1
|
Sbai A, Guthmuller J. Singlet and triplet excited states of a series of BODIPY dyes as calculated by TDDFT and DLPNO-STEOM-CCSD methods. Phys Chem Chem Phys 2024; 26:25925-25935. [PMID: 39364603 DOI: 10.1039/d4cp02920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The singlet and triplet excited states of three iodine substituted BODIPY dyes differing by their substituents (-phenyl, -phenylOH and -phenylNO2) at the meso position of the BODIPY core (BOD) are investigated using (TDA)-TDDFT and DLPNO-STEOM-CCSD calculations. An assessment of hybrid (B3LYP and MN15) and double hybrid (SOS-PBE-QIDH and SOS-ωPBEPP86) exchange-correlation functionals is performed with respect to the DLPNO-STEOM-CCSD method for four types of transitions, namely , , and . It is found that MN15 and SOS-PBE-QIDH provide a balanced description of the excited state energies when compared to the DLPNO-STEOM-CCSD results. An investigation of the effects of the solvent (dichloromethane), of the substituent and of geometrical relaxation in the excited states is then performed. In particular, the study discusses the possibility of populating charge transfer states ( and ) following photoexcitation in the first and second absorption bands in these systems.
Collapse
Affiliation(s)
- Aoussaj Sbai
- Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland.
| | - Julien Guthmuller
- Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland.
| |
Collapse
|
2
|
Lledos M, Calatayud DG, Cortezon-Tamarit F, Ge H, Pourzand C, Botchway SW, Sodupe M, Lledós A, Eggleston IM, Pascu SI. Tripodal BODIPY-Tagged and Functional Molecular Probes: Synthesis, Computational Investigations and Explorations by Multiphoton Fluorescence Lifetime Imaging Microscopy. Chemistry 2024; 30:e202400858. [PMID: 38887133 DOI: 10.1002/chem.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
A range of novel BODIPY derivatives with a tripodal aromatic core was synthesized and characterized spectroscopically. These new fluorophores showed promising features as probes for in vitro assays in live cells and offer strategic routes for further functionalization towards hybrid nanomaterials. Incorporation of biotin tags facilitated proof-of-concept access to targeted bioconjugates as molecular probes. Computational explorations using DFT and TD-DFT calculations identified the most stable tripodal linker conformations and predicted their absorption and emission behavior. The uptake and speciation of these molecules in living prostate cancer cells was imaged by single- and two-photon excitation techniques coupled with two-photon fluorescence lifetime imaging (2P FLIM).
Collapse
Affiliation(s)
- Marina Lledos
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
| | - David G Calatayud
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Francisco Tomas y Valiente 7, 28049, Madrid, Spain
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| | - Stanley W Botchway
- STFC Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Science and Innovation Campus, Harwell, Oxfordshire, OX11 0QX, UK
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Ian M Eggleston
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| |
Collapse
|
3
|
Herrera-Ochoa D, Llano I, Ripoll C, Cybulski P, Kreuzer M, Rocha S, García-Frutos EM, Bravo I, Garzón-Ruiz A. Protein aggregation monitoring in cells under oxidative stress: a novel fluorescent probe based on a 7-azaindole-BODIPY derivative. J Mater Chem B 2024; 12:7577-7590. [PMID: 38984432 DOI: 10.1039/d4tb00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The development of new fluorescent probes as molecular sensors is a critical step for the understanding of molecular mechanisms. BODIPY-based probes offer versatility due to their high fluorescence quantum yields, photostability, and tunable absorption/emission wavelengths. Here, we report the synthesis and evaluation of a novel 7-azaindole-BODIPY derivative to probe hydrophobic proteins as well as protein misfolding and aggregation. In organic solvents, this compound shows two efficiently interconverting emissive excited states. In aqueous environments, it forms molecular aggregates with unique photophysical properties. The complex photophysics of the 7-azaindole-BODIPY derivative was explored for sensing applications. In the presence of albumin, the compound is stabilized in hydrophobic protein regions, significantly increasing its fluorescence emission intensity and lifetime. Similar effects occur in the presence of protein aggregates but not with other macromolecules like pepsin, DNA, Ficoll 40, and coconut oil. Fluorescence lifetime imaging microscopy (FLIM) and two-photon fluorescence microscopy on breast (MCF-7) and lung (A549) cancer cells incubated with this compound display longer fluorescence lifetimes and higher emission intensity under oxidative stress. Synchrotron FTIR micro spectroscopy confirmed that the photophysical changes observed were due to protein misfolding and aggregation caused by the oxidative stress. These findings demonstrate that this compound can serve as a fluorescent probe to monitor protein misfolding and aggregation triggered by oxidative stress.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Iván Llano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
| | - Consuelo Ripoll
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Pierre Cybulski
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven, 3001, Belgium.
