1
|
Zhang Q, Sun B, Shanehsazzadeh S, Bongers A, Gu Z. Engineering Zn/Fe Mixed Metal Oxides with Tunable Structural and Magnetic Properties for Magnetic Particle Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1964. [PMID: 39683352 DOI: 10.3390/nano14231964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Engineering magnetic nanoparticles with tunable structural properties and magnetism is critical to develop desirable magnetic particle imaging (MPI) tracers for biomedical applications. Here we present a new superparamagnetic metal oxide nanoparticle with a controllable chemical composition and magnetism for imaging tumor xenografts in living mice. Superparamagnetic Zn/Fe mixed metal oxide (ZnFe-MMO) nanoparticles are fabricated via a facile one-pot co-precipitation method in water followed by thermal decomposition with tunable Zn/Fe ratios and at various calcination temperatures. This work, for the first time, presented LDH-derived metal oxides for an MPI application. The metal composition is tunable to present an optimized MPI performance. The analytical results demonstrate that ZnFe-MMO nanoparticles at the designed molar ratio of Zn/Fe = 2:1 after 650 °C calcination demonstrate a higher saturation magnetization (MS) value and optimal MPI signal than the samples presented with other conditions. The excellent biocompatibility of ZnFe-MMO is demonstrated in both breast cancer cells and fibroblast cell cultures. In vivo imaging of 4T1 tumor xenografts in mice using ZnFe-MMO as a tracer showed that the mean signal intensity is 1.27-fold higher than the commercial tracer VivoTrax at 72 h post-injection, indicating ZnFe-MMO's promise for prolonged MPI imaging applications.
Collapse
Affiliation(s)
- Qianyi Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Bing Sun
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Saeed Shanehsazzadeh
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Andre Bongers
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Trozzo S, Neupane B, Foster PJ. A Comparison of the Sensitivity and Cellular Detection Capabilities of Magnetic Particle Imaging and Bioluminescence Imaging. Tomography 2024; 10:1846-1866. [PMID: 39590944 PMCID: PMC11598277 DOI: 10.3390/tomography10110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Preclinical cell tracking is enhanced with a multimodal imaging approach. Bioluminescence imaging (BLI) is a highly sensitive optical modality that relies on engineering cells to constitutively express a luciferase gene. Magnetic particle imaging (MPI) is a newer imaging modality that directly detects superparamagnetic iron oxide (SPIO) particles used to label cells. Here, we compare BLI and MPI for imaging cells in vitro and in vivo. METHODS Mouse 4T1 breast carcinoma cells were transduced to express firefly luciferase, labeled with SPIO (ProMag), and imaged as cell samples after subcutaneous injection into mice. RESULTS For cell samples, the BLI and MPI signals were strongly correlated with cell number. Both modalities presented limitations for imaging cells in vivo. For BLI, weak signal penetration, signal attenuation, and scattering prevented the detection of cells for mice with hair and for cells far from the tissue surface. For MPI, background signals obscured the detection of low cell numbers due to the limited dynamic range, and cell numbers could not be accurately quantified from in vivo images. CONCLUSIONS It is important to understand the shortcomings of these imaging modalities to develop strategies to improve cellular detection sensitivity.
Collapse
Affiliation(s)
- Sophia Trozzo
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (B.N.); (P.J.F.)
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Bijita Neupane
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (B.N.); (P.J.F.)
| | - Paula J. Foster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (B.N.); (P.J.F.)
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
3
|
Patrick PS, Stuckey DJ, Zhu H, Kalber TL, Iftikhar H, Southern P, Bear JC, Lythgoe MF, Hattersley SR, Pankhurst QA. Improved tumour delivery of iron oxide nanoparticles for magnetic hyperthermia therapy of melanoma via ultrasound guidance and 111In SPECT quantification. NANOSCALE 2024; 16:19715-19729. [PMID: 39044561 PMCID: PMC11488578 DOI: 10.1039/d4nr00240g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Magnetic field hyperthermia relies on the intra-tumoural delivery of magnetic nanoparticles by interstitial injection, followed by their heating on exposure to a remotely-applied alternating magnetic field (AMF). This offers a potential sole or adjuvant route to treating drug-resistant tumours for which no alternatives are currently available. However, two challenges in nanoparticle delivery currently hinder the effective clinical translation of this technology: obtaining enough magnetic material within the tumour to enable sufficient heating; and doing this accurately to limit or avoid damage to surrounding healthy tissue. A further complication is the lack of established methods to non-invasively quantify nanoparticle biodistribution, which is necessary to evaluate the performance of improved delivery strategies. Here we employ 111In radiolabelling and single-photon emission computed tomography (SPECT) to non-invasively quantify distribution of a clinical grade iron-oxide-based nanoparticle in a mouse model of melanoma. We