lungs of bleomycin-instilled rats. However, AO extract significantly decreased histopathological injuries in hematoxylin & eosin, Masson's trichrome-stained sections, inducible nitric oxide synthase and α-smooth muscle actin, transforming growth factor beta 1 immunoexpression. CONCLUSION Alpinia officinarum Rhizomes extract appears to protect against bleomycin-induced PF, possibly due to its antioxidant, anti-inflammatory, and antifibrotic properties.
Collapse
Affiliation(s)
- Marwa A S Al-Gholam
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| | - Huda I Abd-Elhafiz
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| | - Sara G Tayel
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| |
Collapse
|
2
|
Xu Z, Xiong Y, Hu P, Chen L, Wan J, Huang C, Liu W. Structure Elucidation and Immunostimulatory Activity Evaluation of a Galactoglucan from Alpinia officinarum Hance. Foods 2024; 13:4019. [PMID: 39766964 PMCID: PMC11675448 DOI: 10.3390/foods13244019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Alpinia officinarum Hance has a medicinal history of thousands of years in treating cough, diabetes, and gastrointestinal system diseases, and it is also a medicine food homology (MFH) plant in China. To evaluate the pharmacological activities of polysaccharides from the rhizomes of A. officinarum, polysaccharides were initially obtained by hot-water extraction and the ethanol precipitation method. A homogenous polysaccharide designated as AOP-w was isolated by a DE-52 column. The proposed structure was elucidated and the immunoregulatory effects on RAW 264.7 macrophage cells were evaluated. The results showed that AOP-w had a molecular weight of 5.26 kDa, and mainly consisted of galactose and glucose (molar ratio of 0.12:0.88). Its backbone comprised α-(1→4)-Glcp, α-(1→4,6)-Glcp and β-(1→3,4)-Galp residues, terminated by α-(1→6)-Glcp and T-Glcp residues. AOP-w was nontoxic to RAW 264.7 cells, but demonstrated promotion in cell proliferation within a 100 μg/mL concentration. The immunostimulatory effects of AOP-w were confirmed by the elevated NO production of AOP-w-treated cells. Moreover, the RNAseq was conducted and the results showed that AOP-w may activate the TNF and NF-κB signaling pathways by binding to Toll-like receptors, thereby affecting the immune modulatory activity of RAW264.7 cells. These results suggest a high potential of AOP-w from A. officinarum for immunotherapeutic applications.
Collapse
Affiliation(s)
- Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road, Shanghai 201203, China;
| | - Yanxia Xiong
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No.1899 Meiling Road, Nanchang 330103, China; (Y.X.); (P.H.); (L.C.); (J.W.)
- School of Chemical Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Pei Hu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No.1899 Meiling Road, Nanchang 330103, China; (Y.X.); (P.H.); (L.C.); (J.W.)
| | - Long Chen
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No.1899 Meiling Road, Nanchang 330103, China; (Y.X.); (P.H.); (L.C.); (J.W.)
| | - Jianhua Wan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No.1899 Meiling Road, Nanchang 330103, China; (Y.X.); (P.H.); (L.C.); (J.W.)
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road, Shanghai 201203, China;
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No.1899 Meiling Road, Nanchang 330103, China; (Y.X.); (P.H.); (L.C.); (J.W.)
| | - Wenjun Liu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No.1899 Meiling Road, Nanchang 330103, China; (Y.X.); (P.H.); (L.C.); (J.W.)
