1
|
Heo H, Cho S, Kim Y, Ahn S, Mok JH, Lee H, Lee D. Effective enrichment of glycated proteome using ultrasmall gold nanoclusters functionalized with boronic acid. NANOSCALE 2024; 16:20147-20154. [PMID: 39392422 DOI: 10.1039/d4nr03283g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Glycated proteins play a crucial role in various biological pathways and the pathogenesis of human diseases. A comprehensive analysis of glycated proteins is essential for understanding their biological significance. However, their low abundance and heterogeneity in complex biological samples necessitate an enrichment procedure prior to their detection. Current enrichment strategies primarily rely on the boronic acid (BA) affinity method combined with functional nanoparticles; however, the effectiveness of these approaches is often suboptimal. In this study, a novel nanocluster (NC)-based enrichment material was synthesized for the first time, characterized as Au22SG18 functionalized with 24 BA groups, in which SG is glutathione. The functionalized BA established a reversible covalent bond with the cis-dihydroxy group through pH adjustment, enabling selective enrichment of glycated peptides. After the optimization of the enrichment protocol, we demonstrated highly sensitive and selective enrichment of standard glycopeptides using the NC-based enrichment material, exhibiting excellent reusability. Efficient enrichment was also demonstrated for the glycated proteome from human serum. These results highlight the potential of the atomically well-defined ultrasmall Au NCs as a powerful tool for high-throughput analysis of glycated peptides.
Collapse
Affiliation(s)
- Hongmae Heo
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Seonghyeon Cho
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
- Basil Biotech, 157-20 Sinsong-ro, Incheon 22002, Republic of Korea
| | - Yuhyeon Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Soomin Ahn
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jeong-Hun Mok
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Li H, Jiang J, Lv X, Xu Y, Wang W, Yang D, Dong X. Enzyme-Like Photocatalytic Octahedral Rh/Ag 2MoO 4 Accelerates Diabetic Wound Healing by Photo-Eradication of Pathogen and Relieving Wound Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402723. [PMID: 38895951 DOI: 10.1002/smll.202402723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The harsh environment of diabetic wounds, including bacterial infection and wound hypoxia, is not conducive to wound healing. Herein, an enzyme-like photocatalytic octahedral Rh/Ag2MoO4 is developed to manage diabetic-infected wounds. The introduction of Rh nanoparticles with catalase-like catalytic activity can enhance the photothermal conversion and photocatalytic performance of Rh/Ag2MoO4 by improving near-infrared absorbance and promoting the separation of electron-hole pairs, respectively. Rh/Ag2MoO4 can effectively eliminate pathogens through a combination of photothermal and photocatalytic antibacterial therapy. After bacteria inactivation, Rh/Ag2MoO4 can catalyze hydrogen peroxide to produce oxygen to alleviate the hypoxic environment of diabetic wounds. The in vivo treatment effect demonstrated the excellent therapeutic performance of Rh/Ag2MoO4 on diabetic infected wounds by removing infectious pathogens and relieving oxygen deficiency, confirming the potential application of Rh/Ag2MoO4 in the treatment of diabetic infected wounds.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yan Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
3
|
Hu Y, Ding M, Lv X, Jiang J, Zhang J, Yang D. Stimuli-Responsive NO Delivery Platforms for Bacterial Infection Treatment. Adv Healthc Mater 2024:e2402240. [PMID: 39171769 DOI: 10.1002/adhm.202402240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Indexed: 08/23/2024]
Abstract
The prevalence of drug-resistant bacterial infections has emerged as a grave threat to clinical treatment and global human health, presenting one of the foremost challenges in medical care. Thus, there is an urgent imperative to develop safe and efficacious novel antimicrobial strategies. Nitric oxide (NO) is a recognized endogenous signaling molecule, which plays a pivotal role in numerous pathological processes. Currently, NO has garnered significant interest as an antibacterial agent due to its capability to eradicate bacteria, disrupt biofilms, and facilitate wound healing, all while circumventing the emergence of drug resistance. However, the inherently unstable characteristic of NO therapeutic gas renders the controlled administration of NO gases exceedingly challenging. Hence, in this review, the current challenge of bacterial infection is discussed; then it is briefly elucidated the antibacterial mechanism of NO and comprehensively delineate the recent advancements in stimulus-responsive NO delivery platforms, along with their merits, obstacles, and prospective avenues for clinical application. This review offers guidance for future advancements in NO-medicated anti-infection therapy is hoped.