show that compared to manual injection, ultrasound guided delivery together with syringe-pump-controlled infusion improves both the nanoparticle concentration within the tumour, and the accuracy of delivery - reducing off-target peri-tumoural delivery. Following AMF heating, injected melanomas shrank significantly compared to non-injected controls, validating therapeutic efficacy. Systemic off-target delivery was quantified and extrapolated to predict off-target energy absorbance within safe limits for the main sites of background accumulation. With many nanoparticle-based therapies currently in development for cancer, this image-guided delivery strategy has wide potential impact beyond the field of magnetic hyperthermia. Future use in representative patient cohorts would also be enabled by the high clinical availability of both SPECT and ultrasound imaging.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | - Huachen Zhu
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | - Haadi Iftikhar
- Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
| | - Paul Southern
- Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| | - Joseph C Bear
- School of Life Science, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | | | - Quentin A Pankhurst
- Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| |
Collapse
|
4
|
Karasawa T, Saikawa J, Munaka T, Kobayashi T. Homogeneous B0 coil design method for open-access ultra-low field magnetic resonance imaging: A simulation study. Magn Reson Imaging 2024; 112:128-135. [PMID: 38986889 DOI: 10.1016/j.mri.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
A multimodal brain function measurement system integrating functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) is expected to be a tool that will provide new insights into neuroscience. To integrate fMRI and MEG, an ultra-low-field MRI (ULF-MRI) scanner that can generate a static magnetic field (B0) with an electromagnetic coil and turn off the B0 during MEG measurements is desirable. While electromagnetic B0 coil has the above advantages, it also has a trade-off between size and the broadness of the magnetic field homogeneity. In this study, we proposed a method for designing a B0 multi-stage circular coil arrangement that determines the number of coils required to maximize magnetic field homogeneity and minimize the total wiring length of the coils. The optimized multi-stage coil arrangement had an external shape of 600 mm in diameter and a maximum height of 600 mm, with an aperture of 600 mm in diameter and 300 mm in height. The magnetic field homogeneity was <100 ppm over a 210 mm diameter spherical volume (DSV). Compared to a previous two coil pairs arrangement with the same magnetic field homogeneity, the diameter was 1/1.9 times smaller, indicating that the newly designed B0 coil arrangement realized a smaller size and wider magnetic field homogeneity.
Collapse
Affiliation(s)
- Tomohiro Karasawa
- Technology Research Laboratory, Shimadzu corporation, 3-9-4, Hikaridai, Seika-cho, Soraku-gun 619-0237, Japan
| | - Jiro Saikawa
- Technology Research Laboratory, Shimadzu corporation, 3-9-4, Hikaridai, Seika-cho, Soraku-gun 619-0237, Japan
| | - Tatsuya Munaka
- Technology Research Laboratory, Shimadzu corporation, 3-9-4, Hikaridai, Seika-cho, Soraku-gun 619-0237, Japan
| | - Tetsuo Kobayashi
- Office of Institutional Advancement and Communications, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Capuzzo AM, Piccolantonio G, Negri A, Bontempi P, Lacavalla MA, Malatesta M, Scambi I, Mariotti R, Lüdtke-Buzug K, Corsi M, Marzola P. Comparison between USPIOs and SPIOs for Multimodal Imaging of Extracellular Vesicles Extracted from Adipose Tissue-Derived Adult Stem Cells. Int J Mol Sci 2024; 25:9701. [PMID: 39273647 PMCID: PMC11395141 DOI: 10.3390/ijms25179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Adipose tissue-derived adult stem (ADAS) cells and extracellular vesicle (EV) therapy offer promising avenues for treating neurodegenerative diseases due to their accessibility and potential for autologous cell transplantation. However, the clinical application of ADAS cells or EVs is limited by the challenge of precisely identifying them in specific regions of interest. This study compares two superparamagnetic iron oxide nanoparticles, differing mainly in size, to determine their efficacy for allowing non-invasive ADAS tracking via MRI/MPI and indirect labeling of EVs. We compared a USPIO (about 5 nm) with an SPIO (Resovist®, about 70 nm). A physicochemical characterization of nanoparticles was conducted using DLS, TEM, MRI, and MPI. ADAS cells were labeled with the two nanoparticles, and their viability was assessed via MTT assay. MRI detected labeled cells, while TEM and Prussian Blue staining were employed to confirm cell uptake. The results revealed that Resovist® exhibited higher transversal relaxivity value than USPIO and, consequently, allows for detection with higher sensitivity by MRI. A 200 µgFe/mL concentration was identified as optimal for ADAS labeling. MPI detected only Resovist®. The findings suggest that Resovist® may offer enhanced detection of ADAS cells and EVs, making it suitable for multimodal imaging. Preliminary results obtained by extracting EVs from ADAS cells labeled with Resovist® indicate that EVs retain the nanoparticles, paving the way to an efficient and multimodal detection of EVs.
