1
|
Tian X, Zheng X, Chen L, Wang Z, Liu BT, Bi Y, Li L, Shi H, Li S, Li C, Zhang D. Recent advances in photoluminescent fluorescent probe technology for food flavor compounds analysis. Food Chem 2024; 459:140455. [PMID: 39029422 DOI: 10.1016/j.foodchem.2024.140455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.
Collapse
Affiliation(s)
- Xiaoxian Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Liang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haonan Shi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dequan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Abd-Elaal AA, Tawfik SM, Abd-Elhamid A, Salem KG, El-Hoshoudy AN. Experimental and theoretical investigation of cationic-based fluorescent-tagged polyacrylate copolymers for improving oil recovery. Sci Rep 2024; 14:27689. [PMID: 39532913 PMCID: PMC11557845 DOI: 10.1038/s41598-024-78128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for energy and the depletion of oil wells necessitate advanced Enhanced Oil Recovery (EOR) techniques, particularly water and polymer flooding, which play a crucial role in augmenting hydrocarbon recovery rates. However, water flooding in high-permeability layers often leads to water breakthroughs, reduced sweep efficiency, and the formation of preferential channels, posing significant challenges to oil recovery and reservoir management. Conformance control treatments, including the use of polymer microspheres, offer a promising solution by sealing high-permeability zones and enhancing sweep efficiency. This study focuses on the application of fluorescent polymer microspheres based on polyacrylamide, which is extensively employed in the oil sector as an oil displacement agent. Fluorescent polymers called Poly 400, Poly 200, and Poly 600, incorporating cationic methacrylamide monomers, were synthesized through copolymerization to create amphiphilic polymers with enhanced stability and functionality. These fluorescent polymers were evaluated through flooding tests using a quarter-five-spot model of transparent quartz glass under UV light, allowing for instantaneous measurement and observation of fluorescence intensity. At reservoir conditions, the oil displacement experiments confirm that the incremental oil after water flooding by Poly 400, Poly 200, and Poly 600, is 13.1%, 9.1%, and 6.1% of OOIP respectively. The findings showed that fluorescent polymer microspheres could efficiently target high-permeability layers, adapt to varying pore throat sizes, and improve the plugging rate of high-permeability channels, thereby optimizing oil recovery. A subsequent simulation study using the CMG simulator provided further insights into the efficacy of these fluorescent polymers as EOR agents, revealing their potential to enhance sweep efficiency and enhance oil recovery. Simulation results showed that oil saturation decreased from 68% (initial) to 13.5%, 16.1%, and 18.3% after Poly 400, Poly 200, and Poly 600 flooding respectively. This work highlights the potential of fluorescent polymer microspheres as a valuable tool for EOR applications, offering significant advancements in reservoir management and oil recovery optimization.
Collapse
Affiliation(s)
- Ali A Abd-Elaal
- Petrochemicals Department, Egyptian Petroleum Research Institute, Naser City, Cairo, Egypt
| | - Salah M Tawfik
- Petrochemicals Department, Egyptian Petroleum Research Institute, Naser City, Cairo, Egypt
| | - Ahmed Abd-Elhamid
- Petrochemicals Department, Egyptian Petroleum Research Institute, Naser City, Cairo, Egypt
| | - Khalaf G Salem
- Department of Reservoir Engineering, South Valley Egyptian Petroleum Holding Company (GANOPE), Cairo, Egypt
| | - A N El-Hoshoudy
- PVT Lab, Production Department, Egyptian Petroleum Research Institute, Naser City, Cairo, Egypt.
- PVT-Service Center, Production Department, Egyptian Petroleum Research Institute, Naser City, Cairo, Egypt.