| |
Collapse
|
3
|
Ma C, Zhang S, Renaud SJ, Zhang Q, Qi H, Zhou H, Jin Y, Yu H, Xu Y, Huang H, Hong Y, Li H, Liao Q, Ding F, Qin M, Wang P, Xie Z. Structural elucidation of a capsular polysaccharide from Bacteroides uniformis and its ameliorative impact on DSS-induced colitis in mice. Int J Biol Macromol 2024; 279:135119. [PMID: 39208897 DOI: 10.1016/j.ijbiomac.2024.135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Capsular polysaccharides derived from Bacteroides species have emerged as potential mitigators of intestinal inflammation in murine models. However, research on capsular polysaccharides from B. uniformis, a Bacteroides species with reduced abundance in colons of patients with ulcerative colitis, remains scarce. In this study, we extracted a neutral polysaccharide component from B. uniformis ATCC8492, termed BUCPS1B, using ultrasonic disruption, ethanol precipitation, and anion exchange chromatography. Structural characterization revealed BUCPS1B as a water-soluble polysaccharide with an α-1,4-glucan main chain adorned with minor substituent sugar residues. BUCPS1B alleviated intestinal inflammation in a mouse model of colitis and induced polarization of macrophages into M2-type. Furthermore, BUCPS1B modulated the gut microbiota composition, increased the abundance of the probiotic Akkermansia muciniphila and altered the gut metabolic profile to promote phenylalanine and short chain fatty acids metabolism. BUCPS1B is therefore a promising candidate to prevent inflammation and augment intestinal health.
Collapse
Affiliation(s)
- Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaobao Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Huiyuan Qi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Haiyun Zhou
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yibao Jin
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Hansheng Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Houshuang Huang
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meirong Qin
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Ping Wang
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Wu G, Liu S, Wang Z, Wang X. Structural characteristics of neutral polysaccharides purified from coix seed and its anti-insulin resistance effects on HepG2 cells. Food Sci Nutr 2024; 12:8419-8431. [PMID: 39479660 PMCID: PMC11521644 DOI: 10.1002/fsn3.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 11/02/2024] Open
Abstract
Coix seed is recognized as a functional medicinal food due to its valuable biological activities, with polysaccharides being the primary active compounds. In this study, an ultrasonic-assisted enzymatic extraction technique was employed, and response surface methodology was used to optimize the yield of polysaccharides to 9.55 ± 0.26%. A novel neutral polysaccharide, CSPsN-1, was purified with a molecular weight of 7.75 kDa. CSPsN-1 was composed of arabinose, galactose, glucose, xylose, and mannose in molar ratios of 0.48: 7.92: 86.39: 2.42: 2.79. Its backbone composed of →4)-α-D-Glcp-(1→ and →3,4)-α-D-Glcp-(1→ units, with terminal residues of α-D-Glcp. In vitro experiments, CSPsN-1 enhanced glucose consumption in insulin-resistant HepG2 cells and upregulated GLUT4 expression by activating the PI3K/AKT signaling pathway. These findings suggest that CSPsN-1 holds significant promise as a functional ingredient for treating insulin resistance and related metabolic disorders.
Collapse
Affiliation(s)
- Guozhen Wu
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanP.R. China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical SciencesQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Zhenqiang Wang
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanP.R. China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical SciencesQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| |
Collapse
|
5
|
Chen Y, Wu H, Zhang C, Luo Q, Chen Y. Preparation, Structural Analysis, and Growth-Promoting Effects of Amomum longiligulare Polysaccharide 1-Mg (II) Complex. Macromol Biosci 2024:e2400297. [PMID: 39269434 DOI: 10.1002/mabi.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Indexed: 09/15/2024]
Abstract
In this study, Amomum longiligulare polysaccharide 1 (ALP1) is used to chelate with magnesium (Mg) to synthesize the ALP1-Mg (II) complex (ALP1-Mg). Based on Box-Behnken response surface design, the optimum technological conditions are 22 mg mL-1 trisodium citrate, 2.10 mol L-1 MgCl2, reaction at 70 °C for 2.9 h, resulting in a maximum Mg content of 2.13%. Next, the physicochemical properties and structural characteristics of ALP1 and ALP1-Mg are characterized, and the results show that the morphology, conformation, crystallinity, and thermal stability of ALP1-Mg are changed. In addition, dietary supplementation of 500 mg kg-1 ALP1-Mg significantly reduces the feed conversion ratio during the grower (15-35 d). Meanwhile, the villus height/crypt depth of the duodenum and ileum are significantly increased, and the relative abundance of Lactobacillus is significantly elevated. Taken together, the results suggest that ALP1-Mg is a potential growth-promoting feed additive.
