1
|
Meng X, Li Z, Yue W, Zhang L, Xie Z. Toward At-Home and Wearable Monitoring of Female Hormones: Emerging Nanotechnologies and Clinical Prospects. ACS Sens 2025; 10:54-75. [PMID: 39761986 DOI: 10.1021/acssensors.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Steroid hormones, especially progesterone (P4), estradiol (E2), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion. This review focuses on the latest advances in materials and nanotechnologies to allow the rapid detection of female hormones at the pM level or below and the potentials in at-home and wearable hormone monitoring. We specifically summarize the optical and electrochemical strategies in this category, particularly those affording low cost and portable signal readout for at-home use. Furthermore, emerging flexible/wearable innovations are highlighted, which allow the continuous hormone cycle tracking in a noninvasive manner. The potential of these techniques is discussed to address the need for real-time acquisition of the hormone fluctuation, facilitating health monitoring at home. Lastly, we provide a comprehensive introduction to the prospects of female hormone monitoring in clinical diagnosis and treatment, from the perspective of gynecology and reproductive medicine clinicians.
Collapse
Affiliation(s)
- Xingyu Meng
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhaoxian Li
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wan Yue
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
2
|
Dong Y, Zhu J, Pan N. Recent advances in rapid detection of Helicobacter pylori by lateral flow assay. Arch Microbiol 2025; 207:35. [PMID: 39820420 DOI: 10.1007/s00203-025-04239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Infection with H. pylori (Helicobacter pylori) is the most prevalent human infection worldwide and is strongly associated with many gastrointestinal disorders, including gastric cancer. Endoscopy is mainly used to diagnose H. pylori infection in gastric biopsies. However, this approach is invasive, time-consuming and expensive. On the other hand, serology-based methods can be considered as a non-invasive approach to detecting H. pylori infection. The LFA (lateral flow assay) serves as a rapid point-of-care diagnostic tool. This paper-based platform facilitates the detection and quantification of analytes within human fluids such as blood, serum and urine. Due to ease of production, rapid results, and low costs, LFAs have a wide application in clinical laboratories and hospitals. In this comprehensive review, we examined LFA-based approaches for detection of H. pylori infection from human fluids and compare them with other high-sensitivity methods like ELISA (Enzyme-linked immunosorbent assay). Furthermore, we reviewed methods to elevate LFA sensitivity during H. pylori infection including, CRISPR/Cas system and isothermal amplification approaches. The development and optimization of novel labeling agents such as nanozyme to enhance the performance of LFA devices in detecting H. pylori were reviewed. These innovations aim to improve signal amplification and stability, thereby increasing the diagnostic accuracy of LFA devices. A combination of advances in LFA technology and molecular insight could significantly improve diagnostic accuracy, resulting in a significant improvement in clinical and remote diagnostic accuracy.
Collapse
Affiliation(s)
- Yanjin Dong
- Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China
| | - Jie Zhu
- Department of Laboratory Medicine, Shandong First Medical University Affiliated Provincial Hospital (East Hospital), No. 9677, Jingshi Road, Lixia District, Jinan, 250098, Shandong, China
| | - Ning Pan
- Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China.
| |
Collapse
|
3
|
Erkocyigit B, Man E, Efecan E, Ozufuklar O, Devecioglu D, Bagci B, Aldemir E, Coskunol H, Evran S, Guler Celik E. Non-Invasive Point-of-Care Detection of Methamphetamine and Cocaine via Aptamer-Based Lateral Flow Test. BIOSENSORS 2025; 15:31. [PMID: 39852082 PMCID: PMC11764150 DOI: 10.3390/bios15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Drug abuse is a major public problem in the workplace, traffic, and forensic issues, which requires a standardized test device to monitor on-site drug use. For field testing, the most important requirements are portability, sensitivity, non-invasiveness, and quick results. Motivated by this problem, a point of care (POC) test based on lateral flow assay (LFA) was developed for the detection of cocaine (COC) and methamphetamine (MET) in saliva which has been selected as the matrix for this study due to its rapid and non-invasive collection process. In the design strategy of an LFA test, the use of gold nanoparticles (AuNPs) with strong optical properties has been combined with the advantages of selecting aptamers under in vitro conditions, making it a highly specific and stable recognition probe for the detection of small molecules in saliva. The developed aptamer-based LFA in a competitive format, was able to detect COC and MET in synthetic saliva at concentrations as low as 5.0 ng/mL. After analytical performance studies, the test system also detected COC and MET in real patient samples, which was verified by chromatographic methods.
