1
|
Murphy RD, Cosgrave M, Judge N, Tinajero‐Diaz E, Portale G, Wu B, Heise A. Digital Light Processing of Thermoresponsive Hydrogels from Polyproline-Based Star Polypeptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405578. [PMID: 39268774 PMCID: PMC11618715 DOI: 10.1002/smll.202405578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The first report of star poly(L-proline) crosslinkers is disclosed for digital light processing 3D printing of thermoresponsive hydrogels. Through chain end functionalization of star poly(L-proline)s with methacryloyl groups, access to high-resolution defined 3D hydrogel structures via digital light processing is achieved through photoinitiated free radical polymerization. Changing the poly(L-proline) molecular weight has a direct influence on both thermoresponsiveness and printability, while shape-morphing behavior can be induced thermally.
Collapse
Affiliation(s)
- Robert D. Murphy
- Department of ChemistryRCSI University of Medicine and Health Sciences123 St. Stephen's GreenDublinD02 YN77Ireland
| | - Muireann Cosgrave
- Department of ChemistryRCSI University of Medicine and Health Sciences123 St. Stephen's GreenDublinD02 YN77Ireland
| | - Nicola Judge
- Department of ChemistryRCSI University of Medicine and Health Sciences123 St. Stephen's GreenDublinD02 YN77Ireland
| | - Ernesto Tinajero‐Diaz
- Department of ChemistryRCSI University of Medicine and Health Sciences123 St. Stephen's GreenDublinD02 YN77Ireland
| | - Giuseppe Portale
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Bing Wu
- Magnetic Resonance Research CenterInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Andreas Heise
- Department of ChemistryRCSI University of Medicine and Health Sciences123 St. Stephen's GreenDublinD02 YN77Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM)DublinD02 YN77Ireland
- AMBERThe SFI Advanced Materials and Bioengineering Research CentreDublinD02 YN77Ireland
| |
Collapse
|
2
|
Clarke BR, Tew GN. Programming Mechanical Properties through Encoded Network Topologies. JOURNAL OF POLYMER SCIENCE 2024; 62:3663-3680. [PMID: 39399843 PMCID: PMC11469555 DOI: 10.1002/pol.20230594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 10/15/2024]
Abstract
Polymer networks remain an essential class of soft materials. Despite their use in everyday materials, connecting the molecular structure of the network to its macroscopic properties remains an active area of research. Much current research is enabled by advances in modern polymer chemistry providing an unprecedented level of control over macromolecular structure. At the same time, renewed interest in self-healing, dynamic, and/or adaptable materials continues to drive substantial interest in polymer network design. As part of a special issue focused on research performed in the Polymer Science and Engineering Department at the University of Massachusetts, Amherst, this review highlights connections between macromolecular structure of networks and observed mechanical properties as investigated by the Tew research group.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, United States
| |
Collapse
|
3
|
Yao X, Vishnu JA, Lupfer C, Hoenders D, Skarsetz O, Chen W, Dattler D, Perrot A, Wang WZ, Gao C, Giuseppone N, Schmid F, Walther A. Scalable Approach to Molecular Motor-Polymer Conjugates for Light-Driven Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403514. [PMID: 38613525 DOI: 10.1002/adma.202403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The integration of molecular machines and motors into materials represents a promising avenue for creating dynamic and functional molecular systems, with potential applications in soft robotics or reconfigurable biomaterials. However, the development of truly scalable and controllable approaches for incorporating molecular motors into polymeric matrices has remained a challenge. Here, it is shown that light-driven molecular motors with sensitive photo-isomerizable double bonds can be converted into initiators for Cu-mediated controlled/living radical polymerization enabling the synthesis of star-shaped motor-polymer conjugates. This approach enables scalability, precise control over the molecular structure, block copolymer structures, and high-end group fidelity. Moreover, it is demonstrated that these materials can be crosslinked to form gels with quasi-ideal network topology, exhibiting light-triggered contraction. The influence of arm length and polymer structure is investigated, and the first molecular dynamics simulation framework to gain deeper insights into the contraction processes is developed. Leveraging this scalable methodology, the creation of bilayer soft robotic devices and cargo-lifting artificial muscles is showcased, highlighting the versatility and potential applications of this advanced polymer chemistry approach. It is anticipated that the integrated experimental and simulation framework will accelerate scalable approaches for active polymer materials based on molecular machines, opening up new horizons in materials science and bioscience.