Collapse
Affiliation(s)
- Yijing Chen
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, P. R. China
| | - Haowen Wu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, P. R. China
| | - Chenglong Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, P. R. China
| | - Qiyuan Luo
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, P. R. China
| | - Yun Chen
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, P. R. China
| |
Collapse
|
6
|
Wen H, Kuang Y, Lian X, Li H, Zhou M, Tan Y, Zhang X, Pan Y, Zhang J, Xu J. Physicochemical Characterization, Antioxidant and Anticancer Activity Evaluation of an Acidic Polysaccharide from Alpinia officinarum Hance. Molecules 2024; 29:1810. [PMID: 38675630 PMCID: PMC11052303 DOI: 10.3390/molecules29081810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
AHP-3a, a triple-helix acidic polysaccharide isolated from Alpinia officinarum Hance, was evaluated for its anticancer and antioxidant activities. The physicochemical properties and structure of AHP-3a were investigated through gel permeation chromatography, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. The weight-average molecular weight of AHP-3a was 484 kDa, with the molar percentages of GalA, Gal, Ara, Xyl, Rha, Glc, GlcA, and Fuc being 35.4%, 21.4%, 16.9%, 11.8%, 8.9%, 3.1%, 2.0%, and 0.5%, respectively. Based on the results of the monosaccharide composition analysis, methylation analysis, and NMR spectroscopy, the main chain of AHP-3a was presumed to consist of (1→4)-α-D-GalpA and (1→2)-α-L-Rhap residues, which is a pectic polysaccharide with homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) structural domains containing side chains. In addition, the results of the antioxidant activity assay revealed that the ability of AHP-3a to scavenge DPPH, ABTS, and OH free radicals increased with an increase in its concentration. Moreover, according to the results from the EdU, wound healing, and Transwell assays, AHP-3a can control the proliferation, migration, and invasion of HepG2 and Huh7 hepatocellular carcinoma cells without causing any damage to healthy cells. Thus, AHP-3a may be a natural antioxidant and anticancer component.
Collapse
Affiliation(s)
- Huan Wen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Yangjun Kuang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Xiuxia Lian
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Hailong Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Mingyan Zhou
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China;
| | - Yinfeng Tan
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Xuguang Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Yipeng Pan
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China;
| | - Junqing Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China;
| | - Jian Xu
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China;
| |
Collapse
|
7
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
8
|
Jia X, Liu G, Huang Y, Li Z, Liu X, Wang Z, Li R, Song B, Zhong S. Ultrasonic-Assisted Extraction, Structural Characteristics, and Antioxidant Activities of Polysaccharides from Alpinia officinarum Hance. Foods 2024; 13:333. [PMID: 38275700 PMCID: PMC10815092 DOI: 10.3390/foods13020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Alpinia officinarum Hance, a well known agricultural product in the Lei Zhou peninsula, is generally rich in polysaccharides. In order to enhance the use of A. officinarum Hance polysaccharides (AOP) in functional food, AOP was extracted using an ultrasonic-assisted extraction method, and the ultrasonic extraction parameters of AOP was optimized. Furthermore, this study investigated the physicochemical and antioxidant activities of AOPs. In addition, the structural properties were preliminarily determined using Fourier-transform infrared spectroscopy (FTIR), high performance size exclusion chromatography, and a Zetasizer. Ultimately, this study explored the mechanism underlying the antioxidant activities of AOP. The results showed that the optimal ultrasonic-assisted extraction parameters were as follows: ultrasonic time, 6 min; ratio of water to material, 12 mL/g; and ultrasonic power, 380 W. Under these conditions, the maximum yield of AOPs was 5.72%, indicating that ultrasonic-assisted extraction technology is suitable for extracting AOPs due to the reduced time and water usage. Additionally, AOPs were purified using graded alcohol precipitation, resulting in three fractions (AOP30, AOP50, and AOP70). AOP30 had the lowest molecular weight of 11.07 kDa and mainly consisted of glucose (89.88%). The half inhibitory concentration (IC50) value of AOP30 and AOP70 was lower than that of AOP50 in the ability to scavenge the ABTS radical, while a reverse trend was observed in reducing ferric ions. Notably, the antioxidant activities of AOPs were highly correlated with their polydispersity index (Mw/Mn) and Zeta potential. AOP30, a negatively charged acidic polysaccharide fraction, exhibited electron donating capacities. Additionally, it displayed strong antioxidant abilities through scavenging 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radicals and reducing ferric ions. In conclusion, the present study suggests that AOP30 could be developed as an antioxidant ingredient for the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.J.); (G.L.); (Y.H.); (Z.L.); (X.L.); (Z.W.); (R.L.); (B.S.)