Collapse
Affiliation(s)
- Bilge Erkocyigit
- Department of Biotechnology, Institute of Natural Sciences, Ege University, 35040 Izmir, Türkiye
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35040 Izmir, Türkiye
| | - Ece Efecan
- Department of Biotechnology, Institute of Natural Sciences, Ege University, 35040 Izmir, Türkiye
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, 35040 Izmir, Türkiye
| | - Deniz Devecioglu
- Department of Psychiatry, Ataturk Educational and Research Hospital, Katip Celebi University, 35360 Izmir, Türkiye
| | - Basak Bagci
- Department of Psychiatry, Ataturk Educational and Research Hospital, Katip Celebi University, 35360 Izmir, Türkiye
| | - Ebru Aldemir
- Department of Psychiatry, Faculty of Medicine, Izmir Tinaztepe University, 35400 Izmir, Türkiye
| | - Hakan Coskunol
- Department of Psychiatry, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35040 Izmir, Türkiye
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35040 Izmir, Türkiye
- Ege Science Pro Scientific Research Inc., 35040 Izmir, Türkiye
| |
Collapse
|
4
|
Lv J, Wan J, Wu D, Zhang X, Xu W, Wang M, Chen S, Ye Z, Tian Y, Hu Q, Han D, Niu L. Target-mediated silver deposition-based electrochemical biosensor for highly sensitive detection of human chorionic gonadotropin. Biosens Bioelectron 2025; 267:116830. [PMID: 39368294 DOI: 10.1016/j.bios.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
As a glycoprotein hormone, human chorionic gonadotropin (hCG) is an established marker for pregnancy test. On the basis of the target-mediated silver deposition (TSD), in this work, we report the development of an amplification-free electrochemical biosensor for the highly sensitive detection of hCG. The detection of hCG involves the use of the affinity peptide-modified electrode for hCG capture (the CGGSSPPLRINRHILTR peptide containing the hCG-binding domain of the PPLRINRHILTR sequence is used as the affinity peptide), the oxidation of the diol sites of the glycan chains on hCG hormones into aldehyde groups by NaIO4, and the deposition of silver nanoparticles (AgNPs) for the solid-state voltammetric stripping analysis. Due to the deposition of multiple AgNPs while the solid-state Ag/AgCl voltammetric process has a high signal-to-noise ratio, the TSD-based electrochemical biosensor can be applied to the highly sensitive detection of hCG without the need for signal amplification. Under optimal conditions, the stripping current increased linearly with an increasing hCG concentration over the range from 1.0 to 25 mIU/mL, with a detection limit of 0.45 mIU/mL. Owing to the high specificity of the hCG-binding peptide PPLRINRHILTR, this electrochemical hCG biosensor exhibits high selectivity. The results of the quantitative assay of hCG in urine samples at the concentrations of 25, 10, and 1.0 mIU/mL are desirable, indicating the good anti-interference capability. As the TSD-based electrochemical biosensor allows the amplification-free detection of low-abundance hCG, it is easy to use and cost-effective, showing great promise in point-of-care assay of hCG for pregnancy test.
Collapse
Affiliation(s)
- Junpeng Lv
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jianwen Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Di Wu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiyao Zhang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wenhui Xu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mengge Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Songmin Chen
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhuojun Ye
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yiyan Tian
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Qiong Hu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Ryu JY, Choi TS, Kim KT. Fluorescein-switching-based lateral flow assay for the detection of microRNAs. Org Biomol Chem 2024; 22:8182-8188. [PMID: 39291769 DOI: 10.1039/d4ob01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lateral flow assays (LFAs) are a cost-effective and rapid colorimetric technology that can be effectively used for nucleic acid tests (NATs) in various fields such as medical diagnostics and biotechnology. Given their importance, developing more diverse LFAs that operate through novel working mechanisms is essential for designing highly selective and sensitive NATs and providing insights for designing various practical point-of-care testing (POCT) systems. Herein we report a new type of lateral flow assay (LFA) based on fluorescein-switching, enabled by nucleic acid-templated photooxidation of reduced fluorescein by riboflavin tetraacetate (RFTA). The LFA design leverages the fact that a reduced form of fluorescein, which weakly binds to gold nanoparticle (GNP)-conjugated anti-fluorescein antibodies, is oxidized in the presence of target nucleic acids to yield its native state, which then strongly binds to the antibodies. The study involved designing and optimizing probe sequences to detect miR-6090 and miR-141, which are significant markers for prostate cancer. To minimize background signals of LFAs, sodium borohydride (NaBH4) was specifically introduced as a reducing agent, and detailed procedures were established. The developed LFA system accurately identified low fmol levels of target microRNAs with minimal false positives, all detectable with the naked eye, making the system a promising tool for point-of-care diagnostics.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Tae Su Choi
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
6
|
Chen J, Su H, Kim JH, Liu L, Liu R. Recent advances in the CRISPR/Cas system-based visual detection method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6599-6614. [PMID: 39345221 DOI: 10.1039/d4ay01147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Currently, various infectious pathogens and bacterial toxins as well as heavy metal pollution pose severe threats to global environmental health and the socio-economic infrastructure. Therefore, there is a pressing need for rapid, sensitive, and convenient visual molecular detection methods. The rapidly evolving detection approach based on clustered regularly interspaced short palindromic repeats (CRISPR)/associated nucleases (Cas) has opened a new frontier in the field of molecular diagnostics. This paper reviews the development of visual detection methods in recent years based on different Cas and analyzes their advantages and disadvantages as well as the challenges of future research. Firstly, different CRISPR/Cas effectors and their working principles in the diagnosis of various diseases are briefly reviewed. Subsequently, the article focuses on the development of visual readout signals in point-of-care testing using laboratory-based CRISPR/Cas technology, including colorimetric, fluorescence, and lateral flow analysis. Finally, the challenges and prospects of visual detection methods based on CRISPR/Cas technology are discussed.