| |
Collapse
|
3
|
Kutsiy S, Volyniuk D, Sahoo SR, Ceborska M, Wisniewska A, Stakhira P, Grazulevicius JV, Baryshnikov GV, Potopnyk MA. Sterically Tuned Ortho-Phenylene-Linked Donor-Acceptor Benzothiazole-Based Boron Difluoride Complexes as Thermally-Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60633-60647. [PMID: 39436774 PMCID: PMC11551907 DOI: 10.1021/acsami.4c12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Two donor-acceptor dyes with an ortho-phenylene-linked carbazole electron donor and a benzothiazole-fused boron heterocyclic acceptor were designed, synthesized, and spectroscopically investigated. Due to the steric effects of boron heterocyclic units, the dyes demonstrate different conformations in the crystalline state. The presence of numerous hydrogen-bonding intermolecular interactions and the very weak π-π stacking in the molecular packing results in intense solid-state emission with photoluminescence quantum yields of 40 and 18% for crystals and 50 and 42% for host-based light-emitting layers. The compounds show aggregation-induced emission and thermally activated delayed fluorescence (TADF). The received ionization potential and electron affinity values suggested good charge-injecting ability and bipolar charge-transporting properties of the developed dyes. Transport of holes and electrons was detected in layers of one dye by the time-of-flight measurements. The benzothiazole-based boron difluoride complexes showed high electron mobility of 1.5 × 10-4 and 0.7 × 10-4 cm2 V-1 s-1 at an electric field of 1.35 × 106 V cm-1. Therefore, these dyes were successfully applied as emitters in organic light-emitting diodes with external quantum efficiencies of 15 and 13%, respectively. Our study marks a critical advancement in the area of solid-state emissive boron difluoride dyes, which can be applied as TADF emitters into organic light-emitting diodes. The obtained results reveal that the orientation of the acceptor unit in the ortho-phenylene-linked donor-acceptor dyes makes a significant impact on the TADF activity.
Collapse
Affiliation(s)
- Stepan Kutsiy
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department
of Electronic Devices, Lviv Polytechnic
National University, 1 Sviatoho Yura sq., Lviv 79013, Ukraine
| | - Dmytro Volyniuk
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Barsausko 59, LT-51423 Kaunas, Lithuania
| | - Smruti Ranjan Sahoo
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
- Department
of Physics and Astronomy, Uppsala University
Box 516, SE-75120 Uppsala, Sweden
| | - Magdalena Ceborska
- Faculty of
Mathematics and Natural Sciences, Cardinal
Stefan Wyszynski University in Warsaw, K. Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Wisniewska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pavlo Stakhira
- Department
of Electronic Devices, Lviv Polytechnic
National University, 1 Sviatoho Yura sq., Lviv 79013, Ukraine
| | - Juozas Vidas Grazulevicius
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Barsausko 59, LT-51423 Kaunas, Lithuania
| | - Glib V. Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Mykhaylo A. Potopnyk
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute
of Organic Chemistry, National Academy of
Sciences of Ukraine, Akademika Kuharya Str. 5, 02000 Kyiv, Ukraine
| |
Collapse
|
4
|
Diaz-Gonzalez J, Arriaga LG, Casanova-Moreno JR. Probing the influence of crosslinkers on the properties, response, and degradation of enzymatic hydrogels for electrochemical glucose biosensing through fluorescence analysis. RSC Adv 2024; 14:9514-9528. [PMID: 38516160 PMCID: PMC10953846 DOI: 10.1039/d4ra00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Drop-cast crosslinked hydrogels are a common platform for enzymatic electrochemical biosensors. Despite the widespread use of these complex systems, there are still several questions about how their physicochemical properties affect their performance, stability, and reproducibility. In this work, first-generation faradaic biosensors composed of glucose oxidase and branched polyethyleneimine (BPEI) are prepared using either glutaraldehyde (GA) or ethylene glycol diglycidyl ether (EGDGE) as crosslinkers. While EGDGE gels present an increasing electrochemical response with increasing crosslinker concentration, the current of GA gels decreases at high crosslinker concentration probably due to the hampered diffusion on tightly networked gels. We compared different strategies to use fluorescence microscopy to gain insight into the gel structure either by labeling the gel components with fluorophores or taking advantage of the intrinsic fluorescence of the imines formed upon crosslinking with GA. By monitoring the fluorescence of the crosslinking bonds and the electrochemical response, we demonstrate that hydrolysis, a common hydrogel degradation mechanism, is not responsible for the loss of electrical current over time in gels prepared with glutaraldehyde. Most hydrogel-based electrochemical biosensor studies do not perform specific experiments to determine the cause of the degradation and instead just infer it from the dependence of the current on the preparation conditions (most commonly concentrations). We show that, by taking advantage of several analytical techniques, it is possible to gain more knowledge about the degradation mechanisms and design better enzymatic biosensors.
