1
|
Rehman WU, Manj RZA, Ma Y, Yang J. The Promising Potential of Gallium Based Liquid Metals for Energy Storage. Chempluschem 2024; 89:e202300767. [PMID: 38696273 DOI: 10.1002/cplu.202300767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/04/2024]
Abstract
Energy storage devices play a crucial role in various applications, such as powering electronics, power backup for homes and businesses, and support for the integration of renewable energy sources into electrical grid applications. Electrode materials for energy storage devices are preferred to have a flexible nature, conductive, better capacity, and low-toxicity. Using Gallium based liquid metal alloys, such as Eutectic Gallium-Indium (EGaIn), Eutectic Gallium-Tin (EGaSn), and Eutectic Gallium-Indium-Tin (EGaInSn), as electrode materials play very important role in energy storage devices. These liquid metals have some interesting properties with a self-healing nature, high mechanical stability, compatibility with various materials, fluidity, low young's modulus, high electrical and thermal conductivity. Those properties have made it suitable to be used in various energy storage devices. In this mini review, we have concisely described the advantages and challenges of using liquid metal as electrode materials for various energy storage devices.
Collapse
Affiliation(s)
- Waheed Ur Rehman
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Rana Zafar Abbas Manj
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
2
|
Babikir AH, Mao X, Du A, Riches JD, Ostrikov KK, O'Mullane AP. Electrochemical Nitrate-to-Ammonia Conversion Enabled by Carbon-Decoration of Ni─GaOOH Synthesized via Plasma-Assisted CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311302. [PMID: 38429242 DOI: 10.1002/smll.202311302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Indexed: 03/03/2024]
Abstract
The release of nitrates into the environment leads to contaminated soil and water that poses a health risk to humans and animals. Due to the transition to renewable energy-based technologies, an electrochemical approach is an emerging option that can selectively produce valuable ammonia from nitrate sources. However, traditional metal-based electrocatalysts often suffer from low nitrate adsorption that reduces NH3 production rates. Here, a Ni-GaOOH-C/Ga electrocatalyst for electrochemical nitrate conversion into NH3 is synthesized via a low energy atmospheric-pressure plasma process that reduces CO2 into highly dispersed activated carbon on dispersed Ni─GaOOH particles produced from a liquid metal Ga─Ni alloy precursor. Nitrate conversion rates of up to 26.3 µg h-1 mg-1 cat are achieved with good stability of up to 20 h. Critically, the presence of carbon centers is central to improved performance where both Ni─C and NiO─C interfaces act as NO3- adsorption and reduction centers during the reaction. Density functional theory (DFT) calculations indicate that the NiO─C and Ni─C reaction sites reduce the Gibbs free energy required for NO3- reduction to NH3 compared to NiO and Ni. Importantly, catalysts without carbon centers do not produce NH3, emphasizing the unique effects of incorporating carbon nanoparticles into the electrocatalyst.
Collapse
Affiliation(s)
- Abd H Babikir
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
- Center for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
| | - Xin Mao
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
- Center for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
| | - Aijun Du
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
- Center for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
| | - James D Riches
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
- Center for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
- Center for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
- Center for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
| |
Collapse
|
3
|
Agarwal R, Mohamad A. Gallium-based liquid metals as smart responsive materials: Morphological forms and stimuli characterization. Adv Colloid Interface Sci 2024; 329:103183. [PMID: 38788305 DOI: 10.1016/j.cis.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Gallium-based liquid metals (GaLMs) have garnered monumental attention from the scientific community due to their diverse actuation characteristics. These metals possess remarkable characteristics, including high surface tension, excellent electrical and thermal conductivity, phase transformation behaviour, minimal viscosity and vapour pressure, lack of toxicity, and biocompatibility. In addition, GaLMs have melting points that are either lower or near room temperature, making them incredibly beneficial when compared to solid metals since they can be easily deformed. Thus, there has been significant progress in developing multifunctional devices using GaLMs, including bio-devices, flexible and self-healing circuits, and actuators. Despite numerous reports on these liquid metals (LMs), there is an urgent need for consolidated and coherent literature regarding their actuation principles linked to the targeted application. This will ensure that the reader gets the flavour of physics behind the actuation mechanism and how it can be utilized in diverse fields. Moreover, the actuation mechanism has been scattered in the literature, and thus, the primary motive of this review is to provide a one-stop solution for the actuation mechanism and the associated dynamics while directing the readers to specialized literature. Thus, addressing this issue, we thoroughly examine and present a detailed account of the actuation mechanisms of GaLMs while highlighting the science behind them. We also discuss the various morphologies of GaLMs and their crucial physical characteristics which decide their targeted application. Furthermore, we also delve into commonly held beliefs about GaLMs in the literature, such as their toxicity and antibacterial properties, to offer readers a more accurate understanding. Finally, we have explored several key unanswered aspects of the LM that should be explored in future research. The core strength of this review lies in its simplistic approach in offering a starting point for researchers venturing this innovative field, while we make use of existing literature to develop a comprehensive understanding.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Abdulmajeed Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
4
|
Huang T, Huang S, Liu D, Zhu W, Wu Q, Chen L, Zhang X, Liu M, Wei Y. Recent advances and progress on the design, fabrication and biomedical applications of Gallium liquid metals-based functional materials. Colloids Surf B Biointerfaces 2024; 238:113888. [PMID: 38599077 DOI: 10.1016/j.colsurfb.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.