| | - Martin Kreuzer
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Cerdanyola Del Vallès, Barcelona, Spain
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven, 3001, Belgium.
| | - Eva M García-Frutos
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| |
Collapse
|
4
|
Elayan IA, Rib L, A Mendes R, Brown A. Beyond Explored Functionals: A Computational Journey of Two-Photon Absorption. J Chem Theory Comput 2024; 20:3879-3893. [PMID: 38648613 DOI: 10.1021/acs.jctc.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present a thorough investigation into the efficacy of 19 density functional theory (DFT) functionals, relative to RI-CC2 results, for computing two-photon absorption (2PA) cross sections (σ2PA) and key dipole moments (|μ00|, |μ11|, |Δμ|, |μ01|) for a series of coumarin dyes in the gas-phase. The functionals include different categories, including local density approximation (LDA), generalized gradient approximation (GGA), hybrid-GGA (H-GGA), range-separated hybrid-GGA (RSH-GGA), meta-GGA (M-GGA), and hybrid M-GGA (HM-GGA), with 14 of them being subjected to analysis for the first time with respect to predicting σ2PA values. Analysis reveals that functionals integrating both short-range (SR) and long-range (LR) corrections, particularly those within the RSH-GGA and HM-GGA classes, outperform the others. Furthermore, the range-separation approach was found more impactful compared to the varying percentages of Hartree-Fock exchange (HF Ex) within different functionals. The functionals traditionally recommended for 2PA do not appear among the top 9 in our study, which is particularly interesting, as these top-performing functionals have not been previously investigated in this context. This list is dominated by M11, QTP variants, ωB97X, ωB97X-V, and M06-2X, surpassing the performance of other functionals, including the commonly used CAM-B3LYP.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Laura Rib
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rodrigo A Mendes
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
5
|
Sandoval JS, McCamant DW. The Best Models of Bodipy's Electronic Excited State: Comparing Predictions from Various DFT Functionals with Measurements from Femtosecond Stimulated Raman Spectroscopy. J Phys Chem A 2023; 127:8238-8251. [PMID: 37751471 PMCID: PMC10561280 DOI: 10.1021/acs.jpca.3c05040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Density functional theory (DFT) and time-dependent DFT (TD-DFT) are pivotal approaches for modeling electronically excited states of molecules. However, choosing a DFT exchange-correlation functional (XCF) among the myriad of alternatives is an overwhelming task that can affect the interpretation of results and lead to erroneous conclusions. The performance of these XCFs to describe the excited-state properties is often addressed by comparing them with high-level wave function methods or experimentally available vertical excitation energies; however, this is a limited analysis that relies on evaluation of a single point in the excited-state potential energy surface (PES). Different strategies have been proposed but are limited by the difficulty of experimentally accessing the electronic excited-state properties. In this work, we have tested the performance of 12 different XCFs and TD-DFT to describe the excited-state potential energy surface of Bodipy (2,6-diethyl-1,3,5,7-tetramethyl-8-phenyldipyrromethene difluoroborate). We compare those results with resonance Raman spectra collected by using femtosecond stimulated Raman spectroscopy (FSRS). By simultaneously fitting the absorption spectrum, fluorescence spectrum, and all of the resonance Raman excitation profiles within the independent mode displaced harmonic oscillator (IMDHO) formalism, we can describe the PES at the Franck-Condon (FC) region and determine the solvent and intramolecular reorganization energy after relaxation. This allows a direct comparison of the TD-DFT output with experimental observables. Our analysis reveals that using vertical absorption energies might not be a good criterion to determine the best XCF for a given molecular system and that FSRS opens up a new way to benchmark the excited-state performance of XCFs of fluorescent dyes.