Collapse
Affiliation(s)
- Arnaud M Capuzzo
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie, 8, 37134 Verona, Italy
| | - Giusi Piccolantonio
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - Alessandro Negri
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie, 8, 37134 Verona, Italy
| | - Pietro Bontempi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - Maria A Lacavalla
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
- Department of Chemical Science, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Manuela Malatesta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Kerstin Lüdtke-Buzug
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, 23562 Lübeck, Germany
| | - Mauro Corsi
- Evotec Consultant, Via A. Fleming 4, 37135 Verona, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| |
Collapse
|
6
|
Pacheco MO, Gerzenshtein IK, Stoppel WL, Rinaldi-Ramos CM. Advances in Vascular Diagnostics using Magnetic Particle Imaging (MPI) for Blood Circulation Assessment. Adv Healthc Mater 2024; 13:e2400612. [PMID: 38879782 PMCID: PMC11442126 DOI: 10.1002/adhm.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/11/2024] [Indexed: 06/29/2024]
Abstract
Rapid and accurate assessment of conditions characterized by altered blood flow, cardiac blood pooling, or internal bleeding is crucial for diagnosing and treating various clinical conditions. While widely used imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound offer unique diagnostic advantages, they fall short for specific indications due to limited penetration depth and prolonged acquisition times. Magnetic particle imaging (MPI), an emerging tracer-based technique, holds promise for blood circulation assessments, potentially overcoming existing limitations with reduction in background signals and high temporal and spatial resolution, below the millimeter scale. Successful imaging of blood pooling and impaired flow necessitates tracers with diverse circulation half-lives optimized for MPI signal generation. Recent MPI tracers show potential in imaging cardiovascular complications, vascular perforations, ischemia, and stroke. The impressive temporal resolution and penetration depth also position MPI as an excellent modality for real-time vessel perfusion imaging via functional MPI (fMPI). This review summarizes advancements in optimized MPI tracers for imaging blood circulation and analyzes the current state of pre-clinical applications. This work discusses perspectives on standardization required to transition MPI from a research endeavor to clinical implementation and explore additional clinical indications that may benefit from the unique capabilities of MPI.
Collapse
Affiliation(s)
| | | | - Whitney L Stoppel
- Chemical Engineering, University of Florida, Gainesville FL
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL
| | - Carlos M Rinaldi-Ramos
- Chemical Engineering, University of Florida, Gainesville FL
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL
| |
Collapse
|
7
|
Mishra S, Yadav MD. Magnetic Nanoparticles: A Comprehensive Review from Synthesis to Biomedical Frontiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17239-17269. [PMID: 39132737 DOI: 10.1021/acs.langmuir.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanotechnology has opened new doors of exploration, particularly in materials science and healthcare. Magnetic nanoparticles (MNP), the tiny magnets, because of their various properties, have the potential to bring about radical changes in the field of medicine. The distinctive surface chemistry, nontoxicity, biocompatibility, and, in particular, the inducible magnetic moment of magnetic materials has attracted a great deal of interest in morphological structures from a variety of scientific domains. This review presents a concise overview of MNPs and their crucial properties and synthesis routes. It also aims to highlight the continuous synthesis methods available for MNP production. In recent years, the use of computational methods for understanding the behavior of nanoparticles has been on the rise. Thus, we also discuss the numerical models developed to understand how magnetic nanoparticles can be used in magnetic hyperthermia and targeting the Circle of Wilis. With the increasing use of MNPs in biomedical applications, it becomes necessary to understand the mechanisms of toxicity, which are elucidated in this review. The review focuses on the biomedical applications of MNPs in drug delivery, theranostics, and MRI contrasting agents. We anticipate that this article will broaden the perspective on magnetic nanoparticles and help to understand their functionality and applicability better.
Collapse
Affiliation(s)
- Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Manishkumar D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
8
|
Mohn F, Scheffler K, Ackers J, Weimer A, Wegner F, Thieben F, Ahlborg M, Vogel P, Graeser M, Knopp T. Characterization of the clinically approved MRI tracer resotran for magnetic particle imaging in a comparison study. Phys Med Biol 2024; 69:135014. [PMID: 38870999 DOI: 10.1088/1361-6560/ad5828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Objective.The availability of magnetic nanoparticles (MNPs) with medical approval for human intervention is fundamental to the clinical translation of magnetic particle imaging (MPI). In this work, we thoroughly evaluate and compare the magnetic properties of an magnetic resonance imaging (MRI) approved tracer to validate its performance for MPI in future human trials.Approach.We analyze whether the recently approved MRI tracer Resotran is suitable for MPI. In addition, we compare Resotran with the previously approved and extensively studied tracer Resovist, with Ferrotran, which is currently in a clinical phase III study, and with the tailored MPI tracer Perimag.Main results.Initial magnetic particle spectroscopy (MPS) measurements indicate that Resotran exhibits performance characteristics akin to Resovist, but below Perimag. We provide data on four different tracers using dynamic light scattering, transmission electron microscopy, vibrating sample magnetometry measurements, MPS to derive hysteresis, point spread functions, and a serial dilution, as well as system matrix based MPI measurements on a preclinical scanner (Bruker 25/20 FF), including reconstructed images.Significance.Numerous approved MNPs used as tracers in MRI lack the necessary magnetic properties essential for robust signal generation in MPI. The process of obtaining medical approval for dedicated MPI tracers optimized for signal performance is an arduous and costly endeavor, often only justifiable for companies with a well-defined clinical business case. Resotran is an approved tracer that has become available in Europe for MRI. In this work, we study the eligibility of Resotran for MPI in an effort to pave the way for human MPI trials.