Collapse
Affiliation(s)
- Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, 210048, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
4
|
Ongan B, Ekici Ö, Sadi G, Aslan E, Pektaş MB. Mangiferin Induces Post-Implant Osteointegration in Male Diabetic Rats. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1224. [PMID: 39202505 PMCID: PMC11356066 DOI: 10.3390/medicina60081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Hyperglycemia is known to undermine the osteointegration process of implants. In this study, the effects of mangiferin (MF) on the post-implant osteointegration process in a type-II diabetes model were investigated molecularly and morphologically. Materials and Methods: Sprague Dawley male rats were divided into three groups: control, diabetes, and diabetes + MF. All animals were implanted in their tibia bones on day 0. At the end of the 3-month experimental period, the animals' blood and the implant area were isolated. Biochemical measurements were performed on blood samples and micro-CT, qRT-PCR, histological, and immunohistochemical measurements were performed on tibia samples. Results: MF significantly improved the increased glucose, triglyceride-VLDL levels, and liver enzymes due to diabetes. By administering MF to diabetic rats, the osteointegration percentage and bone volume increased while porosity decreased. DKK1 and BMP-2 mRNA expressions and OPN, OCN, and OSN mRNA-protein expressions increased by MF administration in diabetic rats. Additionally, while osteoblast and osteoid surface areas increased with MF, osteoclast and eroded surface areas decreased. Conclusions: The findings of our study indicate that MF will be beneficial to the bone-repairing process and osteointegration, which are impaired by type-II diabetes.
Collapse
Affiliation(s)
- Bünyamin Ongan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Türkiye; (B.O.); (Ö.E.)
| | - Ömer Ekici
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Türkiye; (B.O.); (Ö.E.)
| | - Gökhan Sadi
- Department of Biology, K.O. Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Türkiye;
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Türkiye;
| | - Mehmet Bilgehan Pektaş
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Türkiye
| |
Collapse
|
5
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
6
|
Fu TL, Li GR, Li DH, He RY, Liu BH, Xiong R, Xu CZ, Lu ZL, Song CK, Qiu HL, Wang WJ, Zou SS, Yi K, Li N, Geng Q. Mangiferin alleviates diabetic pulmonary fibrosis in mice via inhibiting endothelial-mesenchymal transition through AMPK/FoxO3/SIRT3 axis. Acta Pharmacol Sin 2024; 45:1002-1018. [PMID: 38225395 PMCID: PMC11053064 DOI: 10.1038/s41401-023-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024] Open
Abstract
Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 μM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.
Collapse
Affiliation(s)
- Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dong-Hang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ru-Yuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130061, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cong-Kuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Jie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shi-Shi Zou
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Park C, Cha HJ, Hwangbo H, Bang E, Kim HS, Yun SJ, Moon SK, Kim WJ, Kim GY, Lee SO, Shim JH, Choi YH. Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage. Biomol Ther (Seoul) 2024; 32:329-340. [PMID: 38586992 PMCID: PMC11063488 DOI: 10.4062/biomolther.2023.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 04/09/2024] Open
Abstract
Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49104, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
- Institute of Urotech, Cheongju 28120, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
8
|
Wu S, Xu Y, Guo L, Jiang X. A meta-analysis of the effectiveness of antibacterial bone cement in the treatment of diabetic foot skin wound infections. Int Wound J 2024; 21:e14487. [PMID: 37973553 PMCID: PMC10898415 DOI: 10.1111/iwj.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
A meta-analysis research was implemented to appraise the effect of antibiotic bone cement (ABC) in treating infected diabetic foot wounds (IDFWs). Inclusive literature research till April 2023 was done and 1237 interconnected researches were revised. The 15 selected researches enclosed 895 IDFWs persons were in the utilized researchers' starting point, 449 of them were utilizing ABC, and 446 were in the control group. Odds ratio and 95% confidence intervals were utilized to appraise the consequence of ABC in treating IDFWs by the contentious approach and a fixed or random model. ABC had significantly lower wound healing time (MD, -9.83; 95% CI, -12.45--7.20, p < 0.001), and time to bacterial conversion of the wound (MD, -7.30; 95% CI, -10.38--4.32, p < 0.001) compared to control in IDFWs persons. However, caution needs to be taken when interacting with its values since there was a low sample size of most of the chosen research found for the comparisons in the meta-analysis.