Collapse
Affiliation(s)
- Tongsheng Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shiyu Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dong Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qinghua Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wang M, Lin Y. Gallium-based liquid metals as reaction media for nanomaterials synthesis. NANOSCALE 2024; 16:6915-6933. [PMID: 38501969 DOI: 10.1039/d3nr06566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Gallium-based liquid metals (LMs) and their alloys have gained prominence in the realm of flexible and stretchable electronics. Recent advances have expanded the interest to explore the electron-rich core and interface of LMs to synthesize various nanomaterials, where Ga-based LMs serve as versatile reaction media. In this paper, we delve into the latest developments within this burgeoning field. Our discussion begins by elucidating the unique attributes of LMs that render them suitable as reaction media, including their high metal solubility, low standard reduction potential, self-limiting oxidation and ultra-smooth and "layer" surface. We then provide a comprehensive categorized summary of utilizing these features to fabricate a variety of nanomaterials, including pure metallic materials (metal alloys, metal crystals, porous metals, high-entropy alloys and metallic single atoms), metal-inorganic compounds (2D metal oxides, 2D metallic inorganic compounds and 2D graphitic materials), as well as metal-organic composites (metal-organic frameworks). This paper concludes by discussing the current challenges in this field and exploring potential future directions. The versatility and unique properties of Ga-based LMs are poised to play a pivotal role in the future of nanomaterial science, paving the way for more efficient, sustainable, and innovative technological solutions.
Collapse
Affiliation(s)
- Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
6
|
Konovalov O, Rein V, Saedi M, Groot IMN, Renaud G, Jankowski M. Tripling of the scattering vector range of X-ray reflectivity on liquid surfaces using a double-crystal deflector. J Appl Crystallogr 2024; 57:258-265. [PMID: 38596733 PMCID: PMC11001415 DOI: 10.1107/s1600576724000657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
The maximum range of perpendicular momentum transfer (q z) has been tripled for X-ray scattering from liquid surfaces when using a double-crystal deflector setup to tilt the incident X-ray beam. This is achieved by employing a higher-energy X-ray beam to access Miller indices of reflecting crystal atomic planes that are three times higher than usual. The deviation from the exact Bragg angle condition induced by misalignment between the X-ray beam axis and the main rotation axis of the double-crystal deflector is calculated, and a fast and straightforward procedure to align them is deduced. An experimental method of measuring scattering intensity along the q z direction on liquid surfaces up to q z = 7 Å-1 is presented, with liquid copper serving as a reference system for benchmarking purposes.
Collapse
Affiliation(s)
- Oleg Konovalov
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Valentina Rein
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NR, 38000 Grenoble, France
| | - Mehdi Saedi
- Physics Department, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Irene M. N. Groot
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Gilles Renaud
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NR, 38000 Grenoble, France
| | - Maciej Jankowski
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
7
|
Zhang Y, Wang C, Yin M, Liang H, Gao Q, Hu S, Guo W. Liquid Metal Nanocores Initiated Construction of Smart DNA-Polymer Microgels with Programmable and Regulable Functions and Near-Infrared Light-Driven Locomotion. Angew Chem Int Ed Engl 2024; 63:e202311678. [PMID: 37963813 DOI: 10.1002/anie.202311678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Due to their sequence-directed functions and excellent biocompatibility, smart DNA microgels have attracted considerable research interest, and the combination of DNA microgels with functional nanostructures can further expand their applications in biosensing and biomedicine. Gallium-based liquid metals (LMs) exhibiting both fluidic and metallic properties hold great promise for the development of smart soft materials; in particular, LM particles upon sonication can mediate radical-initiated polymerization reactions, thus allowing the combination of LMs and polymeric matrix to construct "soft-soft" materials. Herein, by forming active surfaces under sonication, LM nanoparticles (LM NPs) initiated localized radical polymerization reactions allow the combination of functional DNA units and different polymeric backbones to yield multifunctional core/shell microgels. The localized polymerization reaction allows fine control of the microgel compositions, and smart DNA microgels with tunable catalytic activities can be constructed. Moreover, due to the excellent photothermal effect of LM NPs, the resulting temperature gradient between microgels and surrounding solution upon NIR light irradiation can drive the oriented locomotion of the microgels, and remote control of the activity of these smart microgels can be achieved. These microgels may hold promise for various applications, such as the development of in vivo and in vitro biosensing and drug delivery systems.
