1
|
Akhter S, Bhat MA, Ahmed S, Siddiqui WA. Antibiotic residue contamination in the aquatic environment, sources and associated potential health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:387. [PMID: 39167284 DOI: 10.1007/s10653-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic residues are widely recognized as major pollutants in the aquatic environment on a global scale. As a significant class of pharmaceutically active compounds (PhACs), antibiotics are extensively consumed worldwide. The primary sources of these residues include hospitals, municipal sewage, household disposal, and manures from animal husbandry. These residues are frequently detected in surface and drinking waters, sewage effluents, soils, sediments, and various plant species in countries such as China, Japan, South Korea, Europe, the USA, Canada, and India. Antibiotics are used medicinally in both humans and animals, with a substantial portion excreted into the environment as metabolites in feces and urine. With the advancement of sensitive and quantitative analytical techniques, antibiotics are consistently reported in environmental matrices at concentrations ranging from nanograms per liter (ng/L) to milligrams per liter (mg/L). Agricultural soils, in particular, serve as a significant reservoir for antibiotic residues due to their strong particle adsorption capacities. Plants grown in soils irrigated with PhAC-contaminated water can uptake and accumulate these pharmaceuticals in various tissues, such as roots, leaves, and fruits, raising serious concerns regarding their consumption by humans and animals. There is an increasing need for research to understand the potential human health risks associated with the accumulation of antibiotics in the food chain. The present reviews aims to shed light on the rising environmental pharmaceutical contamination concerns, their sources in the environment, and the potential health risks as well as remediation effort. To discuss the main knowledge gaps and the future research that should be prioritized to achieve the risk assessment. We examined and summarized the available data and information on the antibiotic resistance associated with antibiotic residues in the environment. As studies have indicated that vegetables can absorb, transport, and accumulate antibiotics in edible parts when irrigated with wastewater that is either inadequately treated or untreated. These residues and their metabolites can enter the food chain, with their persistence, bioaccumulation, and toxicity contributing to drug resistance and adverse health effects in living organisms.
Collapse
Affiliation(s)
- Suriyah Akhter
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Aadil Bhat
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Sirajuddin Ahmed
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Weqar Ahmed Siddiqui
- Department of Applied Science and Humanities Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
2
|
Hanamoto S, Minami Y, Hnin SST, Yao D. Localized pollution of veterinary antibiotics in watersheds receiving treated effluents from swine farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166211. [PMID: 37567304 DOI: 10.1016/j.scitotenv.2023.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Swine excrement is discharged into surface waters mainly as effluent in Asian countries. As swine production consumes more antibiotics and less water than humans, a mismatch of the size of swine farms and that of the rivers receiving their effluent could create severe pollution by antibiotics. However, little is known about the occurrence of antibiotics in such rivers. We therefore monitored seven veterinary drugs, six human drugs (including a metabolite), three drugs for both use (including a metabolite), and major water qualities at 30 sites in Japanese watersheds where swine outnumber humans and where their excrement is largely treated on-site by aerobic biological wastewater processes. The compositions of veterinary drugs differed substantially among sites, unlike human drugs, indicating various patterns of use among swine farms. Median concentrations at the 30 sites were <1 ng/L for seven out of the ten drugs used in livestock, whereas maximum concentrations were >1000 ng/L for three and 100-1000 ng/L for four of them, giving median-maximum among the sites of >3 log for two and 2-3 log for six of them. The spatial distribution ranges of concentrations of veterinary drugs were wider than those of human drugs (mostly <1.5 log) and other analytes (mostly <1 log), despite the correlation between those of total veterinary drugs and nitrogen, attributable to fewer swine farms than households, the intensive animal husbandry, and the various drug-use patterns among the farms. The range of maximum concentrations of veterinary drugs in the watersheds was comparable to those reported in other Asian watersheds with less strict management of swine excrement, attributable to their slow decay in conventional wastewater treatment on swine farms. Thus, attention should be paid to hot-spot pollution of antibiotics on large Asian swine farms adjacent to streams with limited dilution capacity.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Yuki Minami
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Su Su Thet Hnin
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Dingwen Yao
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
3
|
Huang Y, You Y, Wu M, Han M, Zhang J, Gao W, Xie D, Chen H, Ou H, Song N, Cheng C, Zhuang W, Li J, Lei Z, Jin B, Zhou Z, Li M. Chemical characterization and source attribution of organic pollutants in industrial wastewaters from a Chinese chemical industrial park. ENVIRONMENTAL RESEARCH 2023; 229:115980. [PMID: 37098386 DOI: 10.1016/j.envres.2023.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/23/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Accelerated urbanization and industrialization have led to an alarming increase in the generation of wastewater with complex chemical contents. Industrial wastewaters are often a primary source of water contamination. The chemical characterization of different industrial wastewater types is an essential task to interpret the chemical fingerprints of wastewater to identify pollution sources and develop efficient water treatment strategies. In this study, we conduct a non-target chemical analysis for the source characterization of different industrial wastewater samples collected from a chemical industrial park (CIP) located in southeast China. The chemical screening identified volatile and semi-volatile organic compounds that included dibutyl phthalate at a maximum concentration of 13.4 μg/L and phthalic anhydride at 35.9 μg/L. Persistent, mobile, and toxic (PMT) substances among the detected organic compounds were identified and prioritized as high-concern contaminants given their impact on drinking water resources. Moreover, a source analysis of the wastewater collected from the wastewater outlet station indicated that the dye production industry contributed the largest quantities of toxic contaminates (62.6%), and this result was consistent with the ordinary least squares and heatmap results. Thus, our study utilized a combined approach of a non-target chemical analysis, a pollution source identification method, and a PMT assessment of different industrial wastewater samples collected from the CIP. The results of the chemical fingerprints of different industrial wastewater types as well as the results of the PMT assessment benefit risk-based wastewater management and source reduction strategies.