Collapse
Affiliation(s)
- Xuyang Yao
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| | - Jude Ann Vishnu
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Claudius Lupfer
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Hoenders
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Weixiang Chen
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Damien Dattler
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Alexis Perrot
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Wen-Zhi Wang
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Chuan Gao
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| | - Friederike Schmid
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| |
Collapse
|
4
|
Riahinezhad H, Amsden BG. In situ forming, mechanically resilient hydrogels prepared from 4a-[PEG- b-PTMC-Ac] and thiolated chondroitin sulfate for nucleus pulposus cell delivery. J Mater Chem B 2024; 12:1257-1270. [PMID: 38167961 DOI: 10.1039/d3tb02574h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intervertebral disk degeneration (IVDD) is a common condition that causes severe back pain and affects patients' mobility and life quality considerably. IVDD originates within the central region of the disk called the nucleus pulposus (NP). Removing the damaged tissue and replacing it with NP cells (NPCs) delivered within an in situ forming hydrogel is a promising treatment approach. Herein we describe a hydrogel formulation based on 4-arm [poly(ethylene glycol)-b-poly(trimethylene carbonate)-acrylate] (4a[PEG-b-PTMC-Ac]) crosslinked with thiolated chondroitin sulfate via Michael-type reaction for this purpose. A library of hydrogels based on 15 kDa 4a-[PEG] with PTMC blocks of varying molecular weight were prepared and characterized. The instantaneous moduli of the hydrogels were adjustable from 24 to 150 kPa depending on the length of the PTMC block and the polymer volume fraction. The influence of each of these parameters was effectively explained using both scaling or mean field theories of polyelectrolyte hydrogels. The hydrogels were resistant to cyclic compressive loading and degraded gradually over 70 days in vitro. A hydrogel formulation with an instantaneous modulus at the high end of the range of values reported for human NP tissue was chosen to assess the ability of these hydrogels for delivering NPCs. The prepolymer solution was injectable and formed a hydrogel within 30 minutes at 37 °C. Bovine NPCs were encapsulated within this hydrogel with high viability and proliferated throughout a 28 day, hypoxic culture period. The encapsulated NPCs formed clusters and deposited collagen type II but no collagen type I within the hydrogels. Despite an initial gradual decrease, a steady-state modulus was reached at the end of the 28 day culture period that was within the range reported for healthy human NP tissue. This in situ forming hydrogel formulation is a promising approach and with further development could be a viable clinical treatment for IVDD.
Collapse
Affiliation(s)
- Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
5
|
Wang C, He W, Wang F, Yong H, Bo T, Yao D, Zhao Y, Pan C, Cao Q, Zhang S, Li M. Recent progress of non-linear topological structure polymers: synthesis, and gene delivery. J Nanobiotechnology 2024; 22:40. [PMID: 38280987 PMCID: PMC10821314 DOI: 10.1186/s12951-024-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024] Open
Abstract
Currently, many types of non-linear topological structure polymers, such as brush-shaped, star, branched and dendritic structures, have captured much attention in the field of gene delivery and nanomedicine. Compared with linear polymers, non-linear topological structural polymers offer many advantages, including multiple terminal groups, broad and complicated spatial architecture and multi-functionality sites to enhance gene delivery efficiency and targeting capabilities. Nevertheless, the complexity of their synthesis process severely hampers the development and applications of nonlinear topological polymers. This review aims to highlight various synthetic approaches of non-linear topological architecture polymers, including reversible-deactivation radical polymerization (RDRP) including atom-transfer radical polymerization (ATRP), nitroxide-mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, click chemistry reactions and Michael addition, and thoroughly discuss their advantages and disadvantages, as well as analyze their further application potential. Finally, we comprehensively discuss and summarize different non-linear topological structure polymers for genetic materials delivering performance both in vitro and in vivo, which indicated that topological effects and nonlinear topologies play a crucial role in enhancing the transfection performance of polymeric vectors. This review offered a promising guideline for the design and development of novel nonlinear polymers and facilitated the development of a new generation of polymer-based gene vectors.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Wei He