Collapse
Affiliation(s)
- Yaxing Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Chunyan Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Mengyuan Yin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Hanxue Liang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Qi Gao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Shanjin Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| |
Collapse
|
8
|
Ulusel M, Dinçer O, Şahin O, Çınar-Aygün S. Solidification-Controlled Compartmentalization of Bismuth-Tin Colloidal Particles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37897796 DOI: 10.1021/acsami.3c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Nucleation and growth are the main steps of microstructure formation. Nucleation occurs stochastically in a bulk material but can be controlled by introducing or removing catalytic sites, or creating local gradients. Such manipulations can already be implemented to bulk materials at a high level of sophistication but are still challenging on micrometer or smaller scales. Here, we explore the potential to transfer this vast knowledge in classical metallurgy to the fabrication of colloidal particles and report strategies to control phase distribution within a particle by adjusting its solidification conditions. Benefiting from the core-shell structure of liquid metals and the constrained volume of particles, we demonstrate that the same alloy particle can be transformed into a lamellar, composite, Janus, or striped particle by the felicitous choice of the phase separation process pathway. This methodology offers an unprecedented opportunity for the scalable production of compartmentalized particles in high yields that are currently limited to inherently unscalable methods.
Collapse
Affiliation(s)
- Mert Ulusel
- Dept. of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Orçun Dinçer
- Dept. of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ozan Şahin
- Dept. of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Simge Çınar-Aygün
- Dept. of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
9
|
Hossain KZ, Kamran SA, Tavakkoli A, Khan MR. Machine learning (ML)-assisted surface tension and oscillation-induced elastic modulus studies of oxide-coated liquid metal (LM) alloys. JPHYS MATERIALS 2023; 6:045009. [PMID: 37881171 PMCID: PMC10594230 DOI: 10.1088/2515-7639/acf78c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
Pendant drops of oxide-coated high-surface tension fluids frequently produce perturbed shapes that impede interfacial studies. Eutectic gallium indium or Galinstan are high-surface tension fluids coated with a ∼5 nm gallium oxide (Ga2O3) film and falls under this fluid classification, also known as liquid metals (LMs). The recent emergence of LM-based applications often cannot proceed without analyzing interfacial energetics in different environments. While numerous techniques are available in the literature for interfacial studies- pendant droplet-based analyses are the simplest. However, the perturbed shape of the pendant drops due to the presence of surface oxide has been ignored frequently as a source of error. Also, exploratory investigations of surface oxide leveraging oscillatory pendant droplets have remained untapped. We address both challenges and present two contributing novelties- (a) by utilizing the machine learning (ML) technique, we predict the approximate surface tension value of perturbed pendant droplets, (ii) by leveraging the oscillation-induced bubble tensiometry method, we study the dynamic elastic modulus of the oxide-coated LM droplets. We have created our dataset from LM's pendant drop shape parameters and trained different models for comparison. We have achieved >99% accuracy with all models and added versatility to work with other fluids. The best-performing model was leveraged further to predict the approximate values of the nonaxisymmetric LM droplets. Then, we analyzed LM's elastic and viscous moduli in air, harnessing oscillation-induced pendant droplets, which provides complementary opportunities for interfacial studies alternative to expensive rheometers. We believe it will enable more fundamental studies of the oxide layer on LM, leveraging both symmetric and perturbed droplets. Our study broadens the materials science horizon, where researchers from ML and artificial intelligence domains can work synergistically to solve more complex problems related to surface science, interfacial studies, and other studies relevant to LM-based systems.