Collapse
Affiliation(s)
- Yihua Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Yinong You
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Manman Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Min Han
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Wei Gao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Danping Xie
- South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangzhou, PR China
| | - Hongzhan Chen
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou, PR China
| | - Hui Ou
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Science, MEE, Nanjing, PR China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Wen Zhuang
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Jiaqi Li
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Zhipeng Lei
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China.
| |
Collapse
|
4
|
Solmaz A, Karta M, Depci T, Turna T, Sari ZA. Preparation and characterization of activated carbons from Lemon Pulp for oxytetracycline removal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:797. [PMID: 37264196 DOI: 10.1007/s10661-023-11421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
This study aims to remove oxytetracycline (OTC) that harms the ecosystem, with activated carbon (LPAC) obtained from Lemon Pulp (LP). Characterization and properties of LPAC were analyzed by Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and point of zero charge (pHPZC) analyses. BET surface area, pore volume and pHPZC of LPAC produced by carbonization at 400 °C and activation with KOH at 800 °C were obtained as 1333.01 m2/g, 0.391 cm3/g, and 6.81, respectively. pH, reaction time, initial OTC concentration, and adsorbent amounts were optimized in the adsorption study performed with LPAC with high porosity and micropores. Kinetic evaluation was made with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models and Freundlich, Langmuir, and Temkin equations are used to investigate their isotherms under reaction equilibrium conditions, and also the results were analyzed by statistical method (ANOVA). In pseudo-second-order kinetic and Freundlich isotherm models, where the best results were obtained, R2 values were calculated as 0.999 and 0.995, respectively. Maximum OTC removal efficiency was found as 104.22 mg/g. Overall, this research indicates that LPAC for the treatment of water contaminated with antibiotics is environmentally friendly green material.
Collapse
Affiliation(s)
- Alper Solmaz
- Department of Environmental Protection and Control-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey.
| | - Mesut Karta
- Department of Metallurgy-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey
| | - Tolga Depci
- Department of Petroleum and Natural Gas Engineering, Iskenderun Technical University, Hatay, Turkey
| | - Talip Turna
- Department of Parks and Garden Plants-Diyarbakır Vocational School of Higher Education, Dicle University, Diyarbakır, Turkey
| | - Zeynel Abidin Sari
- Department of Metallurgy-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey
| |
Collapse
|
5
|
Zhang Q, Xu H, Song N, Liu S, Wang Y, Ye F, Ju Y, Jiao S, Shi L. New insight into fate and transport of organic compounds from pollution sources to aquatic environment using non-targeted screening: A wastewater treatment plant case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161031. [PMID: 36549534 DOI: 10.1016/j.scitotenv.2022.161031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
A variety of chemicals discharged into the aquatic environment by the wastewater treatment plant (WWTP), which is a potential source of hazard to the ecological environment and human health. This study established a novel analytical method for all compounds using non-targeted screening to comprehensively explore the fate and transport of organic compounds from WWTP to aquatic environment. 3967 and 3636 features were detected in WWTP samples and river samples, respectively. Multi-level classification was applied to all identified compounds, and results showed that aliphatics were dominant in both abundance and response, accounting for an average of 35.49 % and 74.10 %, respectively. A total of 88 Emerging Contaminants (ECs), including 22 endocrine disrupting chemicals (EDCs), 12 pharmaceuticals and personal care products (PPCPs), 12 pesticides, 10 volatile organic compounds (VOCs), 5 persistent organic pollutants (POPs) and 27 chemicals with other uses, were identified from all compounds, and their traceability analysis was performed. Furthermore, the contribution rate of organic compounds from WWTP effluent to river was calculated to be 33.60 % by the analysis of source-sink relationship. An in-depth and comprehensive exploration of the fate and transport of all organic compounds will help to provide guidelines for the treatment technologies and achieve the traceability of pollutants.