| |
Collapse
|
9
|
He Z, Guo J, Zhang H, Yu J, Zhou Y, Wang Y, Li T, Yan M, Li B, Chen Y, Chen S, Lv G, Su J. Atractylodes macrocephala Koidz polysaccharide improves glycolipid metabolism disorders through activation of aryl hydrocarbon receptor by gut flora-produced tryptophan metabolites. Int J Biol Macromol 2023; 253:126987. [PMID: 37729987 DOI: 10.1016/j.ijbiomac.2023.126987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Polysaccharides are known to confer protection against glycolipid metabolism disorders (GMD) by regulating intestinal flora. In this study, a heterogeneous acidic heteropolysaccharide with high molecular weight mainly composed of fructose was isolated from Atractylodes macrocephala Koidz (AMP). Supplementation with AMP was shown to improve diet-induced GMD in a rat model, including decreasing the levels of serum triglycerides, total cholesterol, and glucose, and improving hepatic lipidosis and islet cells morphologies. AMP-treated rats also exhibited modified intestinal flora with enrichments of intestinal Lactobacillus and Rothia species, which was accompanied by increased tryptophan metabolites such as indole-3-propionic acid, indole, tryptamine, and tryptophol. These metabolites promote the expression of intestinal aryl hydrocarbon receptor (AhR) in nuclear fractions. AhR activation increased the expression levels of IL-22 and GLP-1 proteins and mRNA. IL-22 reduced systemic LPS by upregulating the expression of tight junction proteins, antimicrobial peptides, and mucin to ameliorate intestinal barrier function, and activated the hepatic IL-22R/Stat3/Acox1 signaling pathway to improve lipid metabolism. GLP-1 activated the pancreatic GLP-1R/p-CREB signaling pathway to ameliorate β-cell injury and improve insulin resistance. Therefore, the intestinal microbial-tryptophan metabolism-AhR pathway was deduced to be a mechanism by which this polysaccharide improves GMD.
Collapse
Affiliation(s)
- Ziwen He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyan Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiwen Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqing Zhou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yajun Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqiu Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yigong Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Guiyuan Lv
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
10
|
Yuandani, Jantan I, Haque MA, Rohani AS, Nugraha SE, Salim E, Septama AW, Juwita NA, Khairunnisa NA, Nasution HR, Utami DS, Ibrahim S. Immunomodulatory effects and mechanisms of the extracts and secondary compounds of Zingiber and Alpinia species: a review. Front Pharmacol 2023; 14:1222195. [PMID: 37533631 PMCID: PMC10391552 DOI: 10.3389/fphar.2023.1222195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Zingiber and Alpinia species (family: Zingiberaceae) are popularly used in food as spices and flavoring agents and in ethnomedicine to heal numerous diseases, including immune-related disorders. However, their ethnomedicinal uses have not been sufficiently supported by scientific investigations. Numerous studies on the modulating effects of plants and their bioactive compounds on the different steps of the immune system have been documented. This review aimed to highlight up-to-date research findings and critically analyze the modulatory effects and mechanisms of the extracts and secondary compounds of several Zingiber and Alpinia species, namely, Zingiber officinale Roscoe, Z. cassumunar Roxb., Z. zerumbet (L.) Roscoe ex Sm., Alpinia galanga Linn., A. conchigera Griff, A. katsumadai Hayata, A. oxyphylla Miq., A. officinarum Hance, A. zerumbet (Pers.) Burtt. et Smith, and A. purpurata (Viell.) K. Schum. on the immune system, particularly via the inflammation-related signaling pathways. The immunomodulating activities of the crude extracts of the plants have been reported, but the constituents contributing to the activities have mostly not been identified. Among the extracts, Z. officinale extracts were the most investigated for their in vitro, in vivo, and clinical effects on the immune system. Among the bioactive metabolites, 6-, 8-, and 10-gingerols, 6-shogaol, and zerumbone from Zingiber species and cardamomin, 1'-acetoxychavicol acetate, yakuchinone, rutin, 1,8-cineole, and lectin from Alpinia species have demonstrated strong immunomodulating effects. More experimental studies using cell and animal models of immune-related disorders are necessary to further understand the underlying mechanisms, together with elaborate preclinical pharmacokinetics, pharmacodynamics, bioavailability, and toxicity studies. Many of these extracts and secondary metabolites are potential candidates for clinical development in immunomodulating agents or functional foods to prevent and treat chronic inflammatory disorders.