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Feifei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Tao Bo
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dingjin Yao
- Shanghai EditorGene Technology Co., Ltd, Shanghai, 200000, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qiaoyu Cao
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
6
|
Koo MB, Lee JH, Kim GW, Jang H, Kim SY, Kim KT. Structural Homogeneity of Macromolecular Networks by End-to-End Click Chemistry between Discrete Tetrahedral Star Macromolecules. ACS Macro Lett 2024; 13:75-81. [PMID: 38170942 DOI: 10.1021/acsmacrolett.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cross-linking via the end-to-end click chemistry of multiarm star polymers creates polymer networks with minimal inhomogeneities. Although it has been suggested that the mechanical and swelling properties of such networks depend on the absence of defects, the structural details of homogeneous networks created by this method have not yet been studied at the molecular level. Here, we report the synthesis of discrete tetrahedral star macromolecules (dTSMs) composed of polylactide (PLA) arms with discrete molecular weight and sequence. Polymer networks prepared by 4 × 4 cross-linking by Cu-free strain-promoted cyclooctyne-azide click chemistry (SPAAC) reaction exhibited a high degree of swelling (>40 fold by weight) in solvents without sacrificing mechanical robustness (elastic modulus >4 kPa). The structural details of the networks were investigated by network disassembly spectrometry (NDS) using MALDI-TOF mass spectrometry. By implementing a cleavable repeating unit in the discrete PLA arms of dTSM in a sequence-specific manner, the networks could be disassembled into fragments having discrete molecular weights precisely representing their connectivity in the network. This NDS analysis confirmed that end-to-end click reactions of dTSM networks resulted in the formation of a homogeneous network above the critical concentration (∼10 w/v%) of building blocks in the solution.
Collapse
Affiliation(s)
- Mo Beom Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Hak Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Geon Woong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Heejeong Jang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Ahmadi M, Yazdanimoghaddam R, Sharif F. The network structure in transient telechelic polymer networks: extension of the Miller-Macosko model. Phys Chem Chem Phys 2023. [PMID: 38019135 DOI: 10.1039/d3cp04700h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The combination of supramolecular chemistry and polymer science has resulted in the development of transient polymer networks with diverse properties and applications. Specifically, polymer networks based on transient linking of telechelic polymer precursors offer a high degree of control over the network structure, which can reform in response to external stimuli that change the connectivity of transient bonds. Therefore, the combination of the versatile polymer functionality and the adjustable connectivity of transient bonds may result in complex network structures that are not easy to predict or characterize. To address this gap, herein we extend the Miller-Macosko model to forecast the network connectivity of transient telechelic polymer networks made with various polymer functionalities and transient connectivities represented by metal-ligand complexes. This model predicts a universal dependence of the network structure and modulus on preparative parameters including the metal ion identity, characterized by the complexation thermodynamics, and concentration. Moreover, we demonstrate that given the thermodynamic tendency of forming network defects like loops, the model can include such imperfections, enabling rheological properties to be used indirectly for the characterization of defect content. We outline general guidelines to extend the model to more intricate structures, enhancing our understanding of the structure-property relationship in complex transient polymer networks.
Collapse
Affiliation(s)
- Mostafa Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran.