Collapse
Affiliation(s)
- Fabian Mohn
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Scheffler
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Justin Ackers
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-based Medical Engineering, Lübeck, Germany
| | - Agnes Weimer
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-based Medical Engineering, Lübeck, Germany
- Institute of Physical Chemistry, University of Hamburg, Hamburg, Germany
| | - Franz Wegner
- Institute for Interventional Radiology, University of Lübeck, Lübeck, Germany
| | - Florian Thieben
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mandy Ahlborg
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-based Medical Engineering, Lübeck, Germany
| | - Patrick Vogel
- Department of Experimental Physics 5 (Biophysics), University of Würzburg, Würzburg, Germany
| | - Matthias Graeser
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-based Medical Engineering, Lübeck, Germany
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Tobias Knopp
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-based Medical Engineering, Lübeck, Germany
| |
Collapse
|
9
|
Rezaei B, Tay ZW, Mostufa S, Manzari ON, Azizi E, Ciannella S, Moni HEJ, Li C, Zeng M, Gómez-Pastora J, Wu K. Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications. NANOSCALE 2024; 16:11802-11824. [PMID: 38809214 DOI: 10.1039/d4nr01195c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Recent advancements in medical imaging have brought forth various techniques such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound, each contributing to improved diagnostic capabilities. Most recently, magnetic particle imaging (MPI) has become a rapidly advancing imaging modality with profound implications for medical diagnostics and therapeutics. By directly detecting the magnetization response of magnetic tracers, MPI surpasses conventional imaging modalities in sensitivity and quantifiability, particularly in stem cell tracking applications. Herein, this comprehensive review explores the fundamental principles, instrumentation, magnetic nanoparticle tracer design, and applications of MPI, offering insights into recent advancements and future directions. Novel tracer designs, such as zinc-doped iron oxide nanoparticles (Zn-IONPs), exhibit enhanced performance, broadening MPI's utility. Spatial encoding strategies, scanning trajectories, and instrumentation innovations are elucidated, illuminating the technical underpinnings of MPI's evolution. Moreover, integrating machine learning and deep learning methods enhances MPI's image processing capabilities, paving the way for more efficient segmentation, quantification, and reconstruction. The potential of superferromagnetic iron oxide nanoparticle chains (SFMIOs) as new MPI tracers further advanced the imaging quality and expanded clinical applications, underscoring the promising future of this emerging imaging modality.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Omid Nejati Manzari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Ebrahim Azizi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Hur-E-Jannat Moni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Changzhi Li
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
10
|
Barrera G, Allia P, Tiberto P. Magnetic nanoparticles in square-wave fields for breakthrough performance in hyperthermia and magnetic particle imaging. Sci Rep 2024; 14:10704. [PMID: 38730042 PMCID: PMC11636937 DOI: 10.1038/s41598-024-61580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Driving immobilized, single-domain magnetic nanoparticles at high frequency by square wave fields instead of sinusoidal waveforms leads to qualitative and quantitative improvements in their performance both as point-like heat sources for magnetic hyperthermia and as sensing elements in frequency-resolved techniques such as magnetic particle imaging and magnetic particle spectroscopy. The time evolution and the frequency spectrum of the cyclic magnetization of magnetite nanoparticles with random easy axes are obtained by means of a rate-equation method able to describe time-dependent effects for the particle sizes and frequencies of interest in most applications to biomedicine. In the presence of a high-frequency square-wave field, the rate equations are shown to admit an analytical solution and the periodic magnetization can be therefore described with accuracy, allowing one to single out effects which take place on different timescales. Magnetic hysteresis effects arising from the specific features of the square-wave driving field results in a breakthrough improvement of both the magnetic power released as heat to an environment in magnetic hyperthermia treatments and the magnitude of the third harmonic of the frequency spectrum of the magnetization, which plays a central role in magnetic particle imaging.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRiM, Advanced Materials Metrology and Life Sciences, Turin, Italy.
