1
|
Wang J, Luo H, Qin R, Wang M, Wan X, Fang M, Zhang O, Gou Q, Su Q, Shen C, You Z, Liu L, Hsieh CY, Hou T, Kang Y. 3DSMILES-GPT: 3D molecular pocket-based generation with token-only large language model. Chem Sci 2025; 16:637-648. [PMID: 39664804 PMCID: PMC11629531 DOI: 10.1039/d4sc06864e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
The generation of three-dimensional (3D) molecules based on target structures represents a cutting-edge challenge in drug discovery. Many existing approaches often produce molecules with invalid configurations, unphysical conformations, suboptimal drug-like qualities, limited synthesizability, and require extensive generation times. To address these challenges, we present 3DSMILES-GPT, a fully language-model-driven framework for 3D molecular generation that utilizes tokens exclusively. We treat both two-dimensional (2D) and 3D molecular representations as linguistic expressions, combining them through full-dimensional representations and pre-training the model on a vast dataset encompassing tens of millions of drug-like molecules. This token-only approach enables the model to comprehensively understand the 2D and 3D characteristics of large-scale molecules. Subsequently, we fine-tune the model using pair-wise structural data of protein pockets and molecules, followed by reinforcement learning to further optimize the biophysical and chemical properties of the generated molecules. Experimental results demonstrate that 3DSMILES-GPT generates molecules that comprehensively outperform existing methods in terms of binding affinity, drug-likeness (QED), and synthetic accessibility score (SAS). Notably, it achieves a 33% enhancement in the quantitative estimation of QED, meanwhile the binding affinity estimated by Vina docking maintaining its state-of-the-art performance. The generation speed is remarkably fast, with the average time approximately 0.45 seconds per generation, representing a threefold increase over the fastest existing methods. This innovative 3DSMILES-GPT approach has the potential to positively impact the generation of 3D molecules in drug discovery.
Collapse
Affiliation(s)
- Jike Wang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Hao Luo
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Rui Qin
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Mingyang Wang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Xiaozhe Wan
- Advanced Computing and Storage Laboratory, Central Research Institute, 2012 Laboratories, Huawei Technologies Co., Ltd Nanjing 210000 Jiangsu China
| | - Meijing Fang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Odin Zhang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Qiaolin Gou
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Qun Su
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Ziyi You
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Liwei Liu
- Advanced Computing and Storage Laboratory, Central Research Institute, 2012 Laboratories, Huawei Technologies Co., Ltd Nanjing 210000 Jiangsu China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| |
Collapse
|
2
|
Charles S, Mahapatra RK. Artificial intelligence based de-novo design for novel Plasmodium falciparum plasmepsin (PM) X inhibitors. J Biomol Struct Dyn 2025; 43:92-107. [PMID: 37943000 DOI: 10.1080/07391102.2023.2279700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Plasmodium falciparum is the leading cause of malaria with 627,000 deaths annually. Invasion and egress are critical stages for successful infection of the host yet depend on proteins that are extensively pre-processed by various maturases. Plasmepsins (Plasmodium pepsins, abbreviated PM, I-X) are pepsin-like aspartic proteases that are involved in almost all stages of the life cycle. The goal of this study was to use de-novo generative modeling techniques to create novel potential PfPMX inhibitors. A total of 4325 compounds were virtually screened by structural-based docking methods. The obtained hits were utilized to refine a structure-based Ligand Neural Network (L-Net) generative model to generate related compounds. The obtained optimal L-Net Compounds with smina scores ≤ -5.00KCalmol-1 and QED ≥ 0.35 were further taken for amplification utilizing Ligand Based Transformer modeling using Deep generative learning (Drug Explorer/DrugEx). The resulting hits were then subjected to XP Glide conventional Molecular docking and QikProp ADMET screening; molecules with XP Docking score ≤ -7.00KCalmol-1 were retained. Based on their Glide ligand efficiency, originality, and uniqueness, 30 compounds were chosen for binding affinity and MM_GBSA energy determination. Following Induced Fit docking (IFD), 7 compounds were taken for 50 ns MD simulations and FEP/MD calculations. This study reported novel potential PfPMX inhibitors with acceptable ADMET profiles and reasonable synthetic accessibility scores, as well as sufficient docking scores against other PMs were generated. The PfPMX inhibitors reported in this article are promising antimalarials for the next stages of drug development, and the first of their kind to be investigated thoroughly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ssemuyiga Charles
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
3
|
Wang J, Mao J, Li C, Xiang H, Wang X, Wang S, Wang Z, Chen Y, Li Y, No KT, Song T, Zeng X. Interface-aware molecular generative framework for protein-protein interaction modulators. J Cheminform 2024; 16:142. [PMID: 39707457 DOI: 10.1186/s13321-024-00930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Protein-protein interactions (PPIs) play a crucial role in numerous biochemical and biological processes. Although several structure-based molecular generative models have been developed, PPI interfaces and compounds targeting PPIs exhibit distinct physicochemical properties compared to traditional binding pockets and small-molecule drugs. As a result, generating compounds that effectively target PPIs, particularly by considering PPI complexes or interface hotspot residues, remains a significant challenge. In this work, we constructed a comprehensive dataset of PPI interfaces with active and inactive compound pairs. Based on this, we propose a novel molecular generative framework tailored to PPI interfaces, named GENiPPI. Our evaluation demonstrates that GENiPPI captures the implicit relationships between the PPI interfaces and the active molecules, and can generate novel compounds that target these interfaces. Moreover, GENiPPI can generate structurally diverse novel compounds with limited PPI interface modulators. To the best of our knowledge, this is the first exploration of a structure-based molecular generative model focused on PPI interfaces, which could facilitate the design of PPI modulators. The PPI interface-based molecular generative model enriches the existing landscape of structure-based (pocket/interface) molecular generative model. SCIENTIFIC CONTRIBUTION: This study introduces GENiPPI, a protein-protein interaction (PPI) interface-aware molecular generative framework. The framework first employs Graph Attention Networks to capture atomic-level interaction features at the protein complex interface. Subsequently, Convolutional Neural Networks extract compound representations in voxel and electron density spaces. These features are integrated into a Conditional Wasserstein Generative Adversarial Network, which trains the model to generate compound representations targeting PPI interfaces. GENiPPI effectively captures the relationship between PPI interfaces and active/inactive compounds. Furthermore, in fewshot molecular generation, GENiPPI successfully generates compounds comparable to known disruptors. GENiPPI provides an efficient tool for structure-based design of PPI modulators.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Integrative Biotechnology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jiashun Mao
- Department of Integrative Biotechnology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Chunyan Li
- School of Informatics, Yunnan Normal University, Kunming, China
| | - Hongxin Xiang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Xun Wang
- School of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, Shandong, China
- High Performance Computer Research Center, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuang Wang
- School of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, Shandong, China
| | - Zixu Wang
- Department of Computer Science, University of Tsukuba, Tsukuba, 3058577, Japan
| | - Yangyang Chen
- Department of Computer Science, University of Tsukuba, Tsukuba, 3058577, Japan
| | - Yuquan Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Kyoung Tai No
- Department of Integrative Biotechnology, Yonsei University, Incheon, 21983, Republic of Korea.
| | - Tao Song
- School of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, Shandong, China.
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
4
|
Sako M, Yasuo N, Sekijima M. DiffInt: A Diffusion Model for Structure-Based Drug Design with Explicit Hydrogen Bond Interaction Guidance. J Chem Inf Model 2024. [PMID: 39696768 DOI: 10.1021/acs.jcim.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The design of drug molecules is a critical stage in the drug discovery process. The structure-based drug design has long played an important role in efficient development. Significant progress has been made in recent years in the generation of 3D molecules via deep generation models. However, while many existing models have succeeded in incorporating structural information on target proteins, they have not been able to address important interactions between protein and drug molecules, especially hydrogen bonds. In this study, we propose DiffInt as a novel structure-based approach that explicitly addresses interactions. The model naturally incorporates hydrogen bonds between protein and ligand molecules by treating them as pseudoparticles. The experimental results show that DiffInt reproduces hydrogen bonds, and the hydrogen binding energies significantly outperform those of existing models. To facilitate the use of our tool for generating new drug molecules based on any protein's three-dimensional structure, we have made the source code and trained model available on GitHub (https://github.com/sekijima-lab/DiffInt) under the MIT license, with the execution environment provided on Google Colab.