Collapse
Affiliation(s)
- Jinrong Chen
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - Hang Su
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
| | - Lishang Liu
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
| |
Collapse
|
7
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
8
|
Mondal R, Chakraborty J, Dam P, Shaw S, Gangopadhyay D, Ertas YN, Mandal AK. Development of Aptamer-Functionalized Gold Nanoparticles as Probes in Point-of-Care Diagnostic Device for Rapid Detection of Multidrug-Resistant Bacteria in Bombyx mori L. . ACS APPLIED BIO MATERIALS 2024; 7:5740-5753. [PMID: 39110486 DOI: 10.1021/acsabm.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.
Collapse
Affiliation(s)
- Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Paulami Dam
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
- Center for Nanotechnology Sciences (CeNS), Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| |
Collapse
|
9
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
10
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
11
|
Lee S, Park JS, Woo H, Yoo YK, Lee D, Chung S, Yoon DS, Lee KB, Lee JH. Rapid deep learning-assisted predictive diagnostics for point-of-care testing. Nat Commun 2024; 15:1695. [PMID: 38402240 PMCID: PMC10894262 DOI: 10.1038/s41467-024-46069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Prominent techniques such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and rapid kits are currently being explored to both enhance sensitivity and reduce assay time for diagnostic tests. Existing commercial molecular methods typically take several hours, while immunoassays can range from several hours to tens of minutes. Rapid diagnostics are crucial in Point-of-Care Testing (POCT). We propose an approach that integrates a time-series deep learning architecture and AI-based verification, for the enhanced result analysis of lateral flow assays. This approach is applicable to both infectious diseases and non-infectious biomarkers. In blind tests using clinical samples, our method achieved diagnostic times as short as 2 minutes, exceeding the accuracy of human analysis at 15 minutes. Furthermore, our technique significantly reduces assay time to just 1-2 minutes in the POCT setting. This advancement has the potential to greatly enhance POCT diagnostics, enabling both healthcare professionals and non-experts to make rapid, accurate decisions.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Jeong Soo Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyowon Woo
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, 24, Beomil-ro 579 beon-gil, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Dongho Lee
- CALTH Inc., Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- Astrion Inc, Seoul, 02841, Republic of Korea
| | - Ki-Baek Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea.
- CALTH Inc., Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea.
| |
Collapse
|
12
|
Zheng P, Raj P, Wu L, Mizutani T, Szabo M, Hanson WA, Barman I. Quantitative Detection of Thyroid-Stimulating Hormone in Patient Samples with a Nanomechanical Single-Antibody Spectro-Immunoassay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305110. [PMID: 37752776 PMCID: PMC10922205 DOI: 10.1002/smll.202305110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Functional disorders of the thyroid remain a global challenge and have profound impacts on human health. Serving as the barometer for thyroid function, thyroid-stimulating hormone (TSH) is considered the single most useful test of thyroid function. However, the prevailing TSH immunoassays rely on two types of antibodies in a sandwich format. The requirement of repeated incubation and washing further complicates the issue, making it unable to meet the requirements of the shifting public health landscape that demands rapid, sensitive, and low-cost TSH tests. Herein, a systematic study is performed to investigate the clinical translational potential of a single antibody-based biosensing platform for the TSH test. The biosensing platform leverages Raman spectral variations induced by the interaction between a TSH antigen and a Raman molecule-conjugated TSH antibody. In conjunction with machine learning, it allows TSH concentrations in various patient samples to be predicted with high accuracy and precision, which is robust against substrate-to-substrate, intra-substrate, and day-to-day variations. It is envisioned that the simplicity and generalizability of this single-antibody immunoassay coupled with the demonstrated performance in patient samples pave the way for it to be widely applied in clinical settings for low-cost detection of hormones, other molecular biomarkers, DNA, RNA, and pathogens.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
13
|
Kumar P, Anitha A, Das A, Deepalakshmi G, Suman P. Point-of-care impedimetric aptasensor to detect the luteinizing hormone. Mikrochim Acta 2024; 191:115. [PMID: 38286844 DOI: 10.1007/s00604-024-06191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Luteinizing hormone (LH) is a useful biomarker for identifying ovulation events in the cows to predict the time of ovulation to achieve a high success rate of conception following artificial insemination. Although antibody-based radioimmunoassay and enzyme-linked immunosorbent assay are being used for LH measurement, these techniques are expensive, time-consuming, and require expertise and sophisticated laboratory facilities. So, there is a need for a field-applicable, affordable, easy-to-use method for LH detection. For developing such a specific, quantitative, and inexpensive system, an aptamer-based smartphone-enabled aptasensor has been investigated. The aptamer was used instead of the antibody as a biorecognition element due to its comparative stability at ambient temperature, ease of synthesis, and cost-effectiveness. Electrochemical impedance spectroscopy has been used to obtain label-free detection of LH within 20 min in ~ 20 μL sample volume. The screen-printed gold electrode is compatible with a smartphone-enabled miniaturized device (Sensit Smart; Palmsens BV, The Netherlands) and was fabricated with the aptamer to detect LH in biological fluids (limit of detection 0.80 and 0.61 ng/mL in buffer and undiluted/unprocessed serum, respectively, with the dynamic range of detection of 0.01 to 50 ng/mL). All the data were obtained in the 10 kHz to 0.10 Hz frequency range at a bias potential of 0.30 V with an alternating potential of 10 mV. The clinical relevance of the sensor was evaluated in 10 serum samples collected from dairy animals which established a high correlation with standard LH-ELISA (κ > 0.87). The aptasensor can be stored at room temperature for 30 days without any significant loss in electrochemical sensing ability.