Collapse
Affiliation(s)
- Kazi Zihan Hossain
- Department of Chemical & Materials Engineering, University of Nevada, Reno, NV, United States of America
| | - Sharif Amit Kamran
- Department of Computer Science & Engineering, University of Nevada, Reno, NV, United States of America
| | - Alireza Tavakkoli
- Department of Computer Science & Engineering, University of Nevada, Reno, NV, United States of America
| | - M Rashed Khan
- Department of Chemical & Materials Engineering, University of Nevada, Reno, NV, United States of America
| |
Collapse
|
10
|
Oleksy M, Dynarowicz K, Aebisher D. Advances in Biodegradable Polymers and Biomaterials for Medical Applications-A Review. Molecules 2023; 28:6213. [PMID: 37687042 PMCID: PMC10488517 DOI: 10.3390/molecules28176213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The introduction of new materials for the production of various types of constructs that can connect directly to tissues has enabled the development of such fields of science as medicine, tissue, and regenerative engineering. The implementation of these types of materials, called biomaterials, has contributed to a significant improvement in the quality of human life in terms of health. This is due to the constantly growing availability of new implants, prostheses, tools, and surgical equipment, which, thanks to their specific features such as biocompatibility, appropriate mechanical properties, ease of sterilization, and high porosity, ensure an improvement of living. Biodegradation ensures, among other things, the ideal rate of development for regenerated tissue. Current tissue engineering and regenerative medicine strategies aim to restore the function of damaged tissues. The current gold standard is autografts (using the patient's tissue to accelerate healing), but limitations such as limited procurement of certain tissues, long operative time, and donor site morbidity have warranted the search for alternative options. The use of biomaterials for this purpose is an attractive option and the number of biomaterials being developed and tested is growing rapidly.
Collapse
Affiliation(s)
- Małgorzata Oleksy
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
11
|
Manyuan N, Otsuki T, Tsumura Y, Fujii S, Kawasaki H. Dry liquid metals stabilized by silica particles: Synthesis and application in photothermoelectric power generation. J Colloid Interface Sci 2023; 649:581-590. [PMID: 37364458 DOI: 10.1016/j.jcis.2023.06.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
HYPOTHESIS Gallium-based room-temperature liquid metals (LMs) have unique physicochemical properties; however, their high surface tension, low flowability, and high corrosiveness to other materials limit their advanced processing (including precise shaping) and application. Consequently, LM-rich free-flowing powders, named "dry LMs" that offer the inherent advantages of dry powders, should play a critical role in expanding the application scope of LMs. EXPERIMENTS A general method of preparing silica-nanoparticle-stabilized LMs in the form of LM-rich powders (>95 wt% LM) is developed. FINDINGS Dry LMs can be simply prepared by mixing LMs with silica nanoparticles in a planetary centrifugal mixer in the absence of solvents. As a sustainable dry-process route alternative to wet-process routes, this ecofriendly and simple method of dry LM fabrication has several advantages, e.g., high throughput, scalability, and low toxicity owing to the lack of organic dispersion agents and milling media. Moreover, the unique photothermal properties of dry LMs are used for photothermal electric power generation. Thus, dry LMs not only pave the way for the use of LMs in powder form but also provide a new opportunity for expanding their application scope in energy conversion systems.
Collapse
Affiliation(s)
- Nichayanan Manyuan
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tomoko Otsuki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yusuke Tsumura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
12
|
Kumar VB, Gedanken A, Porat Z. Sonochemistry of molten gallium. ULTRASONICS SONOCHEMISTRY 2023; 95:106364. [PMID: 36990048 PMCID: PMC10457574 DOI: 10.1016/j.ultsonch.2023.106364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
This review article summarizes the comprehensive work that was done in our laboratory in recent years, as-well-as other reports, on the various aspects of sonochemistry of molten gallium. The low mp (29.8 °C) of gallium enables its melting in warm water, aqueous solutions and organic liquids. This opened a new research direction that focused on the chemical and physical properties of gallium particles that were formed in such media. It includes their interactions with water and with organic and inorganic solutes in aqueous solutions and with carbon nanoparticles. Formation of nanoparticles of liquid gallium alloys was also reported.
Collapse
Affiliation(s)
| | - Aharon Gedanken
- Department of Chemistry and the BINA Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ze'ev Porat
- Department of Chemistry, Nuclear Research Center-Negev, P.O. Box 9001, Be'er-Sheva 84190, Israel; Department of Civil and Environmental Engineering, the Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
13
|
Zhang Y, Venkatakrishnarao D, Bosman M, Fu W, Das S, Bussolotti F, Lee R, Teo SL, Huang D, Verzhbitskiy I, Jiang Z, Jiang Z, Chai J, Tong SW, Ooi ZE, Wong CPY, Ang YS, Goh KEJ, Lau CS. Liquid-Metal-Printed Ultrathin Oxides for Atomically Smooth 2D Material Heterostructures. ACS NANO 2023; 17:7929-7939. [PMID: 37021759 DOI: 10.1021/acsnano.3c02128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) semiconductors are promising channel materials for continued downscaling of complementary metal-oxide-semiconductor (CMOS) logic circuits. However, their full potential continues to be limited by a lack of scalable high-k dielectrics that can achieve atomically smooth interfaces, small equivalent oxide thicknesses (EOTs), excellent gate control, and low leakage currents. Here, large-area liquid-metal-printed ultrathin Ga2O3 dielectrics for 2D electronics and optoelectronics are reported. The atomically smooth Ga2O3/WS2 interfaces enabled by the conformal nature of liquid metal printing are directly visualized. Atomic layer deposition compatibility with high-k Ga2O3/HfO2 top-gate dielectric stacks on a chemical-vapor-deposition-grown monolayer WS2 is demonstrated, achieving EOTs of ∼1 nm and subthreshold swings down to 84.9 mV/dec. Gate leakage currents are well within requirements for ultrascaled low-power logic circuits. These results show that liquid-metal-printed oxides can bridge a crucial gap in dielectric integration of 2D materials for next-generation nanoelectronics.