Collapse
Affiliation(s)
- Juan S. Sandoval
- Department of Chemistry, University
of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - David W. McCamant
- Department of Chemistry, University
of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
6
|
Helal W. Double Hybrid Density Functionals for the Electronic Excitation Energies of Linear Cyanines. J Phys Chem A 2023; 127:131-141. [PMID: 36537875 DOI: 10.1021/acs.jpca.2c07192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lowest bright electronic excitations of seven model linear cyanines (CN3-CN15) using 28 double-hybrid (DH) density functionals are benchmarked against accurate and recent CC3 results. Some of these DH functionals are recently designed specifically for excited electronic state calculations. In addition, CIS, CIS(D), SCS-CIS(D), and SOS-CIS(D) were also tested. Four different basis sets were used for the vertical electronic excitation calculations: cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis. Augmented basis sets (e.g. aug-cc-pVDZ and aug-cc-pVTZ) are found to be required for accurate and consistent results using DH functionals. The DH functionals tested in this work are classified into four main groups: global double-hybrids (GDH), range-separated double-hybrids (RSDH), spin-component and spin-opposite scaling global double-hybrids (SCS/SOS-GDH), and spin-component and spin-opposite scaling range-separated double-hybrids (SCS/SOS-RSDH). Within these groups, the SCS/SOS-RSDH group of functionals is found to provide the lowest mean absolute error (MAE) values (in the range 0.020-0.148 eV) in comparison with the GDH group (0.195-0.441 eV), the RSDH group (0.186-0.511 eV), and the SCS/SOS-GDH group (0.079-0.461 eV). Of all the DH functionals and ab initio methods investigated in the present contribution, the following functionals are found to be the most accurate and consistent: SCS-ωB2GPPLYP (MAE = 0.036 eV), SOS-ωB2GPPLYP (MAE = 0.020 eV), SOS-ωB88PP86 (MAE = 0.035 eV), and SOS-ωPBEPP86 (MAE = 0.037 eV). In general, the ab initio methods tested here show mediocre performance as compared to many DH functionals.
Collapse
Affiliation(s)
- Wissam Helal
- Department of Chemistry, The University of Jordan, Amman11942, Jordan
| |
Collapse
|
7
|
Antina LA, Bumagina NA, Kalinkina VA, Lukanov MM, Ksenofontov AA, Kazak AV, Berezin MB, Antina EV. Aggregation behavior and spectroscopic properties of red-emitting distyryl-BODIPY in aqueous solution, Langmuir-Schaefer films and Pluoronic® F127 micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121366. [PMID: 35588603 DOI: 10.1016/j.saa.2022.121366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Red-emitting distyryl substituted BODIPY dyes are among the most promising luminophors for bioimaging and optics applications. However, the practical application of BODIPYs is limited due to their high hydrophobicity and tendency to aggregate in aqueous organic solutions and solid phase. In this article, we propose an elegant solution to this problem. To this end, we carried out the detailed experimental and quantum-chemical study of the structural and spectral features of BF2-ms-phenyl-5,5'-bis(4-dimethylaminostyryl)-3,3'-dimethyl-2,2'-dipyrromethene (distyryl-BDP). The particular attention was paid to analysis of high sensitivity of the distyryl-BDP spectral characteristics to the solvent properties, and also the aggregation behavior features both in water-organic media and in mono- and multilayer Langmuir-Schaefer films. We selected the best conditions to obtain the hydrophilic micellar structures of distyryl-BDP with Pluronic® F127 having a high efficiency of dye solubilization. This method increasing the solubility improves the distyryl-BDP transport efficiency in physiological aqueous media. The aqueous solutions of distyryl-BDP-Pl micelles show the intense fluorescence in the phototherapy window region (λfl = 739 nm).