Collapse
Affiliation(s)
- Masami Sako
- Department of Computer Science, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Nobuaki Yasuo
- Academy for Convergence of Materials and Informatics (TAC-MI), Institute of Science Tokyo, Meguro-ku, Tokyo 152-8550, Japan
| | - Masakazu Sekijima
- Department of Computer Science, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
5
|
Ambreen S, Umar M, Noor A, Jain H, Ali R. Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine. Eur J Med Chem 2024; 284:117164. [PMID: 39721292 DOI: 10.1016/j.ejmech.2024.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identification, lead optimization, de novo drug design, and drug repurposing. Frameworks such as deep neural networks (DNNs), convolutional neural networks (CNNs), and deep reinforcement learning (DRL) models have shown promise in identifying drug targets, optimizing delivery systems, and accelerating drug repurposing. Generative adversarial networks (GANs) and variational autoencoders (VAEs) aid de novo drug design by creating novel drug-like compounds with desired properties. Case studies, such as DDR1 kinase inhibitors designed using generative models and CDK20 inhibitors developed via structure-based methods, highlight AI's ability to produce highly specific therapeutics. Models like SNF-CVAE and DeepDR further advance drug repurposing by uncovering new therapeutic applications for existing drugs. Advanced ML algorithms enhance precision in predicting drug efficacy, toxicity, and ADME-Tox properties, reducing development costs and improving drug-target interactions. AI also supports polypharmacology by optimizing multi-target drug interactions and enhances combination therapy through predictions of drug synergies and antagonisms. In nanomedicine, AI models like CURATE.AI and the Hartung algorithm optimize personalized treatments by predicting toxicological risks and real-time dosing adjustments with high accuracy. Despite its potential, challenges like data quality, model interpretability, and ethical concerns must be addressed. High-quality datasets, transparent models, and unbiased algorithms are essential for reliable AI applications. As AI continues to evolve, it is poised to revolutionize drug discovery and personalized medicine, advancing therapeutic development and patient care.
Collapse
Affiliation(s)
- Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Aaisha Noor
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Himangini Jain
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
6
|
Hu Z, Martí J. Isomer-sourced structure iteration methods for in silico development of inhibitors: Inducing GTP-bound NRAS-Q61 oncogenic mutations to an "off-like" state. Comput Struct Biotechnol J 2024; 23:2418-2428. [PMID: 38882681 PMCID: PMC11176632 DOI: 10.1016/j.csbj.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The NRAS-mutant subset of melanoma represent some of the most aggressive and deadliest types associated with poor overall survival. Unfortunately, for more than 40 years, no therapeutic agent directly targeting NRAS mutations has been clinically approved. In this work, based on microsecond scale molecular dynamics simulations, the effect of Q61 mutations on NRAS conformational characteristics is revealed at the atomic level. The GTP-bound NRAS-Q61R and Q61K mutations show a specific targetable pocket between Switch-II and α-helix 3 whereas the NRAS-Q61L non-polar mutation category shows a different targetable pocket. Moreover, a new isomer-sourced structure iteration method has been developed for the in silico design of potential inhibitor prototypes for oncogenes. We show the possibility of a designed prototype HM-387 to target activated NRAS-Q61R and that it can gradually induce the transition from the activated NRAS-Q61R to an "off-like" state.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| |
Collapse
|
7
|
Schneuing A, Harris C, Du Y, Didi K, Jamasb A, Igashov I, Du W, Gomes C, Blundell TL, Lio P, Welling M, Bronstein M, Correia B. Structure-based drug design with equivariant diffusion models. NATURE COMPUTATIONAL SCIENCE 2024; 4:899-909. [PMID: 39653846 DOI: 10.1038/s43588-024-00737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Structure-based drug design (SBDD) aims to design small-molecule ligands that bind with high affinity and specificity to pre-determined protein targets. Generative SBDD methods leverage structural data of drugs with their protein targets to propose new drug candidates. However, most existing methods focus exclusively on bottom-up de novo design of compounds or tackle other drug development challenges with task-specific models. The latter requires curation of suitable datasets, careful engineering of the models and retraining from scratch for each task. Here we show how a single pretrained diffusion model can be applied to a broader range of problems, such as off-the-shelf property optimization, explicit negative design and partial molecular design with inpainting. We formulate SBDD as a three-dimensional conditional generation problem and present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel ligands conditioned on protein pockets. Furthermore, we show how additional constraints can be used to improve the generated drug candidates according to a variety of computational metrics.
Collapse
Affiliation(s)
- Arne Schneuing
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | - Arian Jamasb
- University of Cambridge, Cambridge, UK
- Prescient Design, Genentech, Basel, Switzerland
| | - Ilia Igashov
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Weitao Du
- Chinese Academy of Mathematics and System Science, Beijing, China
| | | | - Tom L Blundell
- University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Pietro Lio
- University of Cambridge, Cambridge, UK
- University of Rome 'La Sapienza', Rome, Italy
| | - Max Welling
- Microsoft Research AI4Science, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | | | - Bruno Correia
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Chatterjee S, Fruhling A, Kotiadis K, Gartner D. Towards new frontiers of healthcare systems research using artificial intelligence and generative AI. Health Syst (Basingstoke) 2024; 13:263-273. [PMID: 39584173 PMCID: PMC11580149 DOI: 10.1080/20476965.2024.2402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
|
9
|
Xu C, Zheng L, Fan Q, Liu Y, Zeng C, Ning X, Liu H, Du K, Lu T, Chen Y, Zhang Y. Progress in the application of artificial intelligence in molecular generation models based on protein structure. Eur J Med Chem 2024; 277:116735. [PMID: 39098131 DOI: 10.1016/j.ejmech.2024.116735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The molecular generation models based on protein structures represent a cutting-edge research direction in artificial intelligence-assisted drug discovery. This article aims to comprehensively summarize the research methods and developments by analyzing a series of novel molecular generation models predicated on protein structures. Initially, we categorize the molecular generation models based on protein structures and highlight the architectural frameworks utilized in these models. Subsequently, we detail the design and implementation of protein structure-based molecular generation models by introducing different specific examples. Lastly, we outline the current opportunities and challenges encountered in this field, intending to offer guidance and a referential framework for developing and studying new models in related fields in the future.
Collapse
Affiliation(s)
- Chengcheng Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Lidan Zheng
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Qing Fan
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yingxu Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Chen Zeng
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xiangzhen Ning
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Ke Du
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
10
|
Weller J, Rohs R. Structure-Based Drug Design with a Deep Hierarchical Generative Model. J Chem Inf Model 2024; 64:6450-6463. [PMID: 39058534 PMCID: PMC11350878 DOI: 10.1021/acs.jcim.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Recently, the remarkable growth of available crystal structure data and libraries of commercially available or readily synthesizable molecules have unlocked previously inaccessible regions of chemical space for drug development. Paired with improvements in virtual ligand screening methods, these expanded libraries are having a notable impact on early drug design efforts. Yet screening-based methods still face scalability limits, due to computational constraints and the sheer scale of drug-like space. Machine learning approaches are overcoming these limitations by learning the fundamental intra- and intermolecular relationships in drug-target systems from existing data. Here, we introduce DrugHIVE, a deep hierarchical variational autoencoder that outperforms state-of-the-art autoregressive and diffusion-based methods in both speed and performance on common generative benchmarks. DrugHIVE's hierarchical design enables improved control over molecular generation. Its capabilities include dramatically increasing virtual screening efficiency and accelerating a wide range of common drug design tasks, including de novo generation, molecular optimization, scaffold hopping, linker design, and high-throughput pattern replacement. Our highly scalable method can even be applied to receptors with high-confidence AlphaFold-predicted structures, extending the ability to generate high-quality drug-like molecules to a majority of the unsolved human proteome.