Collapse
Affiliation(s)
- Jancarlo Diaz-Gonzalez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| | - Jannu R Casanova-Moreno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| |
Collapse
|
5
|
Ashkenazi S, Matsanov P, Nassar-Marjiya E, Farah S, Weitz IS. Study of PEG- b-PLA/Eudragit S100 Blends on the Nanoencapsulation of Indigo Carmine Dye and Application in Controlled Release. ACS OMEGA 2024; 9:13382-13390. [PMID: 38524501 PMCID: PMC10956112 DOI: 10.1021/acsomega.3c10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
A nanocapsule shell of poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-b-PLA) mixed with anionic Eudragit S100 (90/10% w/w) was previously used to entrap and define the self-assembly of indigo carmine (IC) within the hydrophilic cavity core. In the present work, binary blends were prepared by solution mixing at different PEG-b-PLA/Eudragit S100 ratios (namely, 100/0, 90/10, 75/25, and 50/50% w/w) to elucidate the role of the capsule shell in tuning the encapsulation of the anionic dye (i.e., IC). The results showed that the higher content of Eudragit S100 in the blend decreases the miscibility of the two polymers due to weak intermolecular interactions between PEG-b-PLA and Eudragit S100. Moreover, with an increase in the amount of Eudragit S100, a higher thermal stability was observed related to the mobility restriction of PEG-b-PLA chains imposed by Eudragit S100. Formulations containing 10 and 25% Eudragit S100 exhibited an optimal interplay of properties between the negative surface charge and the miscibility of the polymer blend. Therefore, the anionic character of the encapsulating agent provides sufficient accumulation of IC molecules in the nanocapsule core, leading to dye aggregates following the self-assembly. At the same time, the blending of the two polymers tunes the IC release properties in the initial stage, achieving slow and controlled release. These findings give important insights into the rational design of polymeric nanosystems containing organic dyes for biomedical applications.
Collapse
Affiliation(s)
- Shaked Ashkenazi
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Pnina Matsanov
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Eid Nassar-Marjiya
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shady Farah
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Iris S. Weitz
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| |
Collapse
|
6
|
Farinha JPS. Bright and Stable Nanomaterials for Imaging and Sensing. Polymers (Basel) 2023; 15:3935. [PMID: 37835984 PMCID: PMC10575272 DOI: 10.3390/polym15193935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This review covers strategies to prepare high-performance emissive polymer nanomaterials, combining very high brightness and photostability, to respond to the drive for better imaging quality and lower detection limits in fluorescence imaging and sensing applications. The more common approaches to obtaining high-brightness nanomaterials consist of designing polymer nanomaterials carrying a large number of fluorescent dyes, either by attaching the dyes to individual polymer chains or by encapsulating the dyes in nanoparticles. In both cases, the dyes can be covalently linked to the polymer during polymerization (by using monomers functionalized with fluorescent groups), or they can be incorporated post-synthesis, using polymers with reactive groups, or encapsulating the unmodified dyes. Silica nanoparticles in particular, obtained by the condensation polymerization of silicon alcoxides, provide highly crosslinked environments that protect the dyes from photodegradation and offer excellent chemical modification flexibility. An alternative and less explored strategy is to increase the brightness of each individual dye. This can be achieved by using nanostructures that couple dyes to plasmonic nanoparticles so that the plasmon resonance can act as an electromagnetic field concentrator to increase the dye excitation efficiency and/or interact with the dye to increase its emission quantum yield.
Collapse
Affiliation(s)
- José Paulo Sequeira Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Delledonne A, Guazzelli E, Pescina S, Bianchera A, Galli G, Martinelli E, Sissa C. Amphiphilic Fluorinated Unimer Micelles as Nanocarriers of Fluorescent Probes for Bioimaging. ACS APPLIED NANO MATERIALS 2023; 6:15551-15562. [PMID: 37706068 PMCID: PMC10496108 DOI: 10.1021/acsanm.3c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
The unique self-assembly properties of unimer micelles are exploited for the preparation of fluorescent nanocarriers embedding hydrophobic fluorophores. Unimer micelles are constituted by a (meth)acrylate copolymer with oligoethyleneglycol and perflurohexylethyl side chains (PEGMA90-co-FA10) in which the hydrophilic and hydrophobic comonomers are statistically distributed along the polymeric backbone. Thanks to hydrophobic interactions in water, the amphiphilic copolymer forms small nanoparticles (<10 nm), with tunable properties and functionality. An easy procedure for the encapsulation of a small hydrophobic molecule (C153 fluorophore) within unimer micelles is presented. UV-vis, fluorescence, and fluorescence anisotropy spectroscopic experimental data demonstrate that the fluorophore is effectively embedded in the nanocarriers. Moreover, the nanocarrier positively contributes to preserve the good emissive properties of the fluorophore in water. The efficacy of the dye-loaded nanocarrier as a fluorescent probe is tested in two-photon imaging of thick ex vivo porcine scleral tissue.