Collapse
Affiliation(s)
- Yiyu Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dasari Venkatakrishnarao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Michel Bosman
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sarthak Das
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Rainer Lee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Siew Lang Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ding Huang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ivan Verzhbitskiy
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zhuojun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zhuoling Jiang
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Jianwei Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Shi Wun Tong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zi-En Ooi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Calvin Pei Yu Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yee Sin Ang
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
14
|
Hossain KZ, Monwar M, Khan MR. Reactive etching of gallium oxide on eutectic gallium indium (eGaIn) with chlorosilane vapor to induce differential wetting. SOFT MATTER 2023; 19:3199-3206. [PMID: 37073821 DOI: 10.1039/d3sm00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Differentially wettable surfaces are well sought after in energy, water, health care, separation science, self-cleaning, biology, and other lab-on-chip applications-however, most demonstrations of realizing differential wettability demand complex processes. Herein, we chemically etch gallium oxide (Ga2O3) from in-plane patterns (2D) of eutectic gallium indium (eGaIn) to demonstrate a differentially wettable interface using chlorosilane vapor. We produce 2D patterns of eGaIn on bare glass slides in native air using cotton swabs as paint brushes. Exposing the entire system to chlorosilane vapor induces chemical etching of the oxide layer, which recovers the high-surface energy of eGaIn, to produce nano-to-mm droplets on the pre-patterned area. We rinse the entire system with deionized (DI) water to achieve differentially wettable surfaces. Measurements of contact angles using a goniometer confirmed hydrophobic and hydrophilic interfaces. Scanning electron microscopy (SEM) images confirmed the distribution and energy dispersive spectra (EDS) exhibited the elemental compositions of the micro-to-nano droplets after silanization (silane treatment). Also, we demonstrated two proofs of concept, i.e., open-ended microfluidics and differential wettability on curved interfaces, to demonstrate the advanced applications of the current work. This straightforward approach using two soft materials (silane and eGaIn) to achieve differential wettability on laboratory-grade glass slides and other surfaces has future implications for nature-inspired self-cleaning surfaces in nanotechnologies, bioinspired and biomimetic open-channel microfluidics, coatings, and fluid-structure interactions.
Collapse
Affiliation(s)
- Kazi Zihan Hossain
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| | - Momena Monwar
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| | - M Rashed Khan
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| |
Collapse
|
15
|
Allioux FM, Merhebi S, Liu L, Centurion F, Abbasi R, Zhang C, Ireland J, Biazik JM, Mayyas M, Yang J, Mousavi M, Ghasemian MB, Tang J, Xie W, Rahim MA, Kalantar-Zadeh K. A liquid metal-polydopamine composite for cell culture and electro-stimulation. J Mater Chem B 2023; 11:3941-3950. [PMID: 37067358 DOI: 10.1039/d2tb02079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Gallium (Ga) is a low melting point metal in the liquid state in the biological environment which presents a unique combination of fluidity, softness, and metallic electrical and thermal properties. In this work, liquid Ga is proposed as a biocompatible electrode material for cell culture by electro-stimulation since the cytotoxicity of Ga is generally considered low and some Ga compounds have been reported to exhibit anti-bacterial and anti-inflammatory activities. Complementarily, polydopamine (PDA) was coated on liquid Ga to increase the attachment capability of cells on the liquid Ga electrode and provide enhanced biocompatibility. The liquid Ga layer could be readily painted at room temperature on a solid inert substrate, followed by the formation of a nanoscale PDA coating layer resulting in a conformable and biocompatible composite electrode. The PDA layer was shown to coordinate with Ga3+, which is sourced from liquid Ga, providing electrical conductivity in the cell culture medium. The PDA-Ga3+ composite acted as a conductive substrate for advanced electro-stimulation for cell culture methods of representative animal fibroblasts. The cell proliferation was observed to increase by ∼143% as compared to a standard glass coverslip at a low potential of 0.1 V of direct coupling stimulation. This novel PDA-Ga3+ composite has potential applications in cell culture and regenerative medicine.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Li Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Roozbeh Abbasi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jake Ireland