Collapse
Affiliation(s)
- Jesse
A. Weller
- Department
of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Remo Rohs
- Department
of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Thomas
Lord Department of Computer Science, University
of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Nguyen ATN, Nguyen DTN, Koh HY, Toskov J, MacLean W, Xu A, Zhang D, Webb GI, May LT, Halls ML. The application of artificial intelligence to accelerate G protein-coupled receptor drug discovery. Br J Pharmacol 2024; 181:2371-2384. [PMID: 37161878 DOI: 10.1111/bph.16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
The application of artificial intelligence (AI) approaches to drug discovery for G protein-coupled receptors (GPCRs) is a rapidly expanding area. Artificial intelligence can be used at multiple stages during the drug discovery process, from aiding our understanding of the fundamental actions of GPCRs to the discovery of new ligand-GPCR interactions or the prediction of clinical responses. Here, we provide an overview of the concepts behind artificial intelligence, including the subfields of machine learning and deep learning. We summarise the published applications of artificial intelligence to different stages of the GPCR drug discovery process. Finally, we reflect on the benefits and limitations of artificial intelligence and share our vision for the exciting potential for further development of applications to aid GPCR drug discovery. In addition to making the drug discovery process "faster, smarter and cheaper," we anticipate that the application of artificial intelligence will create exciting new opportunities for GPCR drug discovery. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Anh T N Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Diep T N Nguyen
- Department of Information Technology, Faculty of Engineering and Technology, Vietnam National University, Cau Giay, Hanoi, Vietnam
| | - Huan Yee Koh
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Monash Data Futures Institute and Department of Data Science and Artificial Intelligence, Monash University, Clayton, Victoria, Australia
| | - Jason Toskov
- Monash DeepNeuron, Monash University, Clayton, Victoria, Australia
| | - William MacLean
- Monash DeepNeuron, Monash University, Clayton, Victoria, Australia
| | - Andrew Xu
- Monash DeepNeuron, Monash University, Clayton, Victoria, Australia
| | - Daokun Zhang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Monash Data Futures Institute and Department of Data Science and Artificial Intelligence, Monash University, Clayton, Victoria, Australia
| | - Geoffrey I Webb
- Monash Data Futures Institute and Department of Data Science and Artificial Intelligence, Monash University, Clayton, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Ai C, Yang H, Liu X, Dong R, Ding Y, Guo F. MTMol-GPT: De novo multi-target molecular generation with transformer-based generative adversarial imitation learning. PLoS Comput Biol 2024; 20:e1012229. [PMID: 38924082 PMCID: PMC11233020 DOI: 10.1371/journal.pcbi.1012229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/09/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
De novo drug design is crucial in advancing drug discovery, which aims to generate new drugs with specific pharmacological properties. Recently, deep generative models have achieved inspiring progress in generating drug-like compounds. However, the models prioritize a single target drug generation for pharmacological intervention, neglecting the complicated inherent mechanisms of diseases, and influenced by multiple factors. Consequently, developing novel multi-target drugs that simultaneously target specific targets can enhance anti-tumor efficacy and address issues related to resistance mechanisms. To address this issue and inspired by Generative Pre-trained Transformers (GPT) models, we propose an upgraded GPT model with generative adversarial imitation learning for multi-target molecular generation called MTMol-GPT. The multi-target molecular generator employs a dual discriminator model using the Inverse Reinforcement Learning (IRL) method for a concurrently multi-target molecular generation. Extensive results show that MTMol-GPT generates various valid, novel, and effective multi-target molecules for various complex diseases, demonstrating robustness and generalization capability. In addition, molecular docking and pharmacophore mapping experiments demonstrate the drug-likeness properties and effectiveness of generated molecules potentially improve neuropsychiatric interventions. Furthermore, our model's generalizability is exemplified by a case study focusing on the multi-targeted drug design for breast cancer. As a broadly applicable solution for multiple targets, MTMol-GPT provides new insight into future directions to enhance potential complex disease therapeutics by generating high-quality multi-target molecules in drug discovery.
Collapse
Affiliation(s)
- Chengwei Ai
- School of computer science and engineering, Central South University, Changsha, China
| | - Hongpeng Yang
- Department of computer science and engineering, University of South Carolina, Columbia, South Carolina, United States of America
| | - Xiaoyi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Ministry of Education, Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Beijing, China
| | - Ruihan Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Fei Guo
- School of computer science and engineering, Central South University, Changsha, China
| |
Collapse
|
13
|
Goles M, Daza A, Cabas-Mora G, Sarmiento-Varón L, Sepúlveda-Yañez J, Anvari-Kazemabad H, Davari MD, Uribe-Paredes R, Olivera-Nappa Á, Navarrete MA, Medina-Ortiz D. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides. Brief Bioinform 2024; 25:bbae275. [PMID: 38856172 PMCID: PMC11163380 DOI: 10.1093/bib/bbae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.
Collapse
Affiliation(s)
- Montserrat Goles
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Anamaría Daza
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Lindybeth Sarmiento-Varón
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
| | - Julieta Sepúlveda-Yañez
- Facultad de Ciencias de la Salud, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Hoda Anvari-Kazemabad
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Roberto Uribe-Paredes
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Marcelo A Navarrete
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| |
Collapse
|
14
|
Chandraghatgi R, Ji HF, Rosen GL, Sokhansanj BA. Streamlining Computational Fragment-Based Drug Discovery through Evolutionary Optimization Informed by Ligand-Based Virtual Prescreening. J Chem Inf Model 2024; 64:3826-3840. [PMID: 38696451 PMCID: PMC11197033 DOI: 10.1021/acs.jcim.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
Recent advances in computational methods provide the promise of dramatically accelerating drug discovery. While mathematical modeling and machine learning have become vital in predicting drug-target interactions and properties, there is untapped potential in computational drug discovery due to the vast and complex chemical space. This paper builds on our recently published computational fragment-based drug discovery (FBDD) method called fragment databases from screened ligand drug discovery (FDSL-DD). FDSL-DD uses in silico screening to identify ligands from a vast library, fragmenting them while attaching specific attributes based on predicted binding affinity and interaction with the target subdomain. In this paper, we further propose a two-stage optimization method that utilizes the information from prescreening to optimize computational ligand synthesis. We hypothesize that using prescreening information for optimization shrinks the search space and focuses on promising regions, thereby improving the optimization for candidate ligands. The first optimization stage assembles these fragments into larger compounds using genetic algorithms, followed by a second stage of iterative refinement to produce compounds with enhanced bioactivity. To demonstrate broad applicability, the methodology is demonstrated on three diverse protein targets found in human solid cancers, bacterial antimicrobial resistance, and the SARS-CoV-2 virus. Combined, the proposed FDSL-DD and a two-stage optimization approach yield high-affinity ligand candidates more efficiently than other state-of-the-art computational FBDD methods. We further show that a multiobjective optimization method accounting for drug-likeness can still produce potential candidate ligands with a high binding affinity. Overall, the results demonstrate that integrating detailed chemical information with a constrained search framework can markedly optimize the initial drug discovery process, offering a more precise and efficient route to developing new therapeutics.
Collapse
Affiliation(s)
- Rohan Chandraghatgi
- Department
of Biology, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hai-Feng Ji
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Gail L. Rosen
- Department
of Electrical & Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Bahrad A. Sokhansanj
- Department
of Electrical & Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Ju W, Fang Z, Gu Y, Liu Z, Long Q, Qiao Z, Qin Y, Shen J, Sun F, Xiao Z, Yang J, Yuan J, Zhao Y, Wang Y, Luo X, Zhang M. A Comprehensive Survey on Deep Graph Representation Learning. Neural Netw 2024; 173:106207. [PMID: 38442651 DOI: 10.1016/j.neunet.2024.106207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future.
Collapse
Affiliation(s)
- Wei Ju
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Zheng Fang
- School of Intelligence Science and Technology, Peking University, Beijing, 100871, China
| | - Yiyang Gu
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Zequn Liu
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Qingqing Long
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100086, China
| | - Ziyue Qiao
- Artificial Intelligence Thrust, The Hong Kong University of Science and Technology, Guangzhou, 511453, China
| | - Yifang Qin
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Jianhao Shen
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Fang Sun
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Zhiping Xiao
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Junwei Yang
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Jingyang Yuan
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Yusheng Zhao
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Yifan Wang
- School of Information Technology & Management, University of International Business and Economics, Beijing, 100029, China
| | - Xiao Luo
- Department of Computer Science, University of California, Los Angeles, 90095, USA.
| | - Ming Zhang
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Huang L, Xu T, Yu Y, Zhao P, Chen X, Han J, Xie Z, Li H, Zhong W, Wong KC, Zhang H. A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets. Nat Commun 2024; 15:2657. [PMID: 38531837 DOI: 10.1038/s41467-024-46569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Structure-based generative chemistry is essential in computer-aided drug discovery by exploring a vast chemical space to design ligands with high binding affinity for targets. However, traditional in silico methods are limited by computational inefficiency, while machine learning approaches face bottlenecks due to auto-regressive sampling. To address these concerns, we have developed a conditional deep generative model, PMDM, for 3D molecule generation fitting specified targets. PMDM consists of a conditional equivariant diffusion model with both local and global molecular dynamics, enabling PMDM to consider the conditioned protein information to generate molecules efficiently. The comprehensive experiments indicate that PMDM outperforms baseline models across multiple evaluation metrics. To evaluate the applications of PMDM under real drug design scenarios, we conduct lead compound optimization for SARS-CoV-2 main protease (Mpro) and Cyclin-dependent Kinase 2 (CDK2), respectively. The selected lead optimization molecules are synthesized and evaluated for their in-vitro activities against CDK2, displaying improved CDK2 activity.