Collapse
Affiliation(s)
- Lubov A Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia.
| | - Natalia A Bumagina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Valeria A Kalinkina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7 Sheremetievskiy Av., 153000 Ivanovo, Russia
| | - Michail M Lukanov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7 Sheremetievskiy Av., 153000 Ivanovo, Russia
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Alexander V Kazak
- Nanomaterials Research Institute, Ivanovo State University, Ermak Str., 39, 153025 Ivanovo, Russia; Moscow Region State University, Very Voloshinoy St., 24, 141014, Mytishchi, Russia
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| |
Collapse
|
8
|
Barretta P, Ponte F, Scoditti S, Vigna V, Mazzone G, Sicilia E. Computational Analysis of the Behavior of BODIPY Decorated Monofunctional Platinum(II) Complexes in the Dark and under Light Irradiation. J Phys Chem A 2022; 126:7159-7167. [PMID: 36194386 PMCID: PMC9574924 DOI: 10.1021/acs.jpca.2c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dual-action drugs are occupying an important place in the scientific landscape of cancer research owing to the possibility to combine different therapeutic strategies into a single molecule. In the present work, the behavior of two BODIPY-appended monofunctional Pt(II) complexes, one mononuclear and one binuclear, recently synthesized and tested for their cytotoxicity have been explored both in the dark and under light irradiation. Quantum mechanical DFT calculations have been used to carry out the exploration of the key steps, aquation and guanine attack, of the mechanism of action of Pt(II) complexes in the dark. Due to the presence of the BODIPY chromophore and the potential capability of the two investigated complexes to work as photosensitizers in PDT, time dependent DFT has been employed to calculate their photophysical properties and to inspect how the sensitizing properties of BODIPY are affected by the presence of the platinum "heavy atom". Furthermore, also the eventual influence on of the photophysical properties due to the displacement of chlorido ligands by water and of water by guanine has been taken into consideration.
Collapse
Affiliation(s)
- Pierraffaele Barretta
- Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Stefano Scoditti
- Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Vincenzo Vigna
- Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
9
|
Louis H, Charlie DE, Amodu IO, Benjamin I, Gber TE, Agwamba EC, Adeyinka AS. Probing the Reactions of Thiourea (CH 4N 2S) with Metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) Anchored on Fullerene Surfaces (C 59X). ACS OMEGA 2022; 7:35118-35135. [PMID: 36211036 PMCID: PMC9535727 DOI: 10.1021/acsomega.2c04044] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 05/21/2023]
Abstract
Upon various investigations conducted in search for a nanosensor material with the best sensing performance, the need to explore these materials cannot be overemphasized as materials associated with best sensing attributes are of vast interest to researchers. Hence, there is a need to investigate the adsorption performances of various metal-doped fullerene surfaces: C59Au, C59Hf, C59Hg, C59Ir, C59Os, C59Pt, C59Re, and C59W on thiourea [SC(NH2)2] molecule using first-principles density functional theory computation. Comparative adsorption study has been carried out on various adsorption models of four functionals, M06-2X, M062X-D3, PBE0-D3, and ωB97XD, and two double-hybrid (DH) functionals, DSDPBEP86 and PBE0DH, as reference at Gen/def2svp/LanL2DZ. The visual study of weak interactions such as quantum theory of atoms in molecule analysis and noncovalent interaction analysis has been invoked to ascertain these results, and hence we arrived at a conclusive scientific report. In all cases, the weak adsorption observed is best described as physisorption phenomena, and CH4N2S@C59Pt complex exhibits better sensing attributes than its studied counterparts in the interactions between thiourea molecule and transition metal-doped fullerene surfaces. Also, in the comparative adsorption study, DH density functionals show better performance in estimating the adsorption energies due to their reduced mean absolute deviation (MAD) and root-mean-square deviation (RMSD) values of (MAD = 1.0305, RMSD = 1.6277) and (MAD = 0.9965, RMSD = 1.6101) in DSDPBEP86 and PBE0DH, respectively.
Collapse
Affiliation(s)
- Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Destiny E. Charlie
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Ismail O. Amodu
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Mathematics, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Terkumbur E. Gber
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Ernest C. Agwamba
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
10
|
Alkhatib Q, Helal W, Afaneh AT. Assessment of time-dependent density functionals for the electronic excitation energies of organic dyes used in DSSCs. NEW J CHEM 2022. [DOI: 10.1039/d2nj00210h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The absorption spectra modeled as the vertical excitation energies of 13 dye sensitizers used in dye-sensitized solar cells (DSSCs) are benchmarked by means of time-dependent (TD)-DFT, using 36 functionals from different DFT rungs.
Collapse
Affiliation(s)
- Qabas Alkhatib
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Wissam Helal
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Akef T. Afaneh
- Department of Chemistry, Al-Balqa Applied University, 19117 Al-Salt, Jordan
| |
Collapse
|