Collapse
Affiliation(s)
- Shuwei Wu
- Department of Dermatology, West China HospitalSichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Yuanyuan Xu
- Department of Dermatology, West China HospitalSichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Linghong Guo
- Department of Dermatology, West China HospitalSichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Xian Jiang
- Department of Dermatology, West China HospitalSichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Abdul-Aziz Ahmed K, Jabbar AAJ, Abdulla MA, Zuhair Alamri Z, Ain Salehen N, Abdel Aziz Ibrahim I, Almaimani G, Bamagous GA, Almaimani RA, Almasmoum HA, Ghaith MM, Farrash WF. Mangiferin (mango) attenuates AOM-induced colorectal cancer in rat's colon by augmentation of apoptotic proteins and antioxidant mechanisms. Sci Rep 2024; 14:813. [PMID: 38191592 PMCID: PMC10774405 DOI: 10.1038/s41598-023-50947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
Mangiferin (MF) is a natural C-glucosylxantone compound that has many substantial curative potentials against numerous illnesses including cancers. The present study's goal is to appraise the chemo preventive possessions of MF on azoxymethane (AOM)-mediated colonic aberrant crypt foci (ACF) in rats. Rats clustered into 5 groups, negative control (A), inoculated subcutaneously with normal saline twice and nourished on 0.5% CMC; groups B-E injected twice with 15 mg/kg azoxymethane followed by ingestion of 0.5% CMC (B, cancer control); intraperitoneal inoculation of 35 mg/kg 5-fluorouracil (C, reference rats) or nourished on 30 mg/kg (D) and 60 mg/kg (E) of MF. Results of gross morphology of colorectal specimens showed significantly lower total colonic ACF incidence in MF-treated rats than that of cancer controls. The colon tissue examination of cancer control rats showed increased ACF availability with bizarrely elongated nuclei, stratified cells, and higher depletion of the submucosal glands compared to MF-treated rats. Mangiferin treatment caused increased regulation of pro-apoptotic (increased Bax) proteins and reduced the β-catenin) proteins expression. Moreover, rats fed on MF had significantly higher glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and lower malondialdehyde (MDA) concentrations in their colonic tissue homogenates. Mangiferin supplementation significantly down-shifted pro-inflammatory cytokines (transforming growth factor-α and interleukine-6) and up-shifted anti-inflammatory cytokines (interleukine-10) based on serum analysis. The chemo-protective mechanistic of MF against AOM-induced ACF, shown by lower ACF values and colon tissue penetration, could be correlated with its positive modulation of apoptotic cascade, antioxidant enzymes, and inflammatory cytokines originating from AOM oxidative stress insults.
Collapse
Affiliation(s)
- Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Zaenah Zuhair Alamri
- Department of Biological Science, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A Almasmoum
- Department of Clinical Laboratory Science, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Clinical Laboratory Science, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Science, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
10
|
Chen Q, Wang S, Bao R, Wang D, Wu Y, Zhang Y, Liu M, Wang T. Combination of mangiferin and T0901317 targeting autophagy promotes cholesterol efflux from macrophage foam cell in atherosclerosis. Chin Med 2024; 19:5. [PMID: 38183139 PMCID: PMC10770909 DOI: 10.1186/s13020-023-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The synthetic liver X receptor ligand (LXR) T0901317 (T0) has been reported to attenuate atherosclerosis (AS) without hyperglyceridemia due to innovative drug combination or nano-sized drug delivery. Given the key roles of mangiferin (MGF) in lipid metabolism and atherogenesis, it is critical to investigate progression of atherosclerotic lesion after combined treatment of MGF and T0. METHODS Atherosclerotic plaque formation and hepatic lipid accumulation were compared in Apoe-/- mice among T0 and/or MGF treatment. The in vitro functions of MGF and T0 were analyzed by Oil-red O staining, cholesterol efflux assay, transmission electron microscopy and western blot analyses with or without acetylated low density lipoprotein. RESULTS The combination therapy are effective regulators for atherosclerotic plaque formation in Apoe-/- mice, due to upregulation of ABCA1 and ABCG1 induced by LXR activation. Subsequently, we identified autophagy promoted by MGF and T0 treatment establishes a positive feedback loop that increases cholesterol efflux, resulted from LXRα activation. Under atherogenic conditions, the autophagy inhibitor CQ abolished the enhancement effect on cholesterol outflow of MGF and T0. Mechanically, MGF and T0 promotes LXRα and mTOR/AMPK signaling cascade in macrophage, and promotes AMPK signaling cascade in hepatocyte, leading to lipid metabolic homeostasis. CONCLUSIONS Altogether, our findings reveal that MGF and T0 engages in AS therapy without side effects by activating AMPK-dependent autophagy to promote macrophage cholesterol efflux, and MGF might serve as a natural compound to assist T0 in AS via targeting autophagy.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Sijian Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Ruixia Bao
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Dan Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yi Zhang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| | - Tao Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
11
|
Han JH, Kim CR, Min CH, Kim MJ, Kim SN, Ji HB, Yoon SB, Lee C, Choy YB. Microneedles coated with composites of phenylboronic acid-containing polymer and carbon nanotubes for glucose measurements in interstitial fluids. Biosens Bioelectron 2023; 238:115571. [PMID: 37562343 DOI: 10.1016/j.bios.2023.115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
A microneedle (MN) sensor coated with a sensing composite material was proposed for measuring glucose concentrations in interstitial fluid (ISF). The sensing composite material was prepared by blending a polymer containing glucose-responsive phenylboronic acid (PBA) moieties (i.e., polystyrene-block-poly(acrylic acid-co-acrylamidophenylboronic acid)) with conductive carbon nanotubes (CNTs). The polymer exhibited reversible swelling behavior in response to glucose concentrations, which influenced the distribution of the embedded CNTs, resulting in sensitive variations in electrical percolation, even when coated onto a confined surface of the MN in the sensor. We varied the ratio of PBA moieties and the loading amount of CNTs in the sensing composite material of the MN sensor and tested them in vitro using an ISF-mimicking gel with physiological glucose concentrations to determine the optimal sensitivity conditions. When tested in animal models with varying blood glucose concentrations, the MN sensor coated with the selected sensing material exhibited a strong correlation between the measured electrical currents and blood glucose concentrations, showing accuracy comparable to that of a glucometer in clinical use.