Collapse
Affiliation(s)
- Lei Huang
- City University of Hong Kong, Hong Kong, SAR, China
- Tencent AI Lab, Shenzhen, China
| | | | - Yang Yu
- Tencent AI Lab, Shenzhen, China
| | | | | | - Jing Han
- Regor Therapeutics Group, Shanghai, China
| | - Zhi Xie
- Regor Therapeutics Group, Shanghai, China
| | - Hailong Li
- Regor Therapeutics Group, Shanghai, China.
| | | | - Ka-Chun Wong
- City University of Hong Kong, Hong Kong, SAR, China.
| | | |
Collapse
|
17
|
Tang Y, Moretti R, Meiler J. Recent Advances in Automated Structure-Based De Novo Drug Design. J Chem Inf Model 2024; 64:1794-1805. [PMID: 38485516 PMCID: PMC10966644 DOI: 10.1021/acs.jcim.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
As the number of determined and predicted protein structures and the size of druglike 'make-on-demand' libraries soar, the time-consuming nature of structure-based computer-aided drug design calls for innovative computational algorithms. De novo drug design introduces in silico heuristics to accelerate searching in the vast chemical space. This review focuses on recent advances in structure-based de novo drug design, ranging from conventional fragment-based methods, evolutionary algorithms, and Metropolis Monte Carlo methods to deep generative models. Due to the historical limitation of de novo drug design generating readily available drug-like molecules, we highlight the synthetic accessibility efforts in each category and the benchmarking strategies taken to validate the proposed framework.
Collapse
Affiliation(s)
- Yidan Tang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Rocco Moretti
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Institute
of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Wang M, Wu Z, Wang J, Weng G, Kang Y, Pan P, Li D, Deng Y, Yao X, Bing Z, Hsieh CY, Hou T. Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space. J Chem Inf Model 2024; 64:1213-1228. [PMID: 38302422 DOI: 10.1021/acs.jcim.3c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Deep learning-based de novo molecular design has recently gained significant attention. While numerous DL-based generative models have been successfully developed for designing novel compounds, the majority of the generated molecules lack sufficiently novel scaffolds or high drug-like profiles. The aforementioned issues may not be fully captured by commonly used metrics for the assessment of molecular generative models, such as novelty, diversity, and quantitative estimation of the drug-likeness score. To address these limitations, we proposed a genetic algorithm-guided generative model called GARel (genetic algorithm-based receptor-ligand interaction generator), a novel framework for training a DL-based generative model to produce drug-like molecules with novel scaffolds. To efficiently train the GARel model, we utilized dense net to update the parameters based on molecules with novel scaffolds and drug-like features. To demonstrate the capability of the GARel model, we used it to design inhibitors for three targets: AA2AR, EGFR, and SARS-Cov2. The results indicate that GARel-generated molecules feature more diverse and novel scaffolds and possess more desirable physicochemical properties and favorable docking scores. Compared with other generative models, GARel makes significant progress in balancing novelty and drug-likeness, providing a promising direction for the further development of DL-based de novo design methodology with potential impacts on drug discovery.
Collapse
Affiliation(s)
- Mingyang Wang
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
- CarbonSilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang ,China
| | - Zhengjian Wu
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
- School of Computer Science, Wuhan University, Wuhan 430072, Hubei ,China
| | - Jike Wang
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
- CarbonSilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang ,China
| | - Gaoqi Weng
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
| | - Yu Kang
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
| | - Peichen Pan
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
| | - Dan Li
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
| | - Yafeng Deng
- CarbonSilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang ,China
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery Macau Institute for Applied Research in Medicine and Health State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
| | - Tingjun Hou
- College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang ,China
| |
Collapse
|
19
|
Garg V. Generative AI for graph-based drug design: Recent advances and the way forward. Curr Opin Struct Biol 2024; 84:102769. [PMID: 38199072 DOI: 10.1016/j.sbi.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Discovering new promising molecule candidates that could translate into effective drugs is a key scientific pursuit. However, factors such as the vastness and discreteness of the molecular search space pose a formidable technical challenge in this quest. AI-driven generative models can effectively learn from data, and offer hope to streamline drug design. In this article, we review state of the art in generative models that operate on molecular graphs. We also shed light on some limitations of the existing methodology and sketch directions to harness the potential of AI for drug design tasks going forward.
Collapse
Affiliation(s)
- Vikas Garg
- Aalto University and YaiYai Ltd, Finland.
| |
Collapse
|
20
|
Chen YM, Lu CT, Wang CW, Fischer WB. Repurposing dye ligands as antivirals via a docking approach on viral membrane and globular proteins - SARS-CoV-2 and HPV-16. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184220. [PMID: 37657640 DOI: 10.1016/j.bbamem.2023.184220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
A series of dye ligands are docked to three different proteins, E and 3a of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) and E6 of human papilloma virus type 16 (HPV-16) using three different software. A four-level selection algorithm is used based on nonparametric statistics of numerical key values such as the "rank" derived from (i) averaged estimated binding energies (EBEs) and (ii) absolute EBE value of each of the software, (iii) frequency of ranking and (iv) rank of the area-under-curve values (AUCs) from decoy docking. A series of repurposing drugs and known antivirals used in experimental studies are docked for comparison. One dye ligand is ranked best for all proteins using the selection algorithm levels i - iii. Another three dye ligands are ranked top for the proteins individually when using all four levels.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Tai Lu
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wen Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
21
|
Olmedo DA, Durant-Archibold AA, López-Pérez JL, Medina-Franco JL. Design and Diversity Analysis of Chemical Libraries in Drug Discovery. Comb Chem High Throughput Screen 2024; 27:502-515. [PMID: 37409545 DOI: 10.2174/1386207326666230705150110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Chemical libraries and compound data sets are among the main inputs to start the drug discovery process at universities, research institutes, and the pharmaceutical industry. The approach used in the design of compound libraries, the chemical information they possess, and the representation of structures, play a fundamental role in the development of studies: chemoinformatics, food informatics, in silico pharmacokinetics, computational toxicology, bioinformatics, and molecular modeling to generate computational hits that will continue the optimization process of drug candidates. The prospects for growth in drug discovery and development processes in chemical, biotechnological, and pharmaceutical companies began a few years ago by integrating computational tools with artificial intelligence methodologies. It is anticipated that it will increase the number of drugs approved by regulatory agencies shortly.
Collapse
Affiliation(s)
- Dionisio A Olmedo
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Ciudad de Panamá, Apartado, 0824-00178, Panamá
- Sistema Nacional de Investigación (SNI), Secretaria Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad del Saber, Clayton, Panamá
| | - Armando A Durant-Archibold
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Apartado, 0843-01103, Panamá
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - José Luis López-Pérez
- CESIFAR, Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Ciudad de Panamá, Panamá
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Avda. Campo Charro s/n, 37071 Salamanca, España
| | - José Luis Medina-Franco
- DIFACQUIM Grupo de Investigación, Departamento de Farmacia, Escuela de Química, Universidad Nacional Autónoma de México, Ciudad de México, Apartado, 04510, México
| |
Collapse
|
22
|
Kyro GW, Morgunov A, Brent RI, Batista VS. ChemSpaceAL: An Efficient Active Learning Methodology Applied to Protein-Specific Molecular Generation. ARXIV 2023:arXiv:2309.05853v2. [PMID: 37744464 PMCID: PMC10516108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The incredible capabilities of generative artificial intelligence models have inevitably led to their application in the domain of drug discovery. Within this domain, the vastness of chemical space motivates the development of more efficient methods for identifying regions with molecules that exhibit desired characteristics. In this work, we present a computationally efficient active learning methodology that requires evaluation of only a subset of the generated data in the constructed sample space to successfully align a generative model with respect to a specified objective. We demonstrate the applicability of this methodology to targeted molecular generation by fine-tuning a GPT-based molecular generator toward a protein with FDA-approved small-molecule inhibitors, c-Abl kinase. Remarkably, the model learns to generate molecules similar to the inhibitors without prior knowledge of their existence, and even reproduces two of them exactly. We also show that the methodology is effective for a protein without any commercially available small-molecule inhibitors, the HNH domain of the CRISPR-associated protein 9 (Cas9) enzyme. We believe that the inherent generality of this method ensures that it will remain applicable as the exciting field of in silico molecular generation evolves. To facilitate implementation and reproducibility, we have made all of our software available through the open-source ChemSpaceAL Python package.