Collapse
Affiliation(s)
- Andrea Delledonne
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Elisa Guazzelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
| | - Silvia Pescina
- ADDRes
Lab, Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Annalisa Bianchera
- ADDRes
Lab, Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Giancarlo Galli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
| | - Elisa Martinelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
- Centro
per la Integrazione Della Strumentazione Dell’Università
di Pisa (CISUP), Lungarno
Pacinotti 43/44, 56126 Pisa, Italy
| | - Cristina Sissa
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| |
Collapse
|
8
|
Kapil K, Xu S, Lee I, Murata H, Kwon SJ, Dordick JS, Matyjaszewski K. Highly Sensitive Detection of Bacteria by Binder-Coupled Multifunctional Polymeric Dyes. Polymers (Basel) 2023; 15:2723. [PMID: 37376368 DOI: 10.3390/polym15122723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Shirley Xu
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Bu Q, Li P, Xia Y, Hu D, Li W, Shi D, Song K. Design, Synthesis, and Biomedical Application of Multifunctional Fluorescent Polymer Nanomaterials. Molecules 2023; 28:molecules28093819. [PMID: 37175229 PMCID: PMC10179976 DOI: 10.3390/molecules28093819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Luminescent polymer nanomaterials not only have the characteristics of various types of luminescent functional materials and a wide range of applications, but also have the characteristics of good biocompatibility and easy functionalization of polymer nanomaterials. They are widely used in biomedical fields such as bioimaging, biosensing, and drug delivery. Designing and constructing new controllable synthesis methods for multifunctional fluorescent polymer nanomaterials with good water solubility and excellent biocompatibility is of great significance. Exploring efficient functionalization methods for luminescent materials is still one of the core issues in the design and development of new fluorescent materials. With this in mind, this review first introduces the structures, properties, and synthetic methods regarding fluorescent polymeric nanomaterials. Then, the functionalization strategies of fluorescent polymer nanomaterials are summarized. In addition, the research progress of multifunctional fluorescent polymer nanomaterials for bioimaging is also discussed. Finally, the synthesis, development, and application fields of fluorescent polymeric nanomaterials, as well as the challenges and opportunities of structure-property correlations, are comprehensively summarized and the corresponding perspectives are well illustrated.
Collapse
Affiliation(s)
- Qingpan Bu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Ping Li
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Yunfei Xia
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Die Hu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Wenjing Li
- School of Education, Changchun Normal University, Changchun 130032, China
| | - Dongfang Shi
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
10
|
Santhamoorthy M, Vanaraj R, Thirupathi K, Ulagesan S, Nam TJ, Phan TTV, Kim SC. L-Lysine-Modified pNIPAm-co-GMA Copolymer Hydrogel for pH- and Temperature-Responsive Drug Delivery and Fluorescence Imaging Applications. Gels 2023; 9:gels9050363. [PMID: 37232955 DOI: 10.3390/gels9050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices.
Collapse
Affiliation(s)
| | - Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam 635111, Dharmapuri, Tamil Nadu, India
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Mirochnik AG, Puzyrkov ZN, Fedorenko EV, Svistunova IV, Markova AA, Shibaeva AV, Burtsev ID, Kostyukov AA, Egorov AE, Kuzmin VA. Fluorescent boron difluoride curcuminoides as perspective materials for bio-visualization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122319. [PMID: 36630811 DOI: 10.1016/j.saa.2023.122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Curcuminoids of boron difluoride, 1-aryl(hetaryl)-5-phenylpenta-2,4-dien-1-onates of boron difluoride, have been synthesized. A comparative study of the electronic structure, luminescent properties and their potential for applications in bio-imaging has been carried out. The influence of the electronic structure of α-substituents on the luminescence of compounds was studied by the methods of stationary and time-resolved luminescence spectroscopy and DFT modeling. The introduction of π-donor substituents leads to a noticeable bathochromic shift and an increase in the Stokes shift in the luminescence spectra. On going from σ-donor substituents in the phenyl ring to π-donor substituents, the luminescence quantum yield increases from 0.03 to 0.22. The maximum Stokes shift and high quantum yield of luminescence is exhibited by the complex with a stilbene substituent, which has the longest π-system and the maximum efficiency of charge transfer. Dyes are able to penetrate into the cells of the model cell line and accumulate, moreover, accumulation occurs mainly in the cytoplasm of cells. The compounds penetrate into the cells by 12 h of incubation without damaging it's structure and without causing rapid cell death. The submicromolar range of non-toxic concentrations during long-term incubation for a model cell line was determined, which is a characteristic of fluorescent imaging. Due to uniform distribution in the cytoplasm of cells dye with naphtyl substituent is promising for visualization of the cell cytoplasm. This leader compound has the lowest cytotoxicity for cells from the synthesized series of dyes, which makes it promising for further studies as a fluorescent imaging agent. The leader compound has the lowest cytotoxicity for cells from the synthesized series of dyes, which makes it promising for further studies as a fluorescent imaging agent.