Collapse
Affiliation(s)
- Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Bin Yoon
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03122, Republic of Korea; ToBIOs Inc, 214 Yulgok-ro, Jongno-gu, Seoul 03122, Republic of Korea.
| |
Collapse
|
12
|
Nigussie G, Siyadatpanah A, Norouzi R, Debebe E, Alemayehu M, Dekebo A. Antioxidant Potential of Ethiopian Medicinal Plants and Their Phytochemicals: A Review of Pharmacological Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1901529. [PMID: 37868204 PMCID: PMC10586904 DOI: 10.1155/2023/1901529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Background Free radicals are very reactive molecules produced during oxidation events that in turn initiate a chain reaction resulting in cellular damage. Many degenerative diseases in humans, including cancer and central nervous system damage, are caused by free radicals. Scientific evidence indicates that active compounds from natural products can protect cells from free radical damage. As a result, the aim of this review is to provide evidence of the use of diverse Ethiopian medicinal plants with antioxidant properties that have been scientifically validated in order to draw attention and foster further investigations in this area. Methods The keywords antioxidant, radical scavenging activities, reactive oxygen species, natural product, Ethiopian Medicinal plants, and 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH) were used to identify relevant data in the major electronic scientific databases, including Google Scholar, ScienceDirect, PubMed, Medline, and Science domain. All articles with descriptions that were accessed until November 2022 were included in the search strategy. Results A total of 54 plant species from 33 families were identified, along with 46 compounds isolated. More scientific studies have been conducted on plant species from the Brassicaceae (19%), Asphodelaceae (12%), and Asteraceae (12%) families. The most used solvent and extraction method for plant samples are methanol (68%) and maceration (88%). The most examined plant parts were the leaves (42%). Plant extracts (56%) as well as isolated compounds (61%) exhibited significant antioxidant potential. The most effective plant extracts from Ethiopian flora were Bersama abyssinica, Solanecio gigas, Echinops kebericho, Verbascum sinaiticum, Apium leptophyllum, and Crinum abyssinicum. The best oxidative phytochemicals were Rutin (7), Flavan-3-ol-7-O-glucoside (8), Myricitrin (13), Myricetin-3-O-arabinopyranoside (14), 7-O-Methylaloeresin A (15), 3-Hydroxyisoagatholactone (17), β-Sitosterol-3-O-β-D-glucoside (22), Microdontin A/B (24), and Caffeic acid (39). Conclusion Many crude extracts and compounds exhibited significant antioxidant activity, making them excellent candidates for the development of novel drugs. However, there is a paucity of research into the mechanisms of action as well as clinical evidence supporting some of these isolated compounds. To fully authenticate and then commercialize, further investigation and systematic analysis of these antioxidant-rich species are required.
Collapse
Affiliation(s)
- Gashaw Nigussie
- Armauer Hansen Research Institute, P.O. Box: 1005, Addis Ababa, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Abolghasem Siyadatpanah
- Department of Medical Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Eyob Debebe
- Armauer Hansen Research Institute, P.O. Box: 1005, Addis Ababa, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | | | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
13
|
Zhang L, Pan MY, Li T, Jin ZM, Liu Z, Liu QY, Liu Y, Ding JY, Jiang H, Hou X. Study on Optimal Extraction and Hypoglycemic Effect of Quercetin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8886503. [PMID: 37674537 PMCID: PMC10480025 DOI: 10.1155/2023/8886503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/06/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Quercetin was extracted from Portulaca oleracea L. through biphasic acid hydrolysis to investigate its potential as a suppressor of dipeptidyl peptidase IV (DPP-IV) and its hypoglycemic effect in type 2 diabetic mice. The extraction procedure was optimized utilizing the response surface method (RSM) in a single-factor experimental setting. An extraction efficiency of 0.675% was achieved using the following optimized parameters: 0.064 mol/L vitriol, 1 : 109.155 solid-liquid ratio, and 21.408 min ultrasonication. Overall, findings indicate the effectiveness of quercetin extraction. A mouse model for type 2 diabetes was established to receive oral treatment with various quercetin concentrations for 8 weeks. Fasting blood glucose (FBG) and the DPP-IV activity in the serum were significantly reduced. The weight and insulin levels of the mice in the quercetin group were raised compared to those in the model group (P < 0.01). Quercetin dose-dependently inhibited postprandial blood glucose excursions, as demonstrated by the oral glucose tolerance test. These results confirmed that quercetin has hypoglycemic effects and considerably improves insulin sensitivity via DPP-IV targeting.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Ming-yue Pan