Collapse
|
23
|
Lv Q, Zhou F, Liu X, Zhi L. Artificial intelligence in small molecule drug discovery from 2018 to 2023: Does it really work? Bioorg Chem 2023; 141:106894. [PMID: 37776682 DOI: 10.1016/j.bioorg.2023.106894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Utilizing artificial intelligence (AI) in drug design represents an advanced approach for identifying targets and developing new drugs. Integrating AI techniques significantly reduces the workload involved in drug development and enhances the efficiency of early-stage drug discovery. This review aims to present a comprehensive overview of the utilization of AI methods in the field of small drug design, with a specific focus on four key areas: protein structure prediction, molecular virtual screening, molecular design, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. Additionally, the role and limitations of AI in drug development are explored, and the impact of AI on decision-making processes is studied. It is important to note that while AI can bring numerous benefits to the early stage of drug development, the direction and quality of decision-making should still be emphasized, as AI should be considered as a tool rather than a decisive factor.
Collapse
Affiliation(s)
- Qi Lv
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, PR China
| | - Feilong Zhou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, PR China.
| | - Liping Zhi
- School of Health Management, Anhui Medical University Hefei, 230032, PR China.
| |
Collapse
|
24
|
Du H, Jiang D, Zhang O, Wu Z, Gao J, Zhang X, Wang X, Deng Y, Kang Y, Li D, Pan P, Hsieh CY, Hou T. A flexible data-free framework for structure-based de novo drug design with reinforcement learning. Chem Sci 2023; 14:12166-12181. [PMID: 37969589 PMCID: PMC10631243 DOI: 10.1039/d3sc04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023] Open
Abstract
Contemporary structure-based molecular generative methods have demonstrated their potential to model the geometric and energetic complementarity between ligands and receptors, thereby facilitating the design of molecules with favorable binding affinity and target specificity. Despite the introduction of deep generative models for molecular generation, the atom-wise generation paradigm that partially contradicts chemical intuition limits the validity and synthetic accessibility of the generated molecules. Additionally, the dependence of deep learning models on large-scale structural data has hindered their adaptability across different targets. To overcome these challenges, we present a novel search-based framework, 3D-MCTS, for structure-based de novo drug design. Distinct from prevailing atom-centric methods, 3D-MCTS employs a fragment-based molecular editing strategy. The fragments decomposed from small-molecule drugs are recombined under predefined retrosynthetic rules, offering improved drug-likeness and synthesizability, overcoming the inherent limitations of atom-based approaches. Leveraging multi-threaded parallel simulations combined with a real-time energy constraint-based pruning strategy, 3D-MCTS achieves remarkable efficiency. At a fixed computational cost, it outperforms other state-of-the-art (SOTA) methods by producing molecules with enhanced binding affinity. Furthermore, its fragment-based approach ensures the generation of more dependable binding conformations, exhibiting a success rate 43.6% higher than that of other SOTAs. This advantage becomes even more pronounced when handling targets that significantly deviate from the training dataset. 3D-MCTS is capable of achieving thirty times more hits with high binding affinity than traditional virtual screening methods, which demonstrates the superior ability of 3D-MCTS to explore chemical space. Moreover, the flexibility of our framework makes it easy to incorporate domain knowledge during the process, thereby enabling the generation of molecules with desirable pharmacophores and enhanced binding affinity. The adaptability of 3D-MCTS is further showcased in metalloprotein applications, highlighting its potential across various drug design scenarios.
Collapse
Affiliation(s)
- Hongyan Du
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Dejun Jiang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Odin Zhang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Zhenxing Wu
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Junbo Gao
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Xujun Zhang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Xiaorui Wang
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macao 999078 China
| | - Yafeng Deng
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| |
Collapse
|
25
|
Zhu H, Zhou R, Cao D, Tang J, Li M. A pharmacophore-guided deep learning approach for bioactive molecular generation. Nat Commun 2023; 14:6234. [PMID: 37803000 PMCID: PMC10558534 DOI: 10.1038/s41467-023-41454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
The rational design of novel molecules with the desired bioactivity is a critical but challenging task in drug discovery, especially when treating a novel target family or understudied targets. We propose a Pharmacophore-Guided deep learning approach for bioactive Molecule Generation (PGMG). Through the guidance of pharmacophore, PGMG provides a flexible strategy for generating bioactive molecules. PGMG uses a graph neural network to encode spatially distributed chemical features and a transformer decoder to generate molecules. A latent variable is introduced to solve the many-to-many mapping between pharmacophores and molecules to improve the diversity of the generated molecules. Compared to existing methods, PGMG generates molecules with strong docking affinities and high scores of validity, uniqueness, and novelty. In the case studies, we use PGMG in a ligand-based and structure-based drug de novo design. Overall, the flexibility and effectiveness make PGMG a useful tool to accelerate the drug discovery process.
Collapse
Affiliation(s)
- Huimin Zhu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Renyi Zhou
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
26
|
Raza A, Chohan TA, Buabeid M, Arafa ESA, Chohan TA, Fatima B, Sultana K, Ullah MS, Murtaza G. Deep learning in drug discovery: a futuristic modality to materialize the large datasets for cheminformatics. J Biomol Struct Dyn 2023; 41:9177-9192. [PMID: 36305195 DOI: 10.1080/07391102.2022.2136244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Artificial intelligence (AI) development imitates the workings of the human brain to comprehend modern problems. The traditional approaches such as high throughput screening (HTS) and combinatorial chemistry are lengthy and expensive to the pharmaceutical industry as they can only handle a smaller dataset. Deep learning (DL) is a sophisticated AI method that uses a thorough comprehension of particular systems. The pharmaceutical industry is now adopting DL techniques to enhance the research and development process. Multi-oriented algorithms play a crucial role in the processing of QSAR analysis, de novo drug design, ADME evaluation, physicochemical analysis, preclinical development, followed by clinical trial data precision. In this study, we investigated the performance of several algorithms, including deep neural networks (DNN), convolutional neural networks (CNN) and multi-task learning (MTL), with the aim of generating high-quality, interpretable big and diverse databases for drug design and development. Studies have demonstrated that CNN, recurrent neural network and deep belief network are compatible, accurate and effective for the molecular description of pharmacodynamic properties. In Covid-19, existing pharmacological compounds has also been repurposed using DL models. In the absence of the Covid-19 vaccine, remdesivir and oseltamivir have been widely employed to treat severe SARS-CoV-2 infections. In conclusion, the results indicate the potential benefits of employing the DL strategies in the drug discovery process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Raza
- Department of pharmaceutical chemistry, Faculty of Pharmacy, The University of Lahore, Pakistan
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Pakistan
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Pakistan
- Institute of Pharmaceutical Science, UVAS, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - El-Shaima A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | | | - Batool Fatima
- Department of biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Kishwar Sultana
- Department of pharmaceutical chemistry, Faculty of Pharmacy, The University of Lahore, Pakistan
| | - Malik Saad Ullah
- Department of Pharmacy, Government College University, Faisalabad, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Pakistan
| |
Collapse
|
27
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
28
|
Xu C, Liu R, Huang S, Li W, Li Z, Luo HB. 3D-SMGE: a pipeline for scaffold-based molecular generation and evaluation. Brief Bioinform 2023; 24:bbad327. [PMID: 37756591 DOI: 10.1093/bib/bbad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
In the process of drug discovery, one of the key problems is how to improve the biological activity and ADMET properties starting from a specific structure, which is also called structural optimization. Based on a starting scaffold, the use of deep generative model to generate molecules with desired drug-like properties will provide a powerful tool to accelerate the structural optimization process. However, the existing generative models remain challenging in extracting molecular features efficiently in 3D space to generate drug-like 3D molecules. Moreover, most of the existing ADMET prediction models made predictions of different properties through a single model, which can result in reduced prediction accuracy on some datasets. To effectively generate molecules from a specific scaffold and provide basis for the structural optimization, the 3D-SMGE (3-Dimensional Scaffold-based Molecular Generation and Evaluation) work consisting of molecular generation and prediction of ADMET properties is presented. For the molecular generation, we proposed 3D-SMG, a novel deep generative model for the end-to-end design of 3D molecules. In the 3D-SMG model, we designed the cross-aggregated continuous-filter convolution (ca-cfconv), which is used to achieve efficient and low-cost 3D spatial feature extraction while ensuring the invariance of atomic space rotation. 3D-SMG was proved to generate valid, unique and novel molecules with high drug-likeness. Besides, the proposed data-adaptive multi-model ADMET prediction method outperformed or maintained the best evaluation metrics on 24 out of 27 ADMET benchmark datasets. 3D-SMGE is anticipated to emerge as a powerful tool for hit-to-lead structural optimizations and accelerate the drug discovery process.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, P.R. China
| | - Runduo Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, P.R. China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, P.R. China
| | - Wenchao Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, P.R. China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, P.R. China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, P.R. China
| |
Collapse
|
29
|
Dollar O, Joshi N, Pfaendtner J, Beck DAC. Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE. J Phys Chem A 2023; 127:7844-7852. [PMID: 37670244 DOI: 10.1021/acs.jpca.3c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.