Collapse
Affiliation(s)
- Qian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Sitao Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Yixuan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fei Ye
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Shaojun Jiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| |
Collapse
|
6
|
Chemtai C, Kengara FO, Ngigi AN. Levels and ecological risk of pharmaceuticals in River Sosiani, Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:431. [PMID: 36849593 DOI: 10.1007/s10661-023-11022-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The continued frequent detection of pharmaceuticals in the environment is of major concern due to potential human and ecological risks. This study evaluated 30 antibiotics from 8 classes: sulphonamides (SAs), penicillins (PNs), fluoroquinolones (FQs), macrolides (MLs), lincosamides (LINs), nitroimidazoles (NIs), diaminopyrimidines (DAPs), salfones and 4 anthelmintics benzimidazoles (BZs) in surface water and sediments from River Sosiani in Eldoret, Kenya. Samples were collected during the wet and dry seasons and subjected to solid phase extraction using HLB cartridges. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was used for the simultaneous quantification of the compounds. Chromatographic separation was on a reversed-phase Zorkax Eclipse Plus C18 column eluted in a gradient program and compounds detected by mass spectrometer operated in a positive electrospray ionization (+ ESI) mode. Twenty-eight antibiotics were detected in water where 22 had a 100% detection frequency and the remaining 4 showed detection frequencies ranging from 5 to 47%. Three BZs had a 100% detection frequency. Detectable concentrations of the pharmaceuticals in water ranged between 0.1 and 247 ng L-1 and 0.01 and 974 µg kg-1 in the sediments. The sulfonamide, sulfamethoxazole, had the highest concentration in water (247 ng L-1), whereas penicillin G showed the highest concentrations in sediments (414-974 µg kg-1). Quantified pharmaceuticals decreased in the order SAs > DAPs > FQs > ATs > PNs ≈ MCs ≈ LNs > NIs in water, and followed the order PNs > BZs > FQs > MLs > DAPs ≈ LNs > NIs > SAs in sediments. Risk quotients (RQw) showed that sulfamethoxazole and ciprofloxacin were of high ecological risk in the surface water (RQw values of 1.11 and 3.24, respectively), whereas penicillin V, ampicillin, penicillin G, norfloxacin, enrofloxacin, erythromycin, tylosin, and lincomycin were of medium ecological risk in the aquatic system. The findings show high prevalence of pharmaceuticals in surface water and sediments and are therefore potential ecological hazards. Such information is vital when devising mitigation strategies.
Collapse
Affiliation(s)
- Catherine Chemtai
- School of Sciences and Aerospace Studies, Department of Chemistry & Biochemistry, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Fredrick O Kengara
- School of Pure and Applied Sciences, Bomet University College, P.O. Box 701-20400, Bomet, Kenya
| | - Anastasiah N Ngigi
- Faculty of Science and Technology, Department of Chemistry, Multimedia University of Kenya, P.O. Box, 15653-00503, Nairobi, Kenya.
| |
Collapse
|
7
|
Cheng Z, Dong Q, Yuan Z, Huang X, Liu Y. Fate characteristics, exposure risk, and control strategy of typical antibiotics in Chinese sewerage system: A review. ENVIRONMENT INTERNATIONAL 2022; 167:107396. [PMID: 35944287 DOI: 10.1016/j.envint.2022.107396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In China, the sewerage system plays an essential role in antibiotic removal; however, the fate profiles of antibiotics in sewers are not well understood, and risk identification throughout the sewerage system is inadequate. Based on the extensive detection results for typical groups of antibiotics in the discharge sources, influent and effluent from wastewater treatment plants (WWTPs), and excess sludge, a comprehensive evaluation was conducted to reveal the elimination profiles of the antibiotics, identify the fate characteristics in both sewers and WWTPs, assess the exposure risk levels, and propose a control strategy. The total concentration (based on the median concentrations of the target antibiotics) in aqueous waters was estimated to decrease from 7383.4 ng/L at the discharge source to 886.6 ng/L in the WWTP effluent, among which 69.6% was reduced by sewers and 18.4% was reduced by WWTPs. Antibiotic reduction in sewers was a combined effect of dilution, physiochemical reactions, sorption, biodegradation, and retransformation, and the A2O-MBR + ozonation process in the WWTPs exhibited superior performance in diminishing antibiotics. Notably, accumulated antibiotics in the excess sludge posed a high risk to natural environments (with a risk quotient of approximately 13.0), and the potential risk during combined sewer overflows (CSOs) was undetermined. Thus, enhanced sludge treatment techniques, accurate risk prediction, and proper precautions at CSOs are required to mitigate potential risk. A novel scheme involving an accurate estimation of discharge loads, preliminary treatment of highly concentrated discharge sources, and synergic control in sewers was proposed to eliminate antibiotics at the front end of pipes.