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Tao Li
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Zhi-min Jin
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Zhu Liu
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Qiu-yue Liu
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Yong Liu
- Scientific Research Division Sharing Platform for Scientific Research Mudanjiang Medical University, Mudanjiang 157011, China
| | - Jia-yuan Ding
- Department of Gastroenterology, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang 157011, China
| | - Huan Jiang
- Jilin University Stomatological Hospital, Jilin 130012, China
| | - Xingchen Hou
- School of Physical Education and Health Sciences, Mudanjiang Normal University, Mudanjiang 157011, China
| |
Collapse
|
14
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Fan X, Jiao G, Pang T, Wen T, He Z, Han J, Zhang F, Chen W. Ameliorative effects of mangiferin derivative TPX on insulin resistance via PI3K/AKT and AMPK signaling pathways in human HepG2 and HL-7702 hepatocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154740. [PMID: 36965373 DOI: 10.1016/j.phymed.2023.154740] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND As a multifaceted metabolic disorder, insulin resistance is accompanied by the preceding onset of type 2 diabetes mellitus, hyperinsulinemia, metabolic dysfunction-associated fatty liver disease (MAFLD) and other metabolic syndromes. Currently, the number of existing drugs and mechanism-based strategies is limited to alleviate insulin resistance in clinics. As a natural polyphenol product derivative, 1,3,6,7-tetrapropylene acyloxy-ketone (TPX) showed a significant hypoglycemic effect in our previous studies. However, whether TPX could improve hepatic insulin sensitivity was unknown. PURPOSE To explore whether insulin sensitivity can be improved by the treatment with TPX and further investigate its mechanism(s) of activity. METHODS To mimic hyperglycemia and insulin resistance in vitro, human HepG2 and HL-7702 hepatocytes were exposed to high glucose. Cellular glucose uptake, glucose consumption, glycogen synthesis, and glucose production were quantified after TPX treatment. The effects of TPX on AMP-activated protein kinase (AMPK) phosphorylation, glucose metabolism, and insulin signal transduction were evaluated by western blotting and network pharmacology analysis. The eGFP-membrane of glucose transporter type 4 (GLUT4) lentivirus transfected cells were constructed to investigate the effects of TPX on GLUT4 mobilization. Reactive oxygen species activity in high glucose-induced insulin-resistant cells was measured by DCFH-DA to show oxidative stress. RESULTS Treatment with TPX improved glycogen synthesis and inhibited gluconeogenesis by regulating GSK3β, G6Pase, and PEPCK. Furthermore, high glucose-induced inhibition of glucose consumption, glucose uptake, and GLUT4-mediated membrane translocation were reverted by TPX. Accordingly, mechanistic investigations revealed that TPX interacted with AMPK protein and activated the phosphorylation of AKT, thereby improving energy homeostasis and further ameliorating hepatic insulin resistance. Network pharmacology analysis and molecular docking further confirmed AMPK as an active target of TPX. Concordantly, the pharmacological activity of TPX was reversed by the AMPK inhibitor compound C when hepatocytes were exposed to high glucose stimulation. CONCLUSION In summary, our study confirmed TPX contributions to insulin resistance improvements by targeting AMPK and PI3K/AKT to restore the insulin signaling pathway, which may be an important potential treatment strategy for insulin-resistance-related diseases, including MAFLD and diabetes.
Collapse
Affiliation(s)
- Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Guangyang Jiao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Pang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Tao Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Zhiqing He
- Department of Cardiology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Jun Han
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China.