Collapse
Affiliation(s)
- Orion Dollar
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Nisarg Joshi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- escience Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
30
|
Han R, Yoon H, Kim G, Lee H, Lee Y. Revolutionizing Medicinal Chemistry: The Application of Artificial Intelligence (AI) in Early Drug Discovery. Pharmaceuticals (Basel) 2023; 16:1259. [PMID: 37765069 PMCID: PMC10537003 DOI: 10.3390/ph16091259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Artificial intelligence (AI) has permeated various sectors, including the pharmaceutical industry and research, where it has been utilized to efficiently identify new chemical entities with desirable properties. The application of AI algorithms to drug discovery presents both remarkable opportunities and challenges. This review article focuses on the transformative role of AI in medicinal chemistry. We delve into the applications of machine learning and deep learning techniques in drug screening and design, discussing their potential to expedite the early drug discovery process. In particular, we provide a comprehensive overview of the use of AI algorithms in predicting protein structures, drug-target interactions, and molecular properties such as drug toxicity. While AI has accelerated the drug discovery process, data quality issues and technological constraints remain challenges. Nonetheless, new relationships and methods have been unveiled, demonstrating AI's expanding potential in predicting and understanding drug interactions and properties. For its full potential to be realized, interdisciplinary collaboration is essential. This review underscores AI's growing influence on the future trajectory of medicinal chemistry and stresses the importance of ongoing synergies between computational and domain experts.
Collapse
Affiliation(s)
| | | | | | | | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
31
|
Zhang W, Zhang K, Huang J. A Simple Way to Incorporate Target Structural Information in Molecular Generative Models. J Chem Inf Model 2023. [PMID: 37318828 DOI: 10.1021/acs.jcim.3c00293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Deep learning generative models are now being applied in various fields including drug discovery. In this work, we propose a novel approach to include target 3D structural information in molecular generative models for structure-based drug design. The method combines a message-passing neural network model that predicts docking scores with a generative neural network model as its reward function to navigate the chemical space searching for molecules that bind favorably with a specific target. A key feature of the method is the construction of target-specific molecular sets for training, designed to overcome potential transferability issues of surrogate docking models through a two-round training process. Consequently, this enables accurate guided exploration of the chemical space without reliance on the collection of prior knowledge about active and inactive compounds for the specific target. Tests on eight target proteins showed a 100-fold increase in hit generation compared to conventional docking calculations and the ability to generate molecules similar to approved drugs or known active ligands for specific targets without prior knowledge. This method provides a general and highly efficient solution for structure-based molecular generation.
Collapse
Affiliation(s)
- Wenyi Zhang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Kaiyue Zhang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
32
|
Baillif B, Cole J, McCabe P, Bender A. Deep generative models for 3D molecular structure. Curr Opin Struct Biol 2023; 80:102566. [DOI: 10.1016/j.sbi.2023.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023]
|
33
|
Thomas M, Bender A, de Graaf C. Integrating structure-based approaches in generative molecular design. Curr Opin Struct Biol 2023; 79:102559. [PMID: 36870277 DOI: 10.1016/j.sbi.2023.102559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Generative molecular design for drug discovery and development has seen a recent resurgence promising to improve the efficiency of the design-make-test-analyse cycle; by computationally exploring much larger chemical spaces than traditional virtual screening techniques. However, most generative models thus far have only utilized small-molecule information to train and condition de novo molecule generators. Here, we instead focus on recent approaches that incorporate protein structure into de novo molecule optimization in an attempt to maximize the predicted on-target binding affinity of generated molecules. We summarize these structure integration principles into either distribution learning or goal-directed optimization and for each case whether the approach is protein structure-explicit or implicit with respect to the generative model. We discuss recent approaches in the context of this categorization and provide our perspective on the future direction of the field.
Collapse
Affiliation(s)
- Morgan Thomas
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK. https://twitter.com/@AndreasBenderUK
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK. https://twitter.com/@Chris_de_Graaf
| |
Collapse
|
34
|
Isert C, Atz K, Schneider G. Structure-based drug design with geometric deep learning. Curr Opin Struct Biol 2023; 79:102548. [PMID: 36842415 DOI: 10.1016/j.sbi.2023.102548] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/26/2023]
Abstract
Structure-based drug design uses three-dimensional geometric information of macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric deep learning, an emerging concept of neural-network-based machine learning, has been applied to macromolecular structures. This review provides an overview of the recent applications of geometric deep learning in bioorganic and medicinal chemistry, highlighting its potential for structure-based drug discovery and design. Emphasis is placed on molecular property prediction, ligand binding site and pose prediction, and structure-based de novo molecular design. The current challenges and opportunities are highlighted, and a forecast of the future of geometric deep learning for drug discovery is presented.
Collapse
Affiliation(s)
- Clemens Isert
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
| | - Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland; ETH Singapore SEC Ltd, 1 CREATE Way, #06-01 CREATE Tower, Singapore, 8093, Singapore.
| |
Collapse
|
35
|
Zhao S, Zhang X, da Silva-Júnior EF, Zhan P, Liu X. Computer-aided drug design in seeking viral capsid modulators. Drug Discov Today 2023; 28:103581. [PMID: 37030533 DOI: 10.1016/j.drudis.2023.103581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example. computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities. Teaser: Computer-aided drug design will accelerate the development of viral capsid regulators, which brings new hope for the treatment of refractory viral diseases.
Collapse
Affiliation(s)
- Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970 Maceió, Alagoas, Brazil.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
36
|
Seo S, Lim J, Kim WY. Molecular Generative Model via Retrosynthetically Prepared Chemical Building Block Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206674. [PMID: 36596675 PMCID: PMC10015872 DOI: 10.1002/advs.202206674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Deep generative models are attracting attention as a smart molecular design strategy. However, previous models often render molecules with low synthesizability, hindering their real-world applications. Here, a novel graph-based conditional generative model which makes molecules by tailoring retrosynthetically prepared chemical building blocks until achieving target properties in an auto-regressive fashion is proposed. This strategy improves the synthesizability and property control of the resulting molecules and also helps learn how to select appropriate building blocks and bind them together to achieve target properties. By applying a negative sampling method to the selection process of building blocks, this model overcame a critical limitation of previous fragment-based models, which can only use molecules from the training set during generation. As a result, the model works equally well with unseen building blocks without sacrificing computational efficiency. It is demonstrated that the model can generate potential inhibitors with high docking scores against the 3CL protease of SARS-COV-2.