Collapse
Affiliation(s)
- Zhao Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Hu Y, Wei X, Zhu Q, Li L, Liao C, Jiang G. COVID-19 Pandemic Impacts on Humans Taking Antibiotics in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8338-8349. [PMID: 35675530 PMCID: PMC9195570 DOI: 10.1021/acs.est.1c07655] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 05/24/2023]
Abstract
The outbreak of the novel coronavirus 2019 (COVID-19) pandemic has resulted in the increased human consumption of medicines. Antibiotics are of great concern due to their adverse effects, such as increased bacterial resistance and dysbiosis of gut microbiota. Nevertheless, very little is known about the changes in self-medication with antibiotics during the COVID-19 pandemic and the resultant potential health risks. Herein, we examined the concentration profiles of some commonly used antibiotics in human urine collected from several geographical regions in China between 2020 and 2021. Antibiotics were found in 99.2% of the urine samples at concentrations ranging from not detected (nd) to 357 000 (median: 10.2) ng/mL. During the COVID-19 pandemic, concentrations of urinary antibiotics were remarkably higher than those found either before the pandemic or in the smooth period of the pandemic. Moreover, elevated levels of antibiotics were determined in urine samples from the regions with more confirmed cases. The exposure assessment showed that hazard index values >1 were determined in 35.2% of people. These findings show that human exposure to antibiotics increased during the COVID-19 pandemic, and further research is imperative to identify the public health risks.
Collapse
Affiliation(s)
- Yu Hu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianping Wei
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Qingqing Zhu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxiangyu Li
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Chunyang Liao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Chandra S, Jagdale P, Medha I, Tiwari AK, Bartoli M, Nino AD, Olivito F. Biochar-Supported TiO 2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water-A Review. TOXICS 2021; 9:313. [PMID: 34822704 PMCID: PMC8617903 DOI: 10.3390/toxics9110313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
Sulfamethoxazole (SMX) is a frequently used antibiotic for the treatment of urinary tract, respiratory, and intestinal infections and as a supplement in livestock or fishery farming to boost production. The release of SMX into the environment can lead to the development of antibiotic resistance among the microbial community, which can lead to frequent clinical infections. SMX removal from water is usually done through advanced treatment processes, such as adsorption, photocatalytic oxidation, and biodegradation. Among them, the advanced oxidation process using TiO2 and its composites is being widely used. TiO2 is a widely used photocatalyst; however, it has certain limitations, such as low visible light response and quick recombination of e-/h+ pairs. Integrating the biochar with TiO2 nanoparticles can overcome such limitations. The biochar-supported TiO2 composites showed a significant increase in the photocatalytic activities in the UV-visible range, which resulted in a substantial increase in the degradation of SMX in water. The present review has critically reviewed the methods of biochar TiO2 composite synthesis, the effect of biochar integration with the TiO2 on its physicochemical properties, and the chemical pathways through which the biochar/TiO2 composite degrades the SMX in water or aqueous solution. The degradation of SMX using photocatalysis can be considered a useful model, and the research studies presented in this review will allow extending this area of research on other types of similar pharmaceuticals or pollutants in general in the future.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Civil Engineering, Vignan’s Institute of Information Technology (A), Duvvada, Visakhapatnam 530049, India;
| | - Pravin Jagdale
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy; (P.J.); (M.B.)
| | - Isha Medha
- Department of Civil Engineering, Vignan’s Institute of Information Technology (A), Duvvada, Visakhapatnam 530049, India;
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashwani Kumar Tiwari
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Mattia Bartoli
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy; (P.J.); (M.B.)
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Rende, Italy;
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Rende, Italy;
| |
Collapse
|