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| |
Collapse
|
16
|
Zhong Y, Xu Y, Tan Y, Zhang X, Wang R, Chen D, Wang Z, Zhong X. Lipidomics of the erythrocyte membrane and network pharmacology to explore the mechanism of mangiferin from Anemarrhenae rhizoma in treating type 2 diabetes mellitus rats. J Pharm Biomed Anal 2023; 230:115386. [PMID: 37044004 DOI: 10.1016/j.jpba.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Mangiferin, a natural C-glucoside xanthone, is one of the major bioactive ingredients derived from the dry rhizome of Anemarrhenae rhizome, which has been reported to exhibit various pharmacological effects, including anti-oxidant, anti-inflammatory, anti-fatty liver, anti-metabolic syndrome, and anti-diabetic. However, the precise molecular mechanisms underlying its impact on phospholipid metabolism in the erythrocyte membrane of type 2 diabetes mellitus (T2DM) remain unclear. The present research aimed to evaluate the effects of mangiferin on glucose and lipid metabolism in T2DM model rats and discuss the relationship between lipid metabolites and potential targets involved in the hypoglycemic effects by integrating lipidomics and network pharmacology method. After 8 consecutive weeks of treatment with mangiferin, the T2DM model rats exhibited significant improvements in several biochemical indices and cytokines, including fasting blood glucose (FBG) levels after 12 h of fasting, fasting insulin level (FINS), total cholesterol (T-CHO), triacylglycerols (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), homeostasis model assessment of insulin resistance (HMOA-IR), TNF-α and IL-6. A total of 22 differential lipid metabolites were selected from erythrocyte membrane phospholipids, which were closely associated with the processes of T2DM. These metabolites mainly belonged to glycerophospholipid metabolism and sphingolipid metabolism. Based on network pharmacology analysis, 22 genes were recognized as the potential targets of mangiferin against diabetes. Moreover, molecular docking analysis revealed that the targets of TNF, CASP3, PTGS2, MMP9, RELA, PLA2G2A, PPARA, and NOS3 could be involved in the modulation of inflammatory signaling pathways and arachidonic acid (AA) metabolism to improve IR and hyperglycemia. The combination of immunohistochemical staining and PCR showed that mangiferin could treat T2DM by regulating the expression of PPARγ protein and NF-κB mRNA expression to impact glycerophospholipids (GPs) and AA metabolism. The present study showed that mangiferin might alleviate IR and hyperglycemia of T2DM model rats via multiple targets and multiple pathways to adjust their phospholipid metabolism, which may be the underlying mechanism for mangiferin in the treatment of T2DM.
Collapse
Affiliation(s)
- Yanmei Zhong
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, China
| | - Yingying Xu
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Yongzhen Tan
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Xuanxuan Zhang
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, China
| | - Ruolun Wang
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Danmin Chen
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China.
| | - Xunlong Zhong
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China.
| |
Collapse
|
17
|
Alkholifi FK, Alam A, Foudah AI, Yusufoglu HS. Phospholipid-Based Topical Nano-Hydrogel of Mangiferin: Enhanced Topical Delivery and Improved Dermatokinetics. Gels 2023; 9:gels9030178. [PMID: 36975627 PMCID: PMC10048531 DOI: 10.3390/gels9030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Mangiferin is a herbal drug that has proven anticancer potential. Owing to its lower aqueous solubility and poor oral bioavailability, the full pharmacological potential of this bioactive drug has not fully been explored. In the present study, phospholipid-based microemulsion systems were developed to bypass oral delivery. The globule size of the developed nanocarriers was less than 150 nm and the drug entrapment was >75% with a drug loading ~25%. The developed system offered a controlled release pattern following the Fickian drug release. This enhanced mangiferin's in vitro anticancer activity by four-fold, the cellular uptake was observed to be improved by three-fold on the MCF-7 cells. Ex vivo dermatokinetic studies showed substantial topical bioavailability with a prolonged residence time. The findings provide a simple technique to administer mangiferin via a topical route promising a safer, topically bioavailable and effective treatment option for breast cancer. Such scalable carriers with immense topical delivery potential may provide a better option for present-day topical products of a conventional nature.
Collapse
Affiliation(s)
- Faisal K Alkholifi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Hasan S Yusufoglu
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| |
Collapse
|
18
|
Du J, Liu J, Zhao Z, Dai J, Li K, Lin Y. Nonmetallic N/C Nanozyme Performs Continuous Consumption of Glu for Inhibition of Colorectal Cancer Cells. ACS APPLIED BIO MATERIALS 2023; 6:267-276. [PMID: 36573905 DOI: 10.1021/acsabm.2c00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality. 5-Fluorouracil (5-FU) is the first choice for treatment of CRC, but it cannot avoid the negative effects from local high glucose (Glu) in tumor. Recently, 5-FU therapy has been combined with other treatment modalities for CRC synergistic therapy. Although these combination therapy strategies are more effective in cancer therapy, the toxicity side effects to the liver and cause metabolic acidosis still exist. Herein, we report an emerging amorphous honeycomb-like nitrogen-doped carbon (N/C) nanozyme with nicotinamide adenine dinucleotide (NADH) oxidase and catalase (CAT) activity and cascade it with natural glucose dehydrogenase (GDH) to realize NAD+ regeneration and further hyperglycemia management. In this case, by the coupling of N/C nanozyme with natural GDH to form a N/C-GDH system, the electron transfer route can switch from Glu to a common but limited electron receptor, i.e., NAD+ to ubiquitous large amounts of oxygen, achieving the purpose of sustainable consumption of Glu under NAD+ circulation and regeneration, and importantly escaping the generation of toxic H2O2. The combination of the N/C-GDH system and 5-FU on CRC cells was investigated to assess their synergistic bioeffects. Notably, our results showed that the N/C-GDH system and 5-FU in combination significantly suppress the proliferation of human colon cancer cells (HCT-116) by reducing the sugar level and induced apoptosis compared with either material or drug used alone. This work expands the nanozymes in blood Glu management as well as the promising cancer cell inhibition and provides the possibility of nonmetallic nanomaterials in the realization of effective treatment of cancer.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jia Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jing Dai