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Rosha Yazdanimoghaddam
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
8
|
Chremos A, Horkay F. Coexistence of Crumpling and Flat Sheet Conformations in Two-Dimensional Polymer Networks: An Understanding of Aggrecan Self-Assembly. PHYSICAL REVIEW LETTERS 2023; 131:138101. [PMID: 37832020 DOI: 10.1103/physrevlett.131.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
We investigate the conformational properties of self-avoiding two-dimensional (2D) ideal polymer networks with tunable mesh sizes as a model of self-assembled structures formed by aggrecan. Polymer networks having few branching points and large enough mesh tend to crumple, resulting in a fractal dimension of d_{f}≈2.7. The flat sheet behavior (d_{f}=2) emerges in 2D polymer networks having more branching points at large length scales; however, it coexists with crumpling conformations at intermediate length scales, a feature found in scattering profiles of aggrecan solutions. Our findings bridge the long-standing gap between theories and simulations of polymer sheets.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Nakagawa S, Aoki D, Asano Y, Yoshie N. Module-Assembled Elastomer Showing Large Strain Stiffening Capability and High Stretchability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301124. [PMID: 36929528 DOI: 10.1002/adma.202301124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/07/2023] [Indexed: 06/09/2023]
Abstract
Elastomers are indispensable materials due to their flexible, stretchable, and elastic nature. However, the polymer network structure constituting an elastomer is generally inhomogeneous, limiting the performance of the material. Here, a highly stretchable elastomer with unprecedented strain-stiffening capability is developed based on a highly homogeneous network structure enabled by a module assembly strategy. The elastomer is synthesized by efficient end-linking of a star-shaped aliphatic polyester precursor with a narrow molecular-weight distribution. The resulting product shows high strength (≈26 MPa) and remarkable stretchability (stretch ratio at break ≈1900%), as well as good fatigue resistance and notch insensitivity. Moreover, it shows extraordinary strain-stiffening capability (>2000-fold increase in the apparent stiffness) that exceeds the performance of any existing soft material. These unique properties are due to strain-induced ordering of the polymer chains in a uniformly stretched network, as revealed by in situ X-ray scattering analyses. The utility of this great strain-stiffening capability is demonstrated by realizing a simple variable stiffness actuator for soft robotics.
Collapse
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Daisuke Aoki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yuki Asano
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
10
|
Michael C, Apostolides DE, Patrickios CS, Sakai T. Dually-dynamic covalent tetraPEG hydrogels end-linked with boronate ester and acylhydrazone groups. SOFT MATTER 2022; 18:5966-5978. [PMID: 35916607 DOI: 10.1039/d2sm00594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Well-defined dually dynamic hydrogels were prepared by end-linking four-armed poly(ethylene glycol) stars (tetraPEG stars) through two different types of dynamic covalent cross-links, boronates and acylhydrazones, leading to robust, self-healable materials. This required the prior end-functionalization of tetraPEG stars, originally bearing four hydroxyl terminal groups, with glucoronate, acylhydrazide and benzaldehyde groups, resulting in three differently end-functional star polymers. A first type of dually dynamic hydrogel resulted from the combination of the first two differently end-functionalized tetraPEG stars, cross-linked by 4-formylphenyl boronic acid, a small molecule bearing both an aldehyde and a boronic acid group, respectively complementary to the acylhydrazide and glucoronate end-groups of the two above-mentioned tetraPEG stars. For comparison, a singly-dynamic hydrogel cross-linked with only acylhydrazone groups was also prepared, as well as a double-like hydrogel combining the constituents of both of the above-mentioned hydrogels. All three types of hydrogels were prepared at three different pH values, 8.5, 10.5 and 12.5, leading to a total number of nine samples. All nine samples were investigated for their self-healing, mechanical, viscoelastic and aqueous swelling/degradation properties. This study sets the basis for the development of well-defined polymeric dynamic covalent hydrogels where their self-healing and stability can be readily tuned.
Collapse
Affiliation(s)
- Charalambos Michael
- Department of Chemistry, University of Cyprus, 1 University Avenue, Aglanjia, 2109 Nicosia, Cyprus.
| | - Demetris E Apostolides
- Department of Chemistry, University of Cyprus, 1 University Avenue, Aglanjia, 2109 Nicosia, Cyprus.
| | - Costas S Patrickios
- Department of Chemistry, University of Cyprus, 1 University Avenue, Aglanjia, 2109 Nicosia, Cyprus.