Collapse
Affiliation(s)
- Pankaj Kumar
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, 500032, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arumugam Anitha
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, 500032, Telangana, India
| | - Ankita Das
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, 500032, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Govindarajan Deepalakshmi
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, 500032, Telangana, India
| | - Pankaj Suman
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, 500032, Telangana, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
14
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
15
|
Thornton CR, Davies GE, Dougherty L. Development of a monoclonal antibody and a lateral-flow device for the rapid detection of a Mucorales-specific biomarker. Front Cell Infect Microbiol 2023; 13:1305662. [PMID: 38145040 PMCID: PMC10739493 DOI: 10.3389/fcimb.2023.1305662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Mucoromycosis is a highly aggressive angio-invasive disease of humans caused by fungi in the zygomycete order, Mucorales. While Rhizopus arrhizus is the principal agent of mucoromycosis, other Mucorales fungi including Apophysomyces, Cunninghamella, Lichtheimia, Mucor, Rhizomucor and Syncephalastrum are able to cause life-threatening rhino-orbital-cerebral, pulmonary, gastro-intestinal and necrotising cutaneous infections in humans. Diagnosis of the disease currently relies on non-specific CT, lengthy and insensitive culture from invasive biopsy, and time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests that detect Mucorales-specific biomarkers of infection, and which allow point-of-care diagnosis of mucoromycosis. Here, we report the development of an IgG2b monoclonal antibody (mAb), TG11, which binds to extracellular polysaccharide (EPS) antigens of between 20 kDa and 250 kDa secreted during hyphal growth of Mucorales fungi. The mAb is Mucorales-specific and does not cross-react with other yeasts and molds of clinical importance including Aspergillus, Candida, Cryptococcus, Fusarium, Lomentospora and Scedosporium species. Using the mAb, we have developed a Competitive lateral-flow device that allows rapid (30 min) detection of the EPS biomarker in human serum and bronchoalveolar lavage (BAL), with a limit of detection (LOD) in human serum of ~100 ng/mL serum (~224.7 pmol/L serum). The LFD therefore provides a potential novel opportunity for detection of mucoromycosis caused by different Mucorales species.
Collapse
Affiliation(s)
- Christopher R. Thornton
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- ISCA Diagnostics Ltd., Hatherly Laboratories, Exeter, United Kingdom
| | - Genna E. Davies
- ISCA Diagnostics Ltd., Hatherly Laboratories, Exeter, United Kingdom
| | - Laura Dougherty
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Knudsen C, Jürgensen JA, D Knudsen P, Oganesyan I, Harrison JA, Dam SH, Haack AM, Friis RUW, Vitved L, Belfakir SB, Ross GMS, Zenobi R, H Laustsen A. Prototyping of a lateral flow assay based on monoclonal antibodies for detection of Bothrops venoms. Anal Chim Acta 2023; 1272:341306. [PMID: 37355315 DOI: 10.1016/j.aca.2023.341306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/30/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Brazil is home to a multitude of venomous snakes; perhaps the most medically relevant of which belong to the Bothrops genus. Bothrops spp. are responsible for roughly 70% of all snakebites in Brazil, and envenomings caused by their bites can be treated with three types of antivenom: bothropic antivenom, bothro-lachetic antivenom, and bothro-crotalic antivenom. The choice to administer antivenom depends on the severity of the envenoming, while the choice of antivenom depends on availability and on how certain the treating physician is that the patient was bitten by a bothropic snake. The diagnosis of a bothropic envenoming can be made based on expert identification of the dead snake or a photo thereof or based on a syndromic approach wherein the clinician examines the patient for characteristic manifestations of envenoming. This approach can be very effective but requires staff that has been trained in clinical snakebite management, which, unfortunately, far from all relevant staff has. RESULTS In this article, we describe a prototype of the first lateral flow assay (LFA) capable of detecting venoms from Brazilian Bothrops spp. The monoclonal antibodies for the assay were generated using hybridoma technology and screened in sandwich enzyme-linked immunosorbent assays (ELISAs) to identify Bothrops spp.-specific antibody sandwich pairs. The prototype LFA is able to detect venom from several Bothrops spp. The LFA has a limit of detection (LoD) of 9.5 ng/mL in urine, when read with a commercial reader, and a visual LoD of approximately 25 ng/mL. SIGNIFICANCE The work presented here serves as a proof of concept for a genus-specific venom detection kit that could support physicians in diagnosing Bothrops envenomings. Although further optimisation and testing is needed before the LFA can find clinical use, such a device could aid in decentralising antivenoms in the Brazilian Amazon and help ensure optimal snakebite management for even more victims of this highly neglected disease.