Collapse
Affiliation(s)
- Anatolii G Mirochnik
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation
| | - Zakhar N Puzyrkov
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation; Far Eastern Federal University, 8, Sukhanova Str., Vladivostok 690950, Russian Federation
| | - Elena V Fedorenko
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation.
| | - Irina V Svistunova
- Far Eastern Federal University, 8, Sukhanova Str., Vladivostok 690950, Russian Federation
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna V Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ivan D Burtsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anton E Egorov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
12
|
Dual-Labelled Nanoparticles Inform on the Stability of Fluorescent Labels In Vivo. Pharmaceutics 2023; 15:pharmaceutics15030769. [PMID: 36986630 PMCID: PMC10059031 DOI: 10.3390/pharmaceutics15030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Fluorescent labelling is commonly used to monitor the biodistribution of nanomedicines. However, meaningful interpretation of the results requires that the fluorescent label remains attached to the nanomedicine. In this work, we explore the stability of three fluorophores (BODIPY650, Cyanine 5 and AZ647) attached to polymeric hydrophobic biodegradable anchors. Using dual-labelled poly(ethylene glycol)-b-poly(lactic acid) (PEG-PLA) nanoparticles that are both radioactive and fluorescent, we investigated how the properties of the fluorophores impact the stability of the labelling in vitro and in vivo. Results suggest that the more hydrophilic dye (AZ647) is released faster from nanoparticles, and that this instability results in misinterpretation of in vivo data. While hydrophobic dyes are likely more suitable to track nanoparticles in biological environments, quenching of the fluorescence inside the nanoparticles can also introduce artefacts. Altogether, this work raises awareness about the importance of stable labelling methods when investigating the biological fate of nanomedicines.
Collapse
|
13
|
Kar M, Anas M, Singh A, Basak A, Sen P, Mandal TK. Ion-/Thermo-Responsive fluorescent perylene-poly(ionic liquid) conjugates: One-pot microwave synthesis, self-aggregation and biological applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Kuroyanagi S, Kikuchi S, Sumikoshi S, Uwano M, Chiba T, Yamakado R, Okada S. Synthesis of 3‐(Phenylcarbonyl)‐1H‐indazole Derivatives via Intramolecular Cyclization under Mild Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sota Kuroyanagi
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| | - Shumpei Kikuchi
- Yamagata University: Yamagata Daigaku Department of Polymeric and Organic Materials Engineering JAPAN
| | - Shunsuke Sumikoshi
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| | - Mizuho Uwano
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| | - Takayuki Chiba
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| | - Ryohei Yamakado
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science 4-3-16Jonan 992-8510 Yonezawa JAPAN
| | - Shuji Okada
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| |
Collapse
|
15
|
Proença PL, Carvalho LB, Campos EV, Fraceto LF. Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants. Adv Colloid Interface Sci 2022; 305:102695. [PMID: 35598536 DOI: 10.1016/j.cis.2022.102695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
The use of biodegradable nanopolymers in agriculture offers an excellent alternative for the efficient delivery of agrochemicals that promote plant protection and development. However, tracking of these systems inside plants requires complex probe tagging strategies. In addition to providing a basis for better understanding such nanostructures to optimize delivery system design, these probes allow monitoring the migration of nanoparticles through plant tissues, and determine accumulation sites. Thus, these probes are powerful tools that can be used to quantify and visualize nanoparticle accumulation in plant cells and tissues. This review is an overview of the methods involved in labeling nanocarriers, mainly based on polymeric matrices, for the delivery of nanoagrochemicals and the recent advances in this field.