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
11
|
Bunk C, Löser L, Fribiczer N, Komber H, Jakisch L, Scholz R, Voit B, Seiffert S, Saalwächter K, Lang M, Böhme F. Amphiphilic Model Networks Based on PEG and PCL Tetra-arm Star Polymers with Complementary Reactivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carolin Bunk
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lucas Löser
- Institut für Physik - NMR Group, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Nora Fribiczer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Lothar Jakisch
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Reinhard Scholz
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kay Saalwächter
- Institut für Physik - NMR Group, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Michael Lang
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Frank Böhme
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
12
|
Hiei Y, Ohshima I, Hara M, Seki T, Hoshino T, Takeoka Y. Shrinking rates of polymer gels composed of star-shaped polymers of N-isopropylacrylamide and dimethylacrylamide copolymers: the effect of dimethylacrylamide on the crosslinking network. SOFT MATTER 2022; 18:5204-5217. [PMID: 35766519 DOI: 10.1039/d2sm00402j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermoresponsive polymer gels can be applied as culture beds for cell sheets, drug release agents for drug delivery, and sensing materials. In general, the shrinkage behavior of thermoresponsive polymer gels is complex, and they may require much longer times than swelling to reach thermodynamically stable shrinkage states. This slow volume change during shrinkage is often a drawback in using reversible changes in polymer gel volumes with changing temperature for applications such as those described above, and attempts have been made to improve the shrinkage rates of polymer gels. However, using the conventional method results in a low density of the three-dimensional crosslinked network comprising the polymer gel, which weakens the mechanical properties of the polymer gel. In this study, we investigated the effects of monomer arrangement and composition for star-shaped polymers composed of N-isopropylacrylamide and N,N-dimethylacrylamide on the shrinkage behavior of gels comprising star-shaped polymers with the aim of increasing their shrinkage rates without reducing the network densities of the temperature-responsive polymer gels. Based on selective network decomposition by methanolysis and SAXS measurements, the network structures of the obtained spherical gels were found to be more homogeneous than those of polymer gels obtained by conventional free radical polymerization. These gels exhibited reversible volume changes in water, with low-temperature swelling and high-temperature shrinkage. The rates of volume changes from a high temperature shrunken state to a low temperature swollen one were almost the same for all gels. However, the rates of volume changes from low-temperature swollen states to high-temperature shrunken states varied greatly depending on the compositions and sequences of monomers that made up the polymer networks. We confirmed that the introduction of more than 20% DMA as a block copolymer in the network suppressed phase separation and formation of a skin layer and the water inside the polymer gel drained smoothly to the outside, which resulted in an increase in the shrinkage speed.
Collapse
Affiliation(s)
- Yuka Hiei
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan.
| | - Ikuya Ohshima
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan.
| | - Mitsuo Hara
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan.
| | - Takahiro Seki
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan.
| | | | - Yukikazu Takeoka
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan.
| |
Collapse
|
13
|
Nakagawa S, Yoshie N. Linking microscopic structural changes and macroscopic mechanical responses in a near-ideal bottlebrush elastomer under uniaxial deformation. SOFT MATTER 2022; 18:4527-4535. [PMID: 35670222 DOI: 10.1039/d2sm00492e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bottlebrush (BB) elastomers, in which load-bearing network strands are densely grafted with side chains, are gaining much attention due to their unique mechanical properties. Herein, we used in situ small-angle X-ray scattering coupled with tensile tests to investigate the microscopic structural changes induced in a model BB elastomer with a controlled network structure under uniaxial deformation. The model BB elastomer was synthesized by end-linking a monodisperse star-shaped BB polymer, which ensured a controlled network structure. The BB elastomer exhibited both significant strain stiffening and backbone chain alignment under uniaxial loading, and these properties were not observed in an analogous side chain-free elastomer and gel. It was also found that the side chains in the BB elastomer did not show any sign of chain orientation even when the attached backbone chain was aligned in the stretching direction. These observations highlighted the roles of side chains: they were structurally disordered at the segment level but their steric repulsion made the backbone chain aligned and overstretched.
Collapse
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, the University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan.
| | - Naoko Yoshie
- Institute of Industrial Science, the University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
14
|
Sakai T, Ito N, Hara M, Seki T, Uchiyama M, Kamigaito M, Satoh K, Hoshino T, Takeoka Y. One-pot synthesis of structure-controlled temperature-responsive polymer gels. Polym Chem 2022. [DOI: 10.1039/d2py00554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simultaneous use of metal Lewis acids and photo-radical generators for dithioesters, which are the common dormant species for cationic and radical polymerization, made it possible to convert a cationic species into a radical by photoirradiation.
Collapse
Affiliation(s)
- Tomoki Sakai
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Nagisa Ito
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering School of Material Chemical Technology Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | | | - Yukikazu Takeoka
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| |
Collapse
|