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
19
|
Zhao C, Pu Z, Gao J, Liu C, Xing J, Lang W, Chen J, Yuan C, Zhou C. "Multiomics" Analyses Combined with Systems Pharmacology Reveal the Renoprotection of Mangiferin Monosodium Salt in Rats with Diabetic Nephropathy: Focus on Improvements in Renal Ferroptosis, Renal Inflammation, and Podocyte Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:358-381. [PMID: 36519207 DOI: 10.1021/acs.jafc.2c05595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We explored the protection of mangiferin monosodium salt (MGM) on kidney injury in rats with streptozotocin (STZ)-induced diabetic nephropathy (DN) by "multiomics" analysis combined with systems pharmacology, with a specific focus on ferroptosis, inflammation, and podocyte insulin resistance (IR) signaling events in kidneys. MGM treatment afforded renoprotective effects on rats with STZ-induced DN by alleviating systemic IR-induced renal inflammation and podocyte IR. These mechanisms were correlated mainly with the MGM treatment-induced inhibition of the mitogen-activated protein kinase/nuclear factor-kappa B axis and activation of the phosphorylated insulin receptor substrate 1(Tyr608)/phosphorylated phosphatidylinositol 3-kinase/phosphorylated protein kinase B axis in the kidneys of DN rats. MGM had an ameliorative function in renal ferroptosis in rats with STZ-induced DN by upregulating mevalonate-mediated antioxidant capacities (glutathione peroxidase 4 and ferroptosis suppressor protein 1/coenzyme Q10 axis) and weakening acyl-CoA synthetase long-chain family member 4-mediated proferroptotic generation of lipid drivers in kidneys. MGM may be a promising alternative strategy for the treatment of DN.
Collapse
Affiliation(s)
- Chuanping Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding071002, China
| | - Zejiang Pu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding071002, China
| | - Jian Gao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding071002, China
| | - Chang Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding071002, China
| | - Jianzhong Xing
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding071000, China
| | - Wenbo Lang
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding071000, China
| | - Jinting Chen
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang050017, Hebei, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang550014, China
| | - Chengyan Zhou
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding071002, China
| |
Collapse
|
20
|
A GP130-Targeting Small Molecule, LMT-28, Reduces LPS-Induced Bone Resorption around Implants in Diabetic Models by Inhibiting IL-6/GP130/JAK2/STAT3 Signaling. Mediators Inflamm 2023; 2023:9330439. [PMID: 36643585 PMCID: PMC9839413 DOI: 10.1155/2023/9330439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, we examined the effect of the GP130-targeting molecule, LMT-28, on lipopolysaccharide- (LPS-) induced bone resorption around implants in diabetic models using in vitro and rat animal experiments. First, LMT-28 was added to osteoblasts stimulated by LPS and advanced glycation end products (AGEs), and nuclear factor-κB receptor-activating factor ligand (RANKL) and associated pathways were evaluated. Then, LMT-28 was administered by gavage at 0.23 mg/kg once every 5 days for 2 weeks to type 2 diabetic rats with peri-implantitis induced by LPS injection and silk ligature. The expression of IL-6 and RANKL was evaluated by immunohistochemistry, and the bone resorption around implants was evaluated by microcomputed tomography. The results showed that LMT-28 downregulated the expression of RANKL through the JAK2/STAT3 signaling pathway in osteoblasts stimulated by LPS and AGEs, reduced bone resorption around implants with peri-implantitis, decreased the expression of IL-6 and RANKL, and decreased osteoclast activity in type 2 diabetic rats. This study confirmed the ability of LMT-28 to reduce LPS-induced bone resorption around implants in diabetic rats.
Collapse
|
21
|
Zhang T, Wang M, Li Z, Wu X, Liu X. Transcriptome analysis and exploration of genes involved in the biosynthesis of secoiridoids in Gentiana rhodantha. PeerJ 2023; 11:e14968. [PMID: 36915654 PMCID: PMC10007974 DOI: 10.7717/peerj.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Gentiana rhodantha is a medicinally important perennial herb used as traditional Chinese and ethnic medicines. Secoiridoids are one of the major bioactive compounds in G. rhodantha. To better understand the secoiridoid biosynthesis pathway, we generated transcriptome sequences from four organs (root, leaf, stem and flower), followed by the de novo sequence assembly. We verified 8-HGO (8-hydroxygeraniol oxidoreductase), which may encode key enzymes of the secoiridoid biosynthesis by qRT-PCR. The mangiferin, swertiamarin and loganic acid contents in root, stem, leaf, and flower were determined by HPLC. The results showed that there were 47,871 unigenes with an average length of 1,107.38 bp. Among them, 1,422 unigenes were involved in 25 standard secondary metabolism-related pathways in the KEGG database. Furthermore, we found that 1,005 unigenes can be divided into 66 transcription factor (TF) families, with no family members exhibiting significant organ-specificity. There were 54 unigenes in G. rhodantha that encoded 17 key enzymes of the secoiridoid biosynthetic pathway. The qRT-PCR of the 8-HGO and HPLC results showed that the relative expression and the mangiferin, swertiamarin, and loganic acid contents of the aerial parts were higher than in the root. Six types of SSR were identified by SSR analysis of unigenes: mono-nucleoside repeat SSR, di-nucleoside repeat SSR, tri-nucleoside repeat SSR, tetra-nucleoside repeat SSR, penta-nucleoside repeat SSR, and hexa-nucleoside repeat SSR. This report not only enriches the Gentiana transcriptome database but helps further study the function and regulation of active component biosynthesis of G. rhodantha.