| | - Paolo Allia
- INRiM, Advanced Materials Metrology and Life Sciences, Turin, Italy
| | - Paola Tiberto
- INRiM, Advanced Materials Metrology and Life Sciences, Turin, Italy
| |
Collapse
|
11
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
12
|
Liao F, Yang W, Long L, Yu R, Qu H, Peng Y, Lu J, Ren C, Wang Y, Fu C. Elucidating Iron Metabolism through Molecular Imaging. Curr Issues Mol Biol 2024; 46:2798-2818. [PMID: 38666905 PMCID: PMC11049567 DOI: 10.3390/cimb46040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Iron is essential for many physiological processes, and the dysregulation of its metabolism is implicated in the pathogenesis of various diseases. Recent advances in iron metabolism research have revealed multiple complex pathways critical for maintaining iron homeostasis. Molecular imaging, an interdisciplinary imaging technique, has shown considerable promise in advancing research on iron metabolism. Here, we comprehensively review the multifaceted roles of iron at the cellular and systemic levels (along with the complex regulatory mechanisms of iron metabolism), elucidate appropriate imaging methods, and summarize their utility and fundamental principles in diagnosing and treating diseases related to iron metabolism. Utilizing molecular imaging technology to deeply understand the complexities of iron metabolism and its critical role in physiological and pathological processes offers new possibilities for early disease diagnosis, treatment monitoring, and the development of novel therapies. Despite technological limitations and the need to ensure the biological relevance and clinical applicability of imaging results, molecular imaging technology's potential to reveal the iron metabolic process is unparalleled, providing new insights into the link between iron metabolism abnormalities and various diseases.
Collapse
Affiliation(s)
- Feifei Liao
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Linzi Long
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Ruotong Yu
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Hua Qu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Yuxuan Peng
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Jieming Lu
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Chenghuan Ren
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Changgeng Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| |
Collapse
|
13
|
Bai S, Zhang XD, Zou YQ, Lin YX, Liu ZY, Li KW, Huang P, Yoshida T, Liu YL, Li MS, Zhang W, Wang XJ, Zhang M, Du C. Development of high-efficiency superparamagnetic drug delivery system with MPI imaging capability. Front Bioeng Biotechnol 2024; 12:1382085. [PMID: 38572358 PMCID: PMC10987818 DOI: 10.3389/fbioe.2024.1382085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
In this study, a high-efficiency superparamagnetic drug delivery system was developed for preclinical treatment of bladder cancer in small animals. Two types of nanoparticles with magnetic particle imaging (MPI) capability, i.e., single- and multi-core superparamagnetic iron oxide nanoparticles (SPIONs), were selected and coupled with bladder anti-tumor drugs by a covalent coupling scheme. Owing to the minimal particle size, magnetic field strengths of 270 mT with a gradient of 3.2 T/m and 260 mT with a gradient of 3.7 T/m were found to be necessary to reach an average velocity of 2 mm/s for single- and multi-core SPIONs, respectively. To achieve this, a method of constructing an in vitro magnetic field for drug delivery was developed based on hollow multi-coils arranged coaxially in close rows, and magnetic field simulation was used to study the laws of the influence of the coil structure and parameters on the magnetic field. Using this method, a magnetic drug delivery system of single-core SPIONs was developed for rabbit bladder therapy. The delivery system consisted of three coaxially and equidistantly arranged coils with an inner diameter of Φ50 mm, radial height of 85 mm, and width of 15 mm that were positioned in close proximity to each other. CCK8 experimental results showed that the three types of drug-coupled SPION killed tumor cells effectively. By adjusting the axial and radial positions of the rabbit bladder within the inner hole of the delivery coil structure, the magnetic drugs injected could undergo two-dimensional delivery motions and were delivered and aggregated to the specified target location within 12 s, with an aggregation range of about 5 mm × 5 mm. In addition, the SPION distribution before and after delivery was imaged using a home-made open-bore MPI system that could realistically reflect the physical state. This study contributes to the development of local, rapid, and precise drug delivery and the visualization of this process during cancer therapy, and further research on MPI/delivery synchronization technology is planned for the future.