Collapse
Affiliation(s)
- Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; BioPorto Diagnostics A/S, Hellerup, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark.
| | | | | | - Irina Oganesyan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Søren H Dam
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark
| | - Aleksander M Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark
| | - Rasmus U W Friis
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark
| | - Lars Vitved
- Cancer and Inflammation, Department of Molecular Medicine, University of Southern, Denmark
| | - Selma B Belfakir
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Omidfar K, Riahi F, Kashanian S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. BIOSENSORS 2023; 13:837. [PMID: 37754072 PMCID: PMC10526804 DOI: 10.3390/bios13090837] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow tests are one of the most important types of paper-based point-of-care (POCT) diagnostic tools. It shows great potential as an implement for improving the rapid screening and management of infections in global pandemics or other potential health disorders by using minimally expert staff in locations where no sophisticated laboratory services are accessible. They can detect different types of biomarkers in various biological samples and provide the results in a little time at a low price. An important challenge regarding conventional LFAs is increasing their sensitivity and specificity. There are two main approaches to increase sensitivity and specificity, including assay improvement and target enrichment. Assay improvement comprises the assay optimization and signal amplification techniques. In this study, a summarize of various sensitivity and specificity enhancement strategies with an objective evaluation are presented, such as detection element immobilization, capillary flow rate adjusting, label evolution, sample extraction and enrichment, etc. and also the key findings in improving the LFA performance and solving their limitations are discussed along with numerous examples.
Collapse
Affiliation(s)
- Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Fatemeh Riahi
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
18
|
Cai Q, Jin S, Zong H, Pei L, Cao K, Qu L, Li Z. A Quadruplex Ultrasensitive Immunoassay for Simultaneous Assessment of Human Reproductive Hormone Proteins in Multiple Biofluid Samples. Anal Chem 2023; 95:11641-11648. [PMID: 37489999 DOI: 10.1021/acs.analchem.3c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Reproductive hormones play vital roles in reproductive health and can be used to assess a woman's ovarian function and diagnose diseases associated with reproductive endocrine disorders. As these hormones are important biomarkers for reproductive health monitoring and diagnosis, a rapid, high-throughput, and low-invasive detection and simultaneous assessment of the levels of multiple reproductive hormones has important clinical applications. In this work, a quadruplex ultrasensitive immunoassay was developed for simultaneous assessment of 4 human reproductive hormone proteins (follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and anti-Müllerian hormone (AMH)) in a variety of human biofluid samples. This assay takes advantage of single-molecule imaging of microwell arrays and capture antibody beads as a reaction interface to construct multiplex bead array immunoassays. The analyte-bound beads can easily be parsed to individual wells and detected via fluorophores, emitting distinct wavelengths associated to the beads. As a result, this proposed quadruplex immunoassay exhibits four good 4-parameter logistic calibration curves ranging from 2.7 to 2000, 1.6 to 1200, 1.8 to 1300, and 0.3 to 220 pg/mL with limits of detection of 0.32, 0.28, 0.14, and 0.02 pg/mL for FSH, LH, PRL, and AMH, respectively. Furthermore, the developed quadruplex immunoassay was used to test clinical venous serum samples where it showed remarkable consistency with clinical test results in methodological comparison and the diagnosis of polycystic ovary syndrome. In addition, we successfully applied the ultrasensitive capability of this assay to the simultaneous testing and evaluation of four proteins in fingertip blood as well as urine samples, in which the urinary AMH level (1.42-156 pg/mL) was measured and assessed quantitatively for the first time.
Collapse
Affiliation(s)
- Qiyong Cai
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shuiling Jin
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Hong Zong
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Lu Pei
- Department of Laboratory Medicine, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou 450006, People's Republic of China
| | - Ke Cao
- Department of Laboratory Medicine, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou 450006, People's Republic of China
| | - Lingbo Qu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhaohui Li
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
19
|
Guzman NA, Guzman DE, Blanc T. Advancements in portable instruments based on affinity-capture-migration and affinity-capture-separation for use in clinical testing and life science applications. J Chromatogr A 2023; 1704:464109. [PMID: 37315445 DOI: 10.1016/j.chroma.2023.464109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
The shift from testing at centralized diagnostic laboratories to remote locations is being driven by the development of point-of-care (POC) instruments and represents a transformative moment in medicine. POC instruments address the need for rapid results that can inform faster therapeutic decisions and interventions. These instruments are especially valuable in the field, such as in an ambulance, or in remote and rural locations. The development of telehealth, enabled by advancements in digital technologies like smartphones and cloud computing, is also aiding in this evolution, allowing medical professionals to provide care remotely, potentially reducing healthcare costs and improving patient longevity. One notable POC device is the lateral flow immunoassay (LFIA), which played a major role in addressing the COVID-19 pandemic due to its ease of use, rapid analysis time, and low cost. However, LFIA tests exhibit relatively low analytical sensitivity and provide semi-quantitative information, indicating either a positive, negative, or inconclusive result, which can be attributed to its one-dimensional format. Immunoaffinity capillary electrophoresis (IACE), on the other hand, offers a two-dimensional format that includes an affinity-capture step of one or more matrix constituents followed by release and electrophoretic separation. The method provides greater analytical sensitivity, and quantitative information, thereby reducing the rate of false positives, false negatives, and inconclusive results. Combining LFIA and IACE technologies can thus provide an effective and economical solution for screening, confirming results, and monitoring patient progress, representing a key strategy in advancing diagnostics in healthcare.