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Joanna M Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Wanjie Xie
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Md Arifur Rahim
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Joshipura ID, Nguyen CK, Quinn C, Yang J, Morales DH, Santiso E, Daeneke T, Truong VK, Dickey MD. An atomically smooth container: Can the native oxide promote supercooling of liquid gallium? iScience 2023; 26:106493. [PMID: 37091232 PMCID: PMC10113873 DOI: 10.1016/j.isci.2023.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Metals tend to supercool-that is, they freeze at temperatures below their melting points. In general, supercooling is less favorable when liquids are in contact with nucleation sites such as rough surfaces. Interestingly, bulk gallium (Ga) can significantly supercool, even when it is in contact with heterogeneous surfaces that could provide nucleation sites. We hypothesized that the native oxide on Ga provides an atomically smooth interface that prevents Ga from directly contacting surfaces, and thereby promotes supercooling. Although many metals form surface oxides, Ga is a convenient metal for studying supercooling because its melting point of 29.8°C is near room temperature. Using differential scanning calorimetry (DSC), we show that freezing of Ga with the oxide occurs at a lower temperature (-15.6 ± 3.5°C) than without the oxide (6.9 ± 2.0°C when the oxide is removed by HCl). We also demonstrate that the oxide enhances supercooling via macroscopic observations of freezing. These findings explain why Ga supercools and have implications for emerging applications of Ga that rely on it staying in the liquid state.
Collapse
|
17
|
Ghasemian MB, Wang Y, Allioux FM, Zavabeti A, Kalantar-Zadeh K. Coating of gallium-based liquid metal particles with molybdenum oxide and oxysulfide for electronic band structure modulation. NANOSCALE 2023; 15:5891-5898. [PMID: 36876581 DOI: 10.1039/d2nr06733a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid metal (LM) droplets are now used in many applications including catalysis, sensing, and flexible electronics. Consequently, the introduction of methods for on-demand alternating electronic properties of LMs is necessary. The active surface of LMs provides a unique environment for spontaneous chemical reactions that enable the formation of thin layers of functional materials for such modulations. Here, we showed the deposition of n-type MoOx and MoOxSy semiconductors on the surface of EGaIn LM droplets under mechanical agitation to successfully modulate their electronic structures. The "liquid solution"-"liquid metal" interaction resulted in the formation of oxide and oxysulfide layers on the surface of LM droplets. The comprehensive study of electronic and optical properties revealed a decrease in the band gap of the droplets after surface decoration with MoOx and MoOxSy, leading to deeper n-type doping of the materials. This method provides a facile procedure for engineering the electronic band structure of LM-based composites when they are necessary for various applications.
Collapse
Affiliation(s)
- Mohammad B Ghasemian
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Francois-Marie Allioux
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
18
|
Cai S, Ghasemian MB, Rahim MA, Baharfar M, Yang J, Tang J, Kalantar-Zadeh K, Allioux FM. Formation of inorganic liquid gallium particle-manganese oxide composites. NANOSCALE 2023; 15:4291-4300. [PMID: 36745406 DOI: 10.1039/d2nr06384k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gallium (Ga) is a low melting point post-transition metal that, under mild mechanical agitation, can form micron and submicron-sized particles with combined fluid-like and metallic properties. In this work, an inorganic network of Ga liquid metal particles was synthesised via spontaneous formation of manganese (Mn) oxide species on their liquid metallic surfaces forming an all-inorganic composite. The micron-sized Ga particles formed by sonication were connected together by Mn oxide nanostructures spontaneously established from the reduction of a Mn salt in aqueous solution slightly above the melting point of Ga. The formed Mn oxide nanostructures were found to coalesce from the surface of the Ga particles into a continuous inorganic network. The morphology of the composites could be altered by varying the Mn salt concentration and by performing post-treatment annealing. The composites presented a shell of various Mn oxide nanostructures including wrinkled sheets, rods and nanoneedles, around spherical liquid Ga particles, and a liquid metal core. The photoelectric and optical properties of the composites were thoroughly characterised, which revealed decreasing bandgaps and valence band edge characteristics as a function of increased Mn oxide coverage. The photoluminescence properties of the composites could be also engineered by increasing the Mn oxide coverage. The all-inorganic liquid Ga composite could be formed via a straightforward reduction reaction of a Mn-rich salt at the surface of liquid Ga particles with tunable surface properties for future optoelectronic applications.