Collapse
|
16
|
Wang L, Zhou Q, Yang H. A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer. Polymers (Basel) 2022; 14:2420. [PMID: 35745996 PMCID: PMC9231249 DOI: 10.3390/polym14122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
A novel lysosome-targeting PEGylated polyester-based fluorescent pH nanosensor is fabricated by the combination of ring-opening copolymerization (ROCOP), side-group modification and subsequent self-assembly. First, a key target amphiphilic copolymer carrier for rhodamine (Rh) pH indicator is synthesized in a facile manner by the ROCOP of phthalic anhydride with allyl glycidyl ether using mPEG-OH and t-BuP1/Et3B as the macroinitiator and binary catalyst, respectively. Subsequently, Rh moieties are covalently attached on the polymer chain with controllable grafting degree via an efficient thiol-ene click reaction. Concurrently, the effect of catalyst systems and reaction conditions on the catalytic copolymerization performance is presented, and the quantitative introduction of Rh is described in detail. Owing to its amphiphilic characteristics, the rhodamine-functionalized polyester-based block copolymer can self-assemble into micelles. With the covalent incorporation of Rh moieties, the as-formed micelles exhibit excellent absorption and fluorescence-responsive sensitivity and selectivity towards H+ in the presence of various metal cations. Moreover, the as-prepared micelles with favorable water dispersibility, good pH sensitivity and excellent biocompatibility also display appreciable cell-membrane permeability, staining ability and pH detection capability for lysosomes in living cells. This work provides a new strategy for the facile synthesis of novel biocompatible polymeric fluorescent pH nanosensors for the fluorescence imaging of lysosomal pH changes.
Collapse
Affiliation(s)
- Lijun Wang
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China
| | - Qiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (Q.Z.); (H.Y.)
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (Q.Z.); (H.Y.)
| |
Collapse
|
17
|
Metal-free Lewis pairs catalysed synthesis of fluorescently labelled polyester-based amphiphilic polymers for biological imaging. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Alferiev IS, Fishbein I, Levy RJ, Chorny M. Robust Chemical Strategy for Stably Labeling Polyester-Based Nanoparticles with BODIPY Fluorophores. ACS APPLIED POLYMER MATERIALS 2022; 4:1196-1206. [PMID: 36060230 PMCID: PMC9432775 DOI: 10.1021/acsapm.1c01601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aliphatic polyesters are among materials most extensively used for producing biodegradable polymeric nanoparticles currently in development as delivery carriers and imaging agents for a range of biomedical applications. Their clinical translation requires robust particle labeling methodologies that allow reliably monitoring the fate of these formulations in complex biological environments. In the present study, a practical and versatile synthetic strategy providing conjugates of poly(D,L-lactide) representative of this class of polymers with BODIPY fluorophores varying in functional groups and excitation/emission maxima was investigated as a tool for making traceable nanoparticles. Polymer-probe conjugation was accomplished by carbodiimide-induced and 4-(dimethylamino)pyridinium 4-toluenesulfonate-catalyzed esterification of the polymer's terminal hydroxyl group, either directly with a carboxy-functionalized fluorophore or with amine-protected amino acids (Boc-glycine or Boc-6-aminohexanoic acid). In the latter case, the amino acid-derivatized polymeric precursors were reacted with amine-reactive BODIPY dyes after the removal of the protective group. Unlike nanoparticles encapsulating a strongly hydrophobic BODIPY505/515 (logPo/w = 4.3), nanoparticles labeled covalently with its carboxy-functionalized analogue (BODIPY FL) demonstrated stable particle-tracer association under perfect sink conditions. Furthermore, in contrast to the encapsulated dye rapidly partitioning from particles onto cell membranes but not stably retained by cultured cells, the internalization of the covalently attached probe was an irreversible process requiring the presence of serum, consistent with active nanoparticle uptake by endocytosis. In conclusion, the conjugation of particle-forming polymers with BODIPY fluorophores offers an effective and accessible labeling strategy for making traceable polyester-based biodegradable nanoparticles and is expected to facilitate their development and optimization as therapeutic carriers and diagnostic agents.
Collapse
Affiliation(s)
- Ivan S Alferiev
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States
| | - Ilia Fishbein
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States
| | - Robert J Levy
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States
| | - Michael Chorny
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States
| |
Collapse
|