Collapse
Affiliation(s)
- Shi Bai
- Department of Information Engineering, Shenyang University of Technology, Shenyang, China
| | - Xiao-dan Zhang
- Department of Information Engineering, Shenyang University of Technology, Shenyang, China
| | - Yu-qi Zou
- Department of Information Engineering, Shenyang University of Technology, Shenyang, China
| | - Yu-xi Lin
- Department of Information Engineering, Shenyang University of Technology, Shenyang, China
| | - Zhi-yao Liu
- Department of Information Engineering, Shenyang University of Technology, Shenyang, China
| | - Ke-wen Li
- Department of Information Engineering, Shenyang University of Technology, Shenyang, China
| | - Ping Huang
- Department of Information Engineering, Shenyang University of Technology, Shenyang, China
| | - Takashi Yoshida
- Department of Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Yi-li Liu
- Department of Urology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming-shan Li
- Department of Urology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiao-ju Wang
- Department of Foreign Languages, Liaoning Vocational and Technical College of Economics, Shenyang, China
| | - Min Zhang
- First Affiliated Hospital, China Medical University, Shenyang, China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
14
|
Ilg P. Nonequilibrium response of magnetic nanoparticles to time-varying magnetic fields: Contributions from Brownian and Néel processes. Phys Rev E 2024; 109:034603. [PMID: 38632745 DOI: 10.1103/physreve.109.034603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/07/2024] [Indexed: 04/19/2024]
Abstract
Many technical and biomedical applications of magnetic nanoparticles rely on their response to time-varying magnetic fields. While well-established models exist for either immobile or thermally blocked nanoparticles, the intermediate regime where Brownian as well as Néel relaxation occur at the same time is less well explored. Here, we use an efficient model that allows us to study the nonlinear dynamics of individual magnetic nanoparticles in response to different time-varying magnetic fields over a broad range of field parameters, taking into account both relaxation mechanisms. We provide quasiexact solutions for the longitudinal dynamics as well as approximate formulas from dynamic mean-field theory. Our results are relevant, e.g., for magnetorelaxometry, magnetic fluid hyperthermia, and magnetic particle imaging. For these example applications, we show that the ratio of characteristic Brownian to Néel relaxation time can have a profound impact on characteristic response quantities, especially at large field strengths.
Collapse
Affiliation(s)
- Patrick Ilg
- School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading RG6 6AX, United Kingdom
| |
Collapse
|
15
|
Feye J, Matthias J, Fischer A, Rudolph D, Treptow J, Popescu R, Franke J, Exarhos AL, Boekelheide ZA, Gerthsen D, Feldmann C, Roesky PW, Rösch ES. SMART RHESINs-Superparamagnetic Magnetite Architecture Made of Phenolic Resin Hollow Spheres Coated with Eu(III) Containing Silica Nanoparticles for Future Quantitative Magnetic Particle Imaging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301997. [PMID: 37203272 DOI: 10.1002/smll.202301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Magnetic particle imaging (MPI) is a powerful and rapidly growing tomographic imaging technique that allows for the non-invasive visualization of superparamagnetic nanoparticles (NPs) in living matter. Despite its potential for a wide range of applications, the intrinsic quantitative nature of MPI has not been fully exploited in biological environments. In this study, a novel NP architecture that overcomes this limitation by maintaining a virtually unchanged effective relaxation (Brownian plus Néel) even when immobilized is presented. This superparamagnetic magnetite architecture made of phenolic resin hollow spheres coated with Eu(III) containing silica nanoparticles (SMART RHESINs) was synthesized and studied. Magnetic particle spectroscopy (MPS) measurements confirm their suitability for potential MPI applications. Photobleaching studies show an unexpected photodynamic due to the fluorescence emission peak of the europium ion in combination with the phenol formaldehyde resin (PFR). Cell metabolic activity and proliferation behavior are not affected. Colocalization experiments reveal the distinct accumulation of SMART RHESINs near the Golgi apparatus. Overall, SMART RHESINs show superparamagnetic behavior and special luminescent properties without acute cytotoxicity, making them suitable for bimodal imaging probes for medical use like cancer diagnosis and treatment. SMART RHESINs have the potential to enable quantitative MPS and MPI measurements both in mobile and immobilized environments.
Collapse
Affiliation(s)
- Julia Feye
- Faculty of Engineering, Baden-Württemberg Cooperative State University Karlsruhe, 76133, Karlsruhe, Germany
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Alena Fischer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - David Rudolph
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jens Treptow
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jochen Franke
- Bruker, BioSpin MRI GmbH, Preclinical Imaging Division, 76275, Ettlingen, Germany
| | | | | | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Esther S Rösch
- Faculty of Engineering, Baden-Württemberg Cooperative State University Karlsruhe, 76133, Karlsruhe, Germany
| |
Collapse
|
16
|
Barrera G, Allia P, Tiberto P. Multifunctional effects in magnetic nanoparticles for precision medicine: combining magnetic particle thermometry and hyperthermia. NANOSCALE ADVANCES 2023; 5:4080-4094. [PMID: 37560417 PMCID: PMC10408592 DOI: 10.1039/d3na00197k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