Collapse
Affiliation(s)
- Seonghwan Seo
- HITS Incorporation124 Teheran‐ro, Gangnam‐guSeoul06234Republic of Korea
- Department of ChemistryKAIST, 291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jaechang Lim
- HITS Incorporation124 Teheran‐ro, Gangnam‐guSeoul06234Republic of Korea
| | - Woo Youn Kim
- HITS Incorporation124 Teheran‐ro, Gangnam‐guSeoul06234Republic of Korea
- Department of ChemistryKAIST, 291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
- AI InstituteKAIST, 291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
37
|
DoubleSG-DTA: Deep Learning for Drug Discovery: Case Study on the Non-Small Cell Lung Cancer with EGFRT790M Mutation. Pharmaceutics 2023; 15:pharmaceutics15020675. [PMID: 36839996 PMCID: PMC9965659 DOI: 10.3390/pharmaceutics15020675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Drug-targeted therapies are promising approaches to treating tumors, and research on receptor-ligand interactions for discovering high-affinity targeted drugs has been accelerating drug development. This study presents a mechanism-driven deep learning-based computational model to learn double drug sequences, protein sequences, and drug graphs to project drug-target affinities (DTAs), which was termed the DoubleSG-DTA. We deployed lightweight graph isomorphism networks to aggregate drug graph representations and discriminate between molecular structures, and stacked multilayer squeeze-and-excitation networks to selectively enhance spatial features of drug and protein sequences. What is more, cross-multi-head attentions were constructed to further model the non-covalent molecular docking behavior. The multiple cross-validation experimental evaluations on various datasets indicated that DoubleSG-DTA consistently outperformed all previously reported works. To showcase the value of DoubleSG-DTA, we applied it to generate promising hit compounds of Non-Small Cell Lung Cancer harboring EGFRT790M mutation from natural products, which were consistent with reported laboratory studies. Afterward, we further investigated the interpretability of the graph-based "black box" model and highlighted the active structures that contributed the most. DoubleSG-DTA thus provides a powerful and interpretable framework that extrapolates for potential chemicals to modulate the systemic response to disease.
Collapse
|
38
|
Danel T, Łęski J, Podlewska S, Podolak IT. Docking-based generative approaches in the search for new drug candidates. Drug Discov Today 2023; 28:103439. [PMID: 36372330 DOI: 10.1016/j.drudis.2022.103439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Despite the popularity of virtual screening (VS) of existing compound libraries, the search for new potential drug candidates also takes advantage of generative protocols, where new compound suggestions are enumerated using various algorithms. To increase the activity potency of generative approaches, they have recently been coupled with molecular docking, a leading methodology of structure-based drug design (SBDD). In this review, we summarize progress since docking-based generative models emerged. We propose a new taxonomy for these methods and discuss their importance for the field of computer-aided drug design (CADD). In addition, we discuss the most promising directions for the further development of generative protocols coupled with docking.
Collapse
Affiliation(s)
- Tomasz Danel
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland.
| | - Jan Łęski
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 31-343 Kraków, Smętna Street 12, Poland
| | - Igor T Podolak
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| |
Collapse
|
39
|
Westermayr J, Gilkes J, Barrett R, Maurer RJ. High-throughput property-driven generative design of functional organic molecules. NATURE COMPUTATIONAL SCIENCE 2023; 3:139-148. [PMID: 38177626 DOI: 10.1038/s43588-022-00391-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2024]
Abstract
The design of molecules and materials with tailored properties is challenging, as candidate molecules must satisfy multiple competing requirements that are often difficult to measure or compute. While molecular structures produced through generative deep learning will satisfy these patterns, they often only possess specific target properties by chance and not by design, which makes molecular discovery via this route inefficient. In this work, we predict molecules with (Pareto-)optimal properties by combining a generative deep learning model that predicts three-dimensional conformations of molecules with a supervised deep learning model that takes these as inputs and predicts their electronic structure. Optimization of (multiple) molecular properties is achieved by screening newly generated molecules for desirable electronic properties and reusing hit molecules to retrain the generative model with a bias. The approach is demonstrated to find optimal molecules for organic electronics applications. Our method is generally applicable and eliminates the need for quantum chemical calculations during predictions, making it suitable for high-throughput screening in materials and catalyst design.
Collapse
Affiliation(s)
- Julia Westermayr
- Department of Chemistry, University of Warwick, Coventry, UK.
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany.
| | - Joe Gilkes
- Department of Chemistry, University of Warwick, Coventry, UK
- HetSys Centre for Doctoral Training, University of Warwick, Coventry, UK
| | - Rhyan Barrett
- Department of Chemistry, University of Warwick, Coventry, UK
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany
| | | |
Collapse
|
40
|
Shin WJ, Choi S, Seong BL. What are the considerations when selecting a model for influenza drug discovery? Expert Opin Drug Discov 2023; 18:1-3. [PMID: 36529907 DOI: 10.1080/17460441.2023.2157812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Seongil Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 03721, Seoul, South Korea
| | - Baik-Lin Seong
- Department of Microbiology, Yonsei University College of Medicine, 03721, Seoul, South Korea.,Vaccine Innovation Technology ALliance (Vital)-Korea, Yonsei University, 03721, Seoul South Korea
| |
Collapse
|
41
|
3D Conformational Generative Models for Biological Structures Using Graph Information-Embedded Relative Coordinates. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010321. [PMID: 36615515 PMCID: PMC9823299 DOI: 10.3390/molecules28010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Developing molecular generative models for directly generating 3D conformation has recently become a hot research area. Here, an autoencoder based generative model was proposed for molecular conformation generation. A unique feature of our method is that the graph information embedded relative coordinate (GIE-RC), satisfying translation and rotation invariance, was proposed as a novel way for encoding molecular three-dimensional structure. Compared with commonly used Cartesian coordinate and internal coordinate, GIE-RC is less sensitive on errors when decoding latent variables to 3D coordinates. By using this method, a complex 3D generation task can be turned into a graph node feature generation problem. Examples were shown that the GIE-RC based autoencoder model can be used for both ligand and peptide conformation generation. Additionally, this model was used as an efficient conformation sampling method to augment conformation data needed in the construction of neural network-based force field.
Collapse
|
42
|
Zeng X, Wang F, Luo Y, Kang SG, Tang J, Lightstone FC, Fang EF, Cornell W, Nussinov R, Cheng F. Deep generative molecular design reshapes drug discovery. Cell Rep Med 2022; 3:100794. [PMID: 36306797 PMCID: PMC9797947 DOI: 10.1016/j.xcrm.2022.100794] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Recent advances and accomplishments of artificial intelligence (AI) and deep generative models have established their usefulness in medicinal applications, especially in drug discovery and development. To correctly apply AI, the developer and user face questions such as which protocols to consider, which factors to scrutinize, and how the deep generative models can integrate the relevant disciplines. This review summarizes classical and newly developed AI approaches, providing an updated and accessible guide to the broad computational drug discovery and development community. We introduce deep generative models from different standpoints and describe the theoretical frameworks for representing chemical and biological structures and their applications. We discuss the data and technical challenges and highlight future directions of multimodal deep generative models for accelerating drug discovery.
Collapse
Affiliation(s)
- Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Seung-Gu Kang
- Healthcare & Life Sciences Research, IBM TJ Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Jian Tang
- Mila-Quebec Institute for Learning Algorithms and CIFAR AI Research Chair, HEC Montreal, Montréal, QC H3T 2A7, Canada
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA 94550, USA
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Oslo, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Wendy Cornell
- Healthcare & Life Sciences Research, IBM TJ Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
43
|
Wang M, Wang J, Weng G, Kang Y, Pan P, Li D, Deng Y, Li H, Hsieh CY, Hou T. ReMODE: a deep learning-based web server for target-specific drug design. J Cheminform 2022; 14:84. [PMID: 36510307 PMCID: PMC9743675 DOI: 10.1186/s13321-022-00665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Deep learning (DL) and machine learning contribute significantly to basic biology research and drug discovery in the past few decades. Recent advances in DL-based generative models have led to superior developments in de novo drug design. However, data availability, deep data processing, and the lack of user-friendly DL tools and interfaces make it difficult to apply these DL techniques to drug design. We hereby present ReMODE (Receptor-based MOlecular DEsign), a new web server based on DL algorithm for target-specific ligand design, which integrates different functional modules to enable users to develop customizable drug design tasks. As designed, the ReMODE sever can construct the target-specific tasks toward the protein targets selected by users. Meanwhile, the server also provides some extensions: users can optimize the drug-likeness or synthetic accessibility of the generated molecules, and control other physicochemical properties; users can also choose a sub-structure/scaffold as a starting point for fragment-based drug design. The ReMODE server also enables users to optimize the pharmacophore matching and docking conformations of the generated molecules. We believe that the ReMODE server will benefit researchers for drug discovery. ReMODE is publicly available at http://cadd.zju.edu.cn/relation/remode/ .