Collapse
Affiliation(s)
- Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
- Centre of Excellence for Chitosan and Advanced Materials, Universitas Sumatera Utara, Medan, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Md. Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ade Sri Rohani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Bogor, Indonesia
| | - Nur Aira Juwita
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Dinda Sari Utami
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
Xiu W, Wang X, Yu S, Na Z, Li C, Yang M, Ma Y. Structural Characterization, In Vitro Digestion Property, and Biological Activity of Sweet Corn Cob Polysaccharide Iron (III) Complexes. Molecules 2023; 28:molecules28072961. [PMID: 37049724 PMCID: PMC10096156 DOI: 10.3390/molecules28072961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aimed to enhance the utilization value of sweet corn cob, an agricultural cereal byproduct. Sweet corn cob polysaccharide-ron (III) complexes were prepared at four different temperatures (40 °C, 50 °C, 60 °C, and 70 °C). It was demonstrated that the complexes prepared at different temperatures were successfully bound to iron (III), and there was no significant difference in chemical composition; and SCCP-Fe-C demonstrated the highest iron content. The structural characterization suggested that sweet corn cob polysaccharide (SCCP) formed stable β-FeOOH iron nuclei with −OH and −OOH. All the four complexes’ thermal stability was enhanced, especially in SCCP-Fe-C. In vitro iron (III) release experiments revealed that all four complexes were rapidly released and acted as iron (III) supplements. Moreover, in vitro antioxidant, α-glucosidase, and α-amylase inhibition studies revealed that the biological activities of all four complexes were enhanced compared with those of SCCP. SCCP-Fe-B and SCCP-Fe-C exhibited the highest in vitro antioxidant, α-glucosidase, and α-amylase inhibition abilities. This study will suggest using sweet corn cobs, a natural agricultural cereal byproduct, in functional foods. Furthermore, we proposed that the complexes prepared from agricultural byproducts can be used as a potential iron supplement.
Collapse
|
12
|
Ke Y, Geng C, Lin L, Zhao M, Rao H. Pectin-type polysaccharide from galangal: An efficient emulsifier to construct the emulsion-based delivery system for galangal flavonoids. Int J Biol Macromol 2022; 221:644-652. [PMID: 36099993 DOI: 10.1016/j.ijbiomac.2022.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Galangal is rich in flavonoids and polysaccharides but underutilized. In this study, galangal flavonoids and polysaccharides (GP-HN and GP-UN) were obtained by segmented extraction, used for chemical composition determination/structural characterization, and constructed for the emulsion delivery system. The results showed that galangin accounted for 71.45 % of total flavonoids. GP-HN and GP-UN were prepared by enzymatic-assisted high-temperature and ultrasonic extraction, which were low-molecular-weight pectin-type polysaccharides mainly constructed by galacturonic acid, galactose, and arabinose. GP-UN was the best emulsifier due to interfacial activities, emulsifying properties, interfacial resistance to bile salts displacement abilities, and anti-lipid digestion abilities of GPs. GP-UN emulsion could stably deliver flavonoids. This study presented a method for orderly reorganizing flavonoids and polysaccharides, guiding for utilization of whole bioactive components in galangal.
Collapse
Affiliation(s)
- Yu Ke
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Chunyang Geng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Huishan Rao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| |
Collapse
|