Collapse
Affiliation(s)
- Ting Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.,Medicine Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Miaomiao Wang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaoju Li
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xien Wu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoli Liu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.,Medicine Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
22
|
Hu Y, Li H, Lv X, Xu Y, Xie Y, Yuwen L, Song Y, Li S, Shao J, Yang D. Stimuli-responsive therapeutic systems for the treatment of diabetic infected wounds. NANOSCALE 2022; 14:12967-12983. [PMID: 36065785 DOI: 10.1039/d2nr03756d] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic wound infection is a common disease that has significantly reduced people's quality of life. Although tremendous achievements have been made in clinical treatment, the crucial challenge in diabetic infected wound management stems from the detrimental diabetic wound environment and the emergence of bacterial resistance after long-term medication, which result in a reduced efficacy, an increased dosage of medication, and severe side effects. To tackle these issues, it is of great significance to develop an innovative treatment strategy for diabetic wound infection therapy. Currently, the exploitation of nanobiomaterial-based therapeutic systems for diabetic infected wounds is booming, and therapeutic systems with a stimuli-responsive performance have received extensive attention. These therapeutic systems are able to accelerate diabetic infected wound healing due to the on-demand release of therapeutic agents in diabetic infected wounds in response to stimulating factors. Based on the characteristics of diabetic infected wounds, many endogenous stimuli-responsive (e.g., glucose, enzyme, hypoxia, and acidity) therapeutic systems have been employed for the targeted treatment of infected wounds in diabetic patients. Additionally, exogenous stimulants, including light, magnetism, and temperature, are also capable of achieving on-demand drug release and activation. In this review, the characteristics of diabetic infected wounds are presented, and then exogenous/endogenous stimuli therapeutic systems for the treatment of diabetic infected wounds are summarized. Finally, the current challenges and future outlook of stimuli-responsive therapeutic systems are also discussed.
Collapse
Affiliation(s)
- Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Hui Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yan Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yannan Xie
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Lihui Yuwen
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Yingnan Song
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
23
|
Wang T, Zhang J, Zhang H, Bai W, Dong J, Yang Z, Yang P, Gu Z, Li Y, Chen X, Xu Y. Antioxidative myricetin-enriched nanoparticles towards acute liver injury. J Mater Chem B 2022; 10:7875-7883. [PMID: 36093595 DOI: 10.1039/d2tb01505f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury (ALI) could severely destroy the liver function and cause inevitable damage to human health. Studies have demonstrated that excessive reactive oxygen species (ROS) and accompanying inflammatory factors play vital roles in the ALI disease. Herein, we fabricated a kind of nature-inspired myricetin-enriched nanomaterial via Michael addition and Schiff base reaction, which possessed uniform morphology, tunable component ratios, great stabilities, promising free radical scavenging abilities, biocompatibility and protective effects towards cells under oxidative stress. Additionally, the therapeutic effects were demonstrated using an ALI model by down-regulating ROS and inflammatory levels and restoring the liver function. This study could provide a strategy to construct robust and antioxidative nanomaterials using naturally occurring molecules against intractable diseases.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jinhong Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianchun Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
24
|
Zhang YQ, Zhang M, Wang ZL, Qiao X, Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol Adv 2022; 60:108030. [PMID: 36031083 DOI: 10.1016/j.biotechadv.2022.108030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023]
Abstract
C-glycosides represent a large group of natural products with a C-C bond between the aglycone and the sugar moiety. They exhibit great structural diversity, wide natural distribution, and significant biological activities. By the end of 2021, at least 754 C-glycosides and their derivatives have been isolated and characterized from plants. Thus far, 66 functional C-glycosyltransferases (CGTs) have been discovered from plants, and provide green and efficient approaches to synthesize C-glycosides. Herein, advances in plant-derived C-glycosides are comprehensively summarized from aspects of structural diversity and identification, bioactivities, and biotechnological production. New strategies to discover novel C-glycosides and CGTs, as well as the applications of biotechnological methods to produce C-glycosides in the future are also discussed.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
25
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|