An effective combination of magnetic hyperthermia and thermometry is shown to be implementable by using magnetic nanoparticles which behave either as a heat sources or as temperature sensors when excited at two different frequencies. Noninteracting magnetite nanoparticles are modeled as double-well systems and their magnetization is obtained by solving rate equations. Two temperature sensitive properties derived from the cyclic magnetization and exhibiting a linear dependence on temperature are studied and compared for monodisperse and polydisperse nanoparticles. The multifunctional effects enabling the combination of magnetic hyperthermia and thermometry are shown to depend on the interplay among nanoparticle size, intrinsic magnetic properties and driving-field frequency. Magnetic hyperthermia and thermometry can be effectively combined by properly tailoring the magnetic properties of nanoparticles and the driving-field frequencies.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| | - Paolo Allia
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| | - Paola Tiberto
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| |
Collapse
|
17
|
Khonina TG, Demin AM, Tishin DS, Germov AY, Uimin MA, Mekhaev AV, Minin AS, Karabanalov MS, Mysik AA, Bogdanova EA, Krasnov VP. Magnetic Nanocomposite Materials Based on Fe 3O 4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization. Int J Mol Sci 2023; 24:12178. [PMID: 37569552 PMCID: PMC10419229 DOI: 10.3390/ijms241512178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Novel magnetic nanocomposite materials based on Fe3O4 nanoparticles coated with iron and silica glycerolates (MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc) were obtained. The synthesized nanocomposites were characterized using TEM, XRD, TGA, VMS, Mössbauer and IR spectroscopy. The amount of iron and silica glycerolates in the nanocomposites was calculated from the Mössbauer spectroscopy, ICP AES and C,H-elemental analysis. Thus, it has been shown that the distribution of Fe in the shell and core for MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc is 27:73 and 32:68, respectively. The synthesized nanocomposites had high specific magnetization values and a high magnetic response to the alternating magnetic field. The hydrolysis of shells based on Fe(III)Glyc and Fe(III)/SiGlyc in aqueous media has been studied. It has been demonstrated that, while the iron glycerolates shell of MNP@Fe(III)Glyc is resistant to hydrolysis, the silica glycerolates shell of MNP@Fe(III)/SiGlyc is rather labile and hydrolyzed by 76.4% in 24 h at 25 °C. The synthesized materials did not show cytotoxicity in in vitro experiments (MTT-assay). The data obtained can be used in the design of materials for controlled-release drug delivery.
Collapse
Affiliation(s)
- Tat’yana G. Khonina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Denis S. Tishin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander Yu. Germov
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Alexander V. Mekhaev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Maxim S. Karabanalov
- Institute of New Materials and Technologies, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Alexey A. Mysik
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Ekaterina A. Bogdanova
- Institute of Solid State Chemistry, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia;
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| |
Collapse
|
18
|
Vogel P, Rückert MA, Greiner C, Günther J, Reichl T, Kampf T, Bley TA, Behr VC, Herz S. iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions. Sci Rep 2023; 13:10472. [PMID: 37380707 DOI: 10.1038/s41598-023-37351-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Minimally invasive endovascular interventions have become an important tool for the treatment of cardiovascular diseases such as ischemic heart disease, peripheral artery disease, and stroke. X-ray fluoroscopy and digital subtraction angiography are used to precisely guide these procedures, but they are associated with radiation exposure for patients and clinical staff. Magnetic Particle Imaging (MPI) is an emerging imaging technology using time-varying magnetic fields combined with magnetic nanoparticle tracers for fast and highly sensitive imaging. In recent years, basic experiments have shown that MPI has great potential for cardiovascular applications. However, commercially available MPI scanners were too large and expensive and had a small field of view (FOV) designed for rodents, which limited further translational research. The first human-sized MPI scanner designed specifically for brain imaging showed promising results but had limitations in gradient strength, acquisition time and portability. Here, we present a portable interventional MPI (iMPI) system dedicated for real-time endovascular interventions free of ionizing radiation. It uses a novel field generator approach with a very large FOV and an application-oriented open design enabling hybrid approaches with conventional X-ray-based angiography. The feasibility of a real-time iMPI-guided percutaneous transluminal angioplasty (PTA) is shown in a realistic dynamic human-sized leg model.
Collapse
Affiliation(s)
- P Vogel
- Department of Experimental Physics 5 (Biophysics), Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - M A Rückert
- Department of Experimental Physics 5 (Biophysics), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - C Greiner
- Department of Experimental Physics 5 (Biophysics), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - J Günther
- Department of Experimental Physics 5 (Biophysics), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - T Reichl
- Department of Experimental Physics 5 (Biophysics), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - T Kampf
- Department of Experimental Physics 5 (Biophysics), Julius-Maximilians-University Würzburg, Würzburg, Germany
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - T A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - V C Behr
- Department of Experimental Physics 5 (Biophysics), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - S Herz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Wiart M, Tavakoli C, Hubert V, Hristovska I, Dumot C, Parola S, Lerouge F, Chauveau F, Canet-Soulas E, Pascual O, Cormode DP, Brun E, Elleaume H. Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies. J Neurosci Methods 2023; 383:109729. [PMID: 36272462 DOI: 10.1016/j.jneumeth.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.