Collapse
Affiliation(s)
- Norberto A Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, United States of America.
| | - Daniel E Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, United States of America; Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Timothy Blanc
- Eli Lilly and Company, Branchburg, NJ 08876, United States of America
| |
Collapse
|
20
|
Wen CY, Liang X, Liu J, Zhao TY, Li X, Zhang Y, Guo G, Zhang Z, Zeng J. An achromatic colorimetric nanosensor for sensitive multiple pathogen detection by coupling plasmonic nanoparticles with magnetic separation. Talanta 2023; 256:124271. [PMID: 36681038 DOI: 10.1016/j.talanta.2023.124271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Rapid screening of multiple pathogens will greatly improve the efficiency of pandemic prevention and control. Colorimetric methods exhibit the advantages of convenience, portability, low cost, time efficiency, and free of sophisticated instruments, yet usually have difficulties in simultaneous detection and suffer from monotonous color changes with low visual resolution and sensitivity. Hence, coupled three kinds of plasmonic nanoparticles (NPs) with magnetic separation, we developed an achromatic colorimetric nanosensor with highly enhanced visual resolution for simultaneous detection of SARS-CoV-2, Staphylococcus aureus, and Salmonella typhimurium. The achromatic nanosensor was composed of SARS-CoV-2-targeting red gold NPs, S. aureus-targeting yellow silver NPs and S. typhimurium-targeting blue silver triangle NPs mixed as black color. In the detection, three corresponding magnetic probes were added into the above mixture. In the presence of a target pathogen, it would be recognized and combined with corresponding colored reporters and magnetic probes to form sandwich complexes, which were removed by magnetic separation, and the sensor changed from black to a chromatic color (the color of the reporters remained in supernatant). Consequently, different target pathogen induced different color. For example, SARS-CoV-2, S. aureus, and S. typhimurium respectively produced green, purple, and orange. While coexistence of S. aureus and S. typhimurium produced red, and coexistence of S. aureus and SARS-CoV-2 produced blue, etc. Therefore, by observing the color change or measuring the absorption spectra, multiple pathogen detection was achieved conveniently. Compared with most colorimetric sensors, this achromatic nanosensor involved rich color change, thus significantly enhancing visual resolution and inspection sensitivity. Therefore, this sensor opened a promising avenue for efficient monitoring and early warning of food safety and quality.
Collapse
Affiliation(s)
- Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xinyi Liang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jianting Liu
- Huangdao Customs of the People's Republic of China, 266580, PR China
| | - Tian-Yu Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Gengchen Guo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Zhuoran Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
21
|
Goux HJ, Vu BV, Wasden K, Alpadi K, Kumar A, Kalra B, Savjani G, Brosamer K, Kourentzi K, Willson RC. Development of a quantitative fluorescence lateral flow immunoassay (LFIA) prototype for point-of-need detection of anti-Müllerian hormone. Pract Lab Med 2023; 35:e00314. [PMID: 37181647 PMCID: PMC10172895 DOI: 10.1016/j.plabm.2023.e00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Anti-Müllerian Hormone (AMH) is a quantitative marker for ovarian reserve and is used to predict response during ovarian stimulation. Streamlining testing to the clinic or even to the physician's office would reduce inconvenience, turnaround time, patient stress and potentially also the total cost of testing, allowing for more frequent monitoring. In this paper, AMH is used as a model biomarker to describe the rational development and optimization of sensitive, quantitative, clinic-based rapid diagnostic tests. Design and Methods We developed a one-step lateral-flow europium (III) chelate-based fluorescent immunoassay (LFIA) for the detection of AMH on a portable fluorescent reader, optimizing the capture/detection antibodies, running buffer, and reporter conjugates. Results A panel of commercial calibrators was used to develop a standard curve to determine the analytical sensitivity (LOD = 0.41 ng/ml) and the analytical range (0.41-15.6 ng/ml) of the LFIA. Commercial controls were then tested to perform an initial evaluation of the prototype performance and showed a high degree of precision (Control I CV 2.18%; Control II CV 3.61%) and accuracy (Control I recovery 126%; Control II recovery 103%). Conclusions: This initial evaluation suggests that, in future clinical testing, the AMH LFIA will likely have the capability of distinguishing women with low ovarian reserve (<1 ng/ml AMH) from women with normal (1-4 ng/ml AMH) ovarian reserve. Furthermore, the LFIA demonstrated a wide linear range, indicating the assay's applicability to the detection of other health conditions such as PCOS, which requires AMH measurement at higher concentrations (>6 ng/ml).