Collapse
Affiliation(s)
- Mingyang Wang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China ,CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Jike Wang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China ,CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Gaoqi Weng
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China ,CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Yu Kang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Peichen Pan
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Dan Li
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Yafeng Deng
- CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Honglin Li
- grid.28056.390000 0001 2163 4895Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237 People’s Republic of China
| | - Chang-Yu Hsieh
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Tingjun Hou
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| |
Collapse
|
44
|
Chan L, Kumar R, Verdonk M, Poelking C. A multilevel generative framework with hierarchical self-contrasting for bias control and transparency in structure-based ligand design. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Li Y, Zhang L, Wang Y, Zou J, Yang R, Luo X, Wu C, Yang W, Tian C, Xu H, Wang F, Yang X, Li L, Yang S. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat Commun 2022; 13:6891. [PMID: 36371441 PMCID: PMC9653409 DOI: 10.1038/s41467-022-34692-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
The retrieval of hit/lead compounds with novel scaffolds during early drug development is an important but challenging task. Various generative models have been proposed to create drug-like molecules. However, the capacity of these generative models to design wet-lab-validated and target-specific molecules with novel scaffolds has hardly been verified. We herein propose a generative deep learning (GDL) model, a distribution-learning conditional recurrent neural network (cRNN), to generate tailor-made virtual compound libraries for given biological targets. The GDL model is then applied to RIPK1. Virtual screening against the generated tailor-made compound library and subsequent bioactivity evaluation lead to the discovery of a potent and selective RIPK1 inhibitor with a previously unreported scaffold, RI-962. This compound displays potent in vitro activity in protecting cells from necroptosis, and good in vivo efficacy in two inflammatory models. Collectively, the findings prove the capacity of our GDL model in generating hit/lead compounds with unreported scaffolds, highlighting a great potential of deep learning in drug discovery.
Collapse
Affiliation(s)
- Yueshan Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Liting Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Yifei Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Jun Zou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Ruicheng Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Xinling Luo
- grid.13291.380000 0001 0807 1581Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, 610041 Chengdu, Sichuan China
| | - Chengyong Wu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Wei Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Chenyu Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Haixing Xu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Falu Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Xin Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Linli Li
- grid.13291.380000 0001 0807 1581Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, 610041 Chengdu, Sichuan China
| | - Shengyong Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| |
Collapse
|
46
|
Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci 2022; 23:13568. [PMID: 36362355 PMCID: PMC9658956 DOI: 10.3390/ijms232113568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| |
Collapse
|
47
|
Sauer S, Matter H, Hessler G, Grebner C. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods. Front Chem 2022; 10:1012507. [PMID: 36339033 PMCID: PMC9629386 DOI: 10.3389/fchem.2022.1012507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/14/2022] Open
Abstract
The identification and optimization of promising lead molecules is essential for drug discovery. Recently, artificial intelligence (AI) based generative methods provided complementary approaches for generating molecules under specific design constraints of relevance in drug design. The goal of our study is to incorporate protein 3D information directly into generative design by flexible docking plus an adapted protein-ligand scoring function, thereby moving towards automated structure-based design. First, the protein-ligand scoring function RFXscore integrating individual scoring terms, ligand descriptors, and combined terms was derived using the PDBbind database and internal data. Next, design results for different workflows are compared to solely ligand-based reward schemes. Our newly proposed, optimal workflow for structure-based generative design is shown to produce promising results, especially for those exploration scenarios, where diverse structures fitting to a protein binding site are requested. Best results are obtained using docking followed by RFXscore, while, depending on the exact application scenario, it was also found useful to combine this approach with other metrics that bias structure generation into "drug-like" chemical space, such as target-activity machine learning models, respectively.
Collapse
Affiliation(s)
| | | | | | - Christoph Grebner
- Synthetic Molecular Design, Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| |
Collapse
|
48
|
Eguida M, Schmitt-Valencia C, Hibert M, Villa P, Rognan D. Target-Focused Library Design by Pocket-Applied Computer Vision and Fragment Deep Generative Linking. J Med Chem 2022; 65:13771-13783. [PMID: 36256484 DOI: 10.1021/acs.jmedchem.2c00931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We here describe a computational approach (POEM: Pocket Oriented Elaboration of Molecules) to drive the generation of target-focused libraries while taking advantage of all publicly available structural information on protein-ligand complexes. A collection of 31 384 PDB-derived images with key shapes and pharmacophoric properties, describing fragment-bound microenvironments, is first aligned to the query target cavity by a computer vision method. The fragments of the most similar PDB subpockets are then directly positioned in the query cavity using the corresponding image transformation matrices. Lastly, suitable connectable atoms of oriented fragment pairs are linked by a deep generative model to yield fully connected molecules. POEM was applied to generate a library of 1.5 million potential cyclin-dependent kinase 8 inhibitors. By synthesizing and testing as few as 43 compounds, a few nanomolar inhibitors were quickly obtained with limited resources in just two iterative cycles.
Collapse
Affiliation(s)
- Merveille Eguida
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400Illkirch, France
| | - Christel Schmitt-Valencia
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, F-67400Illkirch, France
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400Illkirch, France
| | - Pascal Villa
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, F-67400Illkirch, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400Illkirch, France
| |
Collapse
|
49
|
Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration. Int J Mol Sci 2022; 23:ijms231911262. [PMID: 36232566 PMCID: PMC9569663 DOI: 10.3390/ijms231911262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
In the current study, we introduce an integrative machine learning strategy for the autonomous molecular design of protein kinase inhibitors using variational autoencoders and a novel cluster-based perturbation approach for exploration of the chemical latent space. The proposed strategy combines autoencoder-based embedding of small molecules with a cluster-based perturbation approach for efficient navigation of the latent space and a feature-based kinase inhibition likelihood classifier that guides optimization of the molecular properties and targeted molecular design. In the proposed generative approach, molecules sharing similar structures tend to cluster in the latent space, and interpolating between two molecules in the latent space enables smooth changes in the molecular structures and properties. The results demonstrated that the proposed strategy can efficiently explore the latent space of small molecules and kinase inhibitors along interpretable directions to guide the generation of novel family-specific kinase molecules that display a significant scaffold diversity and optimal biochemical properties. Through assessment of the latent-based and chemical feature-based binary and multiclass classifiers, we developed a robust probabilistic evaluator of kinase inhibition likelihood that is specifically tailored to guide the molecular design of novel SRC kinase molecules. The generated molecules originating from LCK and ABL1 kinase inhibitors yielded ~40% of novel and valid SRC kinase compounds with high kinase inhibition likelihood probability values (p > 0.75) and high similarity (Tanimoto coefficient > 0.6) to the known SRC inhibitors. By combining the molecular perturbation design with the kinase inhibition likelihood analysis and similarity assessments, we showed that the proposed molecular design strategy can produce novel valid molecules and transform known inhibitors of different kinase families into potential chemical probes of the SRC kinase with excellent physicochemical profiles and high similarity to the known SRC kinase drugs. The results of our study suggest that task-specific manipulation of a biased latent space may be an important direction for more effective task-oriented and target-specific autonomous chemical design models.
Collapse
|
50
|
Sun Y, Jiao Y, Shi C, Zhang Y. Deep learning-based molecular dynamics simulation for structure-based drug design against SARS-CoV-2. Comput Struct Biotechnol J 2022; 20:5014-5027. [PMID: 36091720 PMCID: PMC9448712 DOI: 10.1016/j.csbj.2022.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/03/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has led to a global pandemic. Deep learning (DL) technology and molecular dynamics (MD) simulation are two mainstream computational approaches to investigate the geometric, chemical and structural features of protein and guide the relevant drug design. Despite a large amount of research papers focusing on drug design for SARS-COV-2 using DL architectures, it remains unclear how the binding energy of the protein-protein/ligand complex dynamically evolves which is also vital for drug development. In addition, traditional deep neural networks usually have obvious deficiencies in predicting the interaction sites as protein conformation changes. In this review, we introduce the latest progresses of the DL and DL-based MD simulation approaches in structure-based drug design (SBDD) for SARS-CoV-2 which could address the problems of protein structure and binding prediction, drug virtual screening, molecular docking and complex evolution. Furthermore, the current challenges and future directions of DL-based MD simulation for SBDD are also discussed.
Collapse
Affiliation(s)
- Yao Sun
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yanqi Jiao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Chengcheng Shi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|