Collapse
Affiliation(s)
- Shengxiang Cai
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
19
|
Liu PQ, Miao X, Datta S. Recent Advances in Liquid Metal Photonics: Technologies and Applications. OPTICAL MATERIALS EXPRESS 2023; 13:699-727. [PMID: 38249122 PMCID: PMC10798671 DOI: 10.1364/ome.484236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 01/23/2024]
Abstract
Near-room-temperature liquid metals offer unique and crucial advantages over solid metals for a broad range of applications which require soft, stretchable and/or reconfigurable structures and devices. In particular, gallium-based liquid metals are the most suitable for a wide range of applications, not only owing to their low melting points, but also thanks to their low toxicity and negligible vapor pressure. In addition, gallium-based liquid metals exhibit attractive optical properties which make them highly suitable for a variety of photonics applications. This review summarizes the material properties of gallium-based liquid metals, highlights several effective techniques for fabricating liquid-metal-based structures and devices, and then focuses on the various photonics applications of these liquid metals in different spectral regions, following with a discussion on the challenges and opportunities for future research in this relatively nascent field.
Collapse
Affiliation(s)
- Peter Q. Liu
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Xianglong Miao
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Shreyan Datta
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
20
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
21
|
Hu J, Li ZZ, Zhao YY, Xu YS, Wang L, Han M, Hyde L, Ng SH, Wang L, Juodkazis S. Nanoscale Printing of Indium-Tin-Oxide by Femtosecond Laser Pulses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4092. [PMID: 36432377 PMCID: PMC9694177 DOI: 10.3390/nano12224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
For constructing optical and electrical micro-devices, the deposition/printing of materials with sub-1 μm precision and size (cross-section) is required. Crystalline c-ITO (indium tin oxide) nanostructures were patterned on glass with sufficient precision to form 20-50 nm gaps between individual disks or lines of ∼250 nm diameter or width. The absorbed energy density [J/cm3] followed a second-order dependence on pulse energy. This facilitated high-resolution and precise nanoscale laser-writing at a laser wavelength of 515 nm. Patterns for optical elements such as circular gratings and micro-disks were laser-printed using ITO as a resist. Unexposed amorphous a-ITO was chemically removed in aqueous 1% vol. HF solution. This use of a-ITO as a solid resist holds promise for metamaterial and micro-optical applications.
Collapse
Affiliation(s)
- Jingwen Hu
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Zhen-Ze Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yang-Yang Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yi-Shi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Lin Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Molong Han
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Melbourne Centre for Nanofabrication (MCN-ANFF), 151 Wellington Rd, Clayton, VIC 3168, Australia
| | - Lachlan Hyde
- Space Technology and Industry Institute, Graphene Certification Labs, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Melbourne Centre for Nanofabrication (MCN-ANFF), 151 Wellington Rd, Clayton, VIC 3168, Australia
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
22
|
Yu L, Qi X, Liu Y, Chen L, Li X, Xia Y. Transportable, Endurable, and Recoverable Liquid Metal Powders with Mechanical Sintering Conductivity for Flexible Electronics and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48150-48160. [PMID: 36222480 DOI: 10.1021/acsami.2c14837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid metals (LMs, e.g., EGaIn) promise a vast potential in accelerating the development of flexible electronics, smart robots, and wearable and biomedical devices. Although a variety of emerging processing methods are reported, they suffer several risks (e.g., leakage, weak adhesion, and low colloidal and chemical stability) because of their excellent fluidity, high surface tension, and rapid oxidation. Herein, liquid metal powders (LMPs) are fabricated based on a versatile method by vigorously stirring EGaIn with nonmetallic or organic particles through interfacial interactions. During the mixing process, EGaIn microdroplets are wrapped with a nonmetallic or an organic shell by electrostatic adsorption, and a more sticky oxide layer is constantly generated and then broken owing to the shearing friction. These transportable powders exhibit superior stability under extreme conditions (e.g., water and high temperature), being capable of recovering electrical conductivity and strong adhesion on different substrates upon mechanical sintering. A flexible, robust, and conductive coating can be constructed via swabbing with an integrated Joule heating effect and excellent electromagnetic interference shielding performances, and it is applicable in flexible wearable electronics, microcircuits, and wireless power transmission systems.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Xiulei Qi
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Yide Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Long Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Xiankai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| |
Collapse
|
23
|
Sarageng K, Wongprom W, Noorith W, Lertsathitphong P, Crawford J, Nasongkla N, O'Mullane AP, Lertanantawong B. Using H 2O 2 as a green oxidant to produce fluorescent GaOOH nanomaterials from a liquid metal. Chem Commun (Camb) 2022; 58:10412-10415. [PMID: 36040125 DOI: 10.1039/d2cc02797f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a simple and rapid method for the synthesis of fluorescent gallium oxyhydroxide (GaOOH) nanoparticles from liquid Ga by a probe sonication method in the presence of H2O2 as an oxidant. The aspect ratio of the GaOOH nanoparticles is determined by the concentration of H2O2 and solution pH, as well as the probe energy and sonication time. Further surface modification with cyclodextrin to achieve biocompatibility for potential biomedical applications is reported where an example of cell uptake and fluorescence imaging is shown.