Collapse
Affiliation(s)
- Heather J. Goux
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Binh V. Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Katherine Wasden
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | | | | | | | | | - Kristen Brosamer
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Richard C. Willson
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|
22
|
Schulte S, Huang J, Pierce NA. Hybridization Chain Reaction Lateral Flow Assays for Amplified Instrument-Free At-Home SARS-CoV-2 Testing. ACS Infect Dis 2023; 9:450-458. [PMID: 36735927 PMCID: PMC9924079 DOI: 10.1021/acsinfecdis.2c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 02/05/2023]
Abstract
The lateral flow assay format enables rapid, instrument-free, at-home testing for SARS-CoV-2. Due to the absence of signal amplification, this simplicity comes at a cost in sensitivity. Here, we enhance sensitivity by developing an amplified lateral flow assay that incorporates isothermal, enzyme-free signal amplification based on the mechanism of hybridization chain reaction (HCR). The simplicity of the user experience is maintained using a disposable 3-channel lateral flow device to automatically deliver reagents to the test region in three successive stages without user interaction. To perform a test, the user loads the sample, closes the device, and reads the result by eye after 60 min. Detecting gamma-irradiated SARS-CoV-2 virions in a mixture of saliva and extraction buffer, the current amplified HCR lateral flow assay achieves a limit of detection of 200 copies/μL using available antibodies to target the SARS-CoV-2 nucleocapsid protein. By comparison, five commercial unamplified lateral flow assays that use proprietary antibodies exhibit limits of detection of 500 copies/μL, 1000 copies/μL, 2000 copies/μL, 2000 copies/μL, and 20,000 copies/μL. By swapping out antibody probes to target different pathogens, amplified HCR lateral flow assays offer a platform for simple, rapid, and sensitive at-home testing for infectious diseases. As an alternative to viral protein detection, we further introduce an HCR lateral flow assay for viral RNA detection.
Collapse
Affiliation(s)
- Samuel
J. Schulte
- Division
of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jining Huang
- Division
of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division
of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering & Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Choudhary S, Altintas Z. Development of a Point-of-Care SPR Sensor for the Diagnosis of Acute Myocardial Infarction. BIOSENSORS 2023; 13:bios13020229. [PMID: 36831995 PMCID: PMC9953663 DOI: 10.3390/bios13020229] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 05/28/2023]
Abstract
A novel point-of-care surface plasmon resonance (SPR) sensor was developed for the sensitive and real-time detection of cardiac troponin I (cTnI) using epitope-imprinted molecular receptors. The surface coverage of a nano-molecularly imprinted polymer (nanoMIP)-functionalized SPR sensor chip and the size of nanoMIPs (155.7 nm) were characterized using fluorescence microscopy and dynamic light scattering techniques, respectively. Atomic force microscopy, electrochemical impedance spectroscopy, square wave voltammetry and cyclic voltammetry techniques confirmed the successful implementation of each step of the sensor fabrication. The SPR bio-detection assay was initially established by targeting the cTnI peptide template, and the sensor allowed the detection of the peptide in the concentration range of 100-1000 nM with a correlation coefficient (R2) of 0.96 and limit of detection (LOD) of 76.47 nM. The optimum assay conditions for protein recognition were subsequently determined, and the cTnI biomarker could be detected in a wide concentration range (0.78-50 ng mL-1) with high reproducibility (R2 = 0.91) and sensitivity (LOD: 0.52 ng mL-1). The overall sensor results were subjected to three binding isotherm models, where nanoMIP-cTnI interaction followed the Langmuir binding isotherm with the dissociation constant of 2.99 × 10-11 M, indicating a very strong affinity between the cTnI biomarker and epitope-imprinted synthetic receptor. Furthermore, the selectivity of the sensor was confirmed through studying with a control nanoMIP that was prepared by imprinting a non-specific peptide template. Based on the cross-reactivity tests with non-specific molecules (i.e., glucose, p53 protein, transferrin and bovine serum albumin), the nanoMIP-SPR sensor is highly specific for the target biomarker. The developed biomimetic sensor, relying on the direct assay strategy, holds great potential not only for the early and point-of-care testing of acute myocardial infarction but also for other life-threatening diseases that can be diagnosed by determining the elevated levels of certain biomarkers.