Collapse
Affiliation(s)
- Marlène Wiart
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; CNRS, Lyon, France.
| | - Clément Tavakoli
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Violaine Hubert
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - Chloé Dumot
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Stéphane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Frédéric Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Fabien Chauveau
- CNRS, Lyon, France; Univ. Lyon, Lyon Neurosciences Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - David P Cormode
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Emmanuel Brun
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| |
Collapse
|
20
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
21
|
Sharma A, Cressman E, Attaluri A, Kraitchman DL, Ivkov R. Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2768. [PMID: 36014633 PMCID: PMC9414548 DOI: 10.3390/nano12162768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 05/09/2023]
Abstract
For patients diagnosed with advanced and unresectable hepatocellular carcinoma (HCC), liver transplantation remains the best option to extend life. Challenges with organ supply often preclude liver transplantation, making palliative non-surgical options the default front-line treatments for many patients. Even with imaging guidance, success following treatment remains inconsistent and below expectations, so new approaches are needed. Imaging-guided thermal therapy interventions have emerged as attractive procedures that offer individualized tumor targeting with the potential for the selective targeting of tumor nodules without impairing liver function. Furthermore, imaging-guided thermal therapy with added standard-of-care chemotherapies targeted to the liver tumor can directly reduce the overall dose and limit toxicities commonly seen with systemic administration. Effectiveness of non-ablative thermal therapy (hyperthermia) depends on the achieved thermal dose, defined as time-at-temperature, and leads to molecular dysfunction, cellular disruption, and eventual tissue destruction with vascular collapse. Hyperthermia therapy requires controlled heat transfer to the target either by in situ generation of the energy or its on-target conversion from an external radiative source. Magnetic hyperthermia (MHT) is a nanotechnology-based thermal therapy that exploits energy dissipation (heat) from the forced magnetic hysteresis of a magnetic colloid. MHT with magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs) requires the targeted deposition of MNPs into the tumor, followed by exposure of the region to an AMF. Emerging modalities such as magnetic particle imaging (MPI) offer additional prospects to develop fully integrated (theranostic) systems that are capable of providing diagnostic imaging, treatment planning, therapy execution, and post-treatment follow-up on a single platform. In this review, we focus on recent advances in image-guided MHT applications specific to liver cancer.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Erik Cressman
- Department of Interventional Radiology, Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University, Middletown, PA 17057, USA
| | - Dara L. Kraitchman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
22
|
Yang X, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Front Physiol 2022; 13:898426. [PMID: 35846005 PMCID: PMC9285659 DOI: 10.3389/fphys.2022.898426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic particle imaging (MPI) is a novel emerging noninvasive and radiation-free imaging modality that can quantify superparamagnetic iron oxide nanoparticles tracers. The zero endogenous tissue background signal and short image scanning times ensure high spatial and temporal resolution of MPI. In the context of precision medicine, the advantages of MPI provide a new strategy for the integration of the diagnosis and treatment of diseases. In this review, after a brief explanation of the simplified theory and imaging system, we focus on recent advances in the biomedical application of MPI, including vascular structure and perfusion imaging, cancer imaging, the MPI guidance of magnetic fluid hyperthermia, the visual monitoring of cell and drug treatments, and intraoperative navigation. We finally optimize MPI in terms of the system and tracers, and present future potential biomedical applications of MPI.
Collapse
Affiliation(s)
- Xue Yang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | | | - Yanyan Zhang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shuai Han
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Beijing You’an Hospital, Capital Medical University, Beijing, China,*Correspondence: Hongjun Li,
| |
Collapse
|
23
|
Socoliuc V, Avdeev MV, Kuncser V, Turcu R, Tombácz E, Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward. NANOSCALE 2022; 14:4786-4886. [PMID: 35297919 DOI: 10.1039/d1nr05841j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferrofluids investigated along for about five decades are ultrastable colloidal suspensions of magnetic nanoparticles, which manifest simultaneously fluid and magnetic properties. Their magnetically controllable and tunable feature proved to be from the beginning an extremely fertile ground for a wide range of engineering applications. More recently, biocompatible ferrofluids attracted huge interest and produced a considerable increase of the applicative potential in nanomedicine, biotechnology and environmental protection. This paper offers a brief overview of the most relevant early results and a comprehensive description of recent achievements in ferrofluid synthesis, advanced characterization, as well as the governing equations of ferrohydrodynamics, the most important interfacial phenomena and the flow properties. Finally, it provides an overview of recent advances in tunable and adaptive multifunctional materials derived from ferrofluids and a detailed presentation of the recent progress of applications in the field of sensors and actuators, ferrofluid-driven assembly and manipulation, droplet technology, including droplet generation and control, mechanical actuation, liquid computing and robotics.
Collapse
Affiliation(s)
- V Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
| | - M V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna, Moscow Reg., Russia.
| | - V Kuncser
- National Institute of Materials Physics, Bucharest-Magurele, 077125, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Etelka Tombácz
- University of Szeged, Faculty of Engineering, Department of Food Engineering, Moszkvai krt. 5-7, H-6725 Szeged, Hungary.
- University of Pannonia - Soós Ernő Water Technology Research and Development Center, H-8800 Zrínyi M. str. 18, Nagykanizsa, Hungary
| | - L Vékás
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
- Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| |
Collapse
|