Collapse
Affiliation(s)
- Kanyarat Sarageng
- Department of Engineering, Faculty of Biomedical Engineering, Mahidol University, Nakhon Pathom, Thailand.
| | - Wanpawee Wongprom
- Department of Engineering, Faculty of Biomedical Engineering, Mahidol University, Nakhon Pathom, Thailand.
| | - Weesuda Noorith
- Department of Engineering, Faculty of Biomedical Engineering, Mahidol University, Nakhon Pathom, Thailand.
| | - Panjaphong Lertsathitphong
- Department of Engineering, Faculty of Biomedical Engineering, Mahidol University, Nakhon Pathom, Thailand.
| | - Jessica Crawford
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Norased Nasongkla
- Department of Engineering, Faculty of Biomedical Engineering, Mahidol University, Nakhon Pathom, Thailand.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Benchaporn Lertanantawong
- Department of Engineering, Faculty of Biomedical Engineering, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
24
|
Kawasaki H, Otsuki T, Sugino F, Yamamoto K, Tokunaga T, Tokura R, Yonezawa T. A liquid metal catalyst for the conversion of ethanol into graphitic carbon layers under an ultrasonic cavitation field. Chem Commun (Camb) 2022; 58:7741-7744. [PMID: 35723415 DOI: 10.1039/d2cc02510h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eutectic gallium indium (EGaIn) has drawn considerable research interest in potential liquid catalysis. Herein, we report that EGaIn liquid metal acts as a catalyst for the growth of a graphitic carbon layer from ethanol under ultrasonication. High-speed imaging demonstrated the formation of ultrasonic cavitation bubbles at the liquid metal/ethanol interface, which facilitated the pyrolysis of ethanol into graphitic carbon on the liquid metal surface.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-Shi, Osaka 564-8680, Japan.
| | - Tomoko Otsuki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-Shi, Osaka 564-8680, Japan.
| | - Fumiya Sugino
- Department of Pure and Applied Physics, The Faculty of Engineering Science, Kansai University, Suita-Shi, Osaka 564-8680, Japan
| | - Ken Yamamoto
- Department of Pure and Applied Physics, The Faculty of Engineering Science, Kansai University, Suita-Shi, Osaka 564-8680, Japan
| | - Tomoharu Tokunaga
- Department Materials Science and Engineering, Faculty of Engineering, Nagoya University, Furo-Cho, Nagoya 464-8603, Japan
| | - Rintaro Tokura
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
25
|
Long L, Che X, Yao P, Zhang X, Wang J, Li M, Li C. Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core-Shell Wires. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18690-18696. [PMID: 35420779 DOI: 10.1021/acsami.2c02247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal wires are of great significance in applications such as three-dimensional (3D) printing, soft electronics, optics, and metamaterials. Ga-based liquid metals (e.g., EGaIn), though uniquely combining metallic conductivity, fluidity, and biocompatibility, remain challenging to be spun due to their low viscosity, high surface tension, and Rayleigh-Plateau instability. In this work, we showed that EGaIn as a working electrode could induce the oxidization of EGaIn and interfacial electrochemical polymerization of electroactive monomers (e.g., acrylic acid, dopamine, and pyrrole), thus spinning itself from an opening of a blunt needle. During the spinning process, the high surface tension of EGaIn was reduced by electrowetting and electrocapillarity and stabilized by polymer shells (tunable thickness of ∼0.6-30 μm on wires with a diameter of 90-300 μm), which were chelated with metal ions. The polymeric shells offered EGaIn wires with an enhanced endurance to mechanical force and acidity. By further encapsulating into elastomers through a facile impregnation process, the resultant elastic EGaIn wires showed a combination of high stretchability (up to 800%) and metallic conductivity (1.5 × 106 S m-1). When serving as wearable sensors, they were capable of sensing facial expressions, body movements, voice recognition, and spatial pressure distributions with high sensitivity, good repeatability, and satisfactory durability. Machine-learning algorithms further assisted to detect gestures with high accuracy.
Collapse
Affiliation(s)
- Lifen Long
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Xinpeng Che
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Peifan Yao
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Xihua Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Jingwei Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Mingjie Li
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|