Collapse
Affiliation(s)
- Sunil Choudhary
- Institute of Chemistry, Faculty of Maths and Natural Sciences, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Maths and Natural Sciences, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
24
|
Rubio-Monterde A, Quesada-González D, Merkoçi A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal Chem 2023; 95:468-489. [PMID: 36413136 DOI: 10.1021/acs.analchem.2c04529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain
| | | | - Arben Merkoçi
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08036 Bellaterra, Barcelona Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
25
|
Grootveld M, Page G, Bhogadia M, Hunwin K, Edgar M. Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part III: Implementations for the Diagnosis of Non-Cancerous Disorders, Both Oral and Systemic. Metabolites 2023; 13:metabo13010066. [PMID: 36676991 PMCID: PMC9864626 DOI: 10.3390/metabo13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
This communication represents Part III of our series of reports based on the applications of human saliva as a useful and conveniently collectable medium for the discovery, identification and monitoring of biomarkers, which are of some merit for the diagnosis of human diseases. Such biomarkers, or others reflecting the dysfunction of specific disease-associated metabolic pathways, may also be employed for the prognostic pathological tracking of these diseases. Part I of this series set the experimental and logistical groundwork for this report, and the preceding paper, Part II, featured the applications of newly developed metabolomics technologies to the diagnosis and severity grading of human cancer conditions, both oral and systemic. Clearly, there are many benefits, both scientific and economic, associated with the donation of human saliva samples (usually as whole mouth saliva) from humans consenting to and participating in investigations focused on the discovery of biomolecular markers of diseases. These include usually non-invasive collection protocols, relatively low cost when compared against blood sample collection, and no requirement for clinical supervision during collection episodes. This paper is centred on the employment and value of 'state-of-the-art' metabolomics technologies to the diagnosis and prognosis of a wide range of non-cancerous human diseases. Firstly, these include common oral diseases such as periodontal diseases (from type 1 (gingivitis) to type 4 (advanced periodontitis)), and dental caries. Secondly, a wide range of extra-oral (systemic) conditions are covered, most notably diabetes types 1 and 2, cardiovascular and neurological diseases, and Sjögren's syndrome, along with a series of viral infections, e.g., pharyngitis, influenza, HIV and COVID-19. Since the authors' major research interests lie in the area of the principles and applications of NMR-linked metabolomics techniques, many, but not all, of the studies reviewed were conducted using these technologies, with special attention being given to recommended protocols for their operation and management, for example, satisfactory experimental model designs; sample collection and laboratory processing techniques; the selection of sample-specific NMR pulse sequences for saliva analysis; and strategies available for the confirmation of resonance assignments for both endogenous and exogenous molecules in this biofluid. This article also features an original case study, which is focussed on the use of NMR-based salivary metabolomics techniques to provide some key biomarkers for the diagnosis of pharyngitis, and an example of how to 'police' such studies and to recognise participants who perceive that they actually have this disorder but do not from their metabolic profiles and multivariate analysis pattern-based clusterings. The biochemical and clinical significance of these multidimensional metabolomics investigations are discussed in detail.
Collapse
|
26
|
Wei Z, Luciano K, Xia X. Catalytic Gold-Iridium Nanoparticles as Labels for Sensitive Colorimetric Lateral Flow Assay. ACS NANO 2022; 16:21609-21617. [PMID: 36448915 DOI: 10.1021/acsnano.2c10574] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The colorimetric lateral flow assay (CLFA, also known as test strip) is a widely used point-of-care diagnostic technology. It has been a challenge to significantly improve the detection sensitivity of CLFA without involving additional equipment and/or compromising its simplicity. In this work, we break through the detection limit barrier of CLFA by developing a type of catalytic nanoparticles (NPs) used as labels. Specifically, the NPs were engineered by coating conventional gold NPs (AuNPs) with iridium (Ir) to form an Au-Ir core-shell structure. Such Au-Ir NPs possess ultrahigh peroxidase-like catalytic activities. A single Au-Ir NP can generate up to 107 colored molecules per second by catalyzing peroxidase substrates. The strong color signal from the catalysis ensures a high sensitivity of associated CLFA. The Au-Ir NP-based CLFA was successfully applied to the detection of two different cancer biomarkers that achieved limits of detection at the low picogram per milliliter level, hundreds of times lower than those of conventional AuNP-based CLFA.
Collapse
Affiliation(s)
- Zhiyuan Wei
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Keven Luciano
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
27
|
Are aptamer-based biosensing approaches a good choice for female fertility monitoring? A comprehensive review. Biosens Bioelectron 2022; 220:114881. [DOI: 10.1016/j.bios.2022.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
28
|
Trusso Sfrazzetto G, Santonocito R. Nanomaterials for Cortisol Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3790. [PMID: 36364563 PMCID: PMC9658644 DOI: 10.3390/nano12213790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Space represents one of the most dangerous environments for humans, which can be affected by high stress levels. This can lead to severe physiological problems, such as headaches, gastrointestinal disorders, anxiety, hypertension, depression, and coronary heart diseases. During a stress condition, the human body produces specific hormones, such as dopamine, adrenaline, noradrenaline, and cortisol. In particular, the control of cortisol levels can be related to the stress level of an astronaut, particularly during a long-term space mission. The common analytical methods (HPLC, GC-MS) cannot be used in an extreme environment, such as a space station, due to the steric hindrance of the instruments and the absence of gravity. For these reasons, the development of smart sensing devices with a facile and fast analytical protocol can be extremely useful for space applications. This review summarizes the recent (from 2011) miniaturized sensoristic devices based on nanomaterials (gold and carbon nanoparticles, nanotubes, nanowires, nano-electrodes), which allow rapid and real-time analyses of cortisol levels in biological samples (such as saliva, urine, sweat, and plasma), to monitor the health conditions of humans under extreme stress conditions.
Collapse
Affiliation(s)
- Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Sciences and Technology (I.N.S.T.M.), Research Unit of Catania, 95100 Catania, Italy
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| |
Collapse
|