1
|
Tang MQ, Yang ZJ, Han AJ, He ZT. Diastereoselective and Enantioselective Hydrophosphinylations of Conjugated Enynes, Allenes and Dienes via Synergistic Pd/Co Catalysis. Angew Chem Int Ed Engl 2025; 64:e202413428. [PMID: 39254504 DOI: 10.1002/anie.202413428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Different from the reported work focusing on the construction of single P- or C-stereocenter via hydrophosphinylation of unsaturated carbon bonds, the highly diastereo- and enantioselective hydrophosphinylation reaction of allenes, conjugated enynes and 1,3-dienes is achieved via a designed Pd/Co dual catalysis and newly modified masked phosphinylating reagent. A series of allyl motifs bearing both a tertiary C- and P-stereocenter are prepared in generally good yields, >20 : 1 dr, >20 : 1 rr and 99 % ee. The unprecedented diastereo- and enantioselective hydrophosphinylation of 1,3-enynes is established to generate skeletons containing both a P-stereocenter and a nonadjacent chiral axis. The first stereodivergent hydrophosphinylation reaction is also developed to achieve all four P-containing stereoisomers. The present protocol features the use of only 3-minutes reaction time and 0.1 % catalyst, and with the observation of up to 730 TON. A set of mechanistic studies reveal the necessity and roles of two metal catalysts and corroborate the designed synergistic process.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zi-Jiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ai-Jun Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Ningbo Zhongke Creation Center of New Materials, 315899, Ningbo, China
| |
Collapse
|
2
|
Tan Z, Liu Y, Feng X. Photoredox-catalyzed C( sp3)─H radical functionalization to enable asymmetric synthesis of α-chiral alkyl phosphine. SCIENCE ADVANCES 2024; 10:eadn9738. [PMID: 38838147 PMCID: PMC11650896 DOI: 10.1126/sciadv.adn9738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
α-Chiral alkyl phosphines are privileged structural motifs with a wide application in organic and medical synthesis. It is highly desirable to develop stereoselective methods to prepare these enantioenriched molecules. The incorporation of C(sp3)─H functionalization and chiral phosphine chemistry is much less explored, probably because of the weak reactivity of C(sp3)─H bonds and/or the challenging site- and stereoselectivity issues. Herein, we disclose a synergistic catalysis system to enable an enantioselective radical addition process of α-substituted vinylphosphine oxides. An array of diverse α-chiral alkyl phosphors compounds is smoothly accessed by using the readily available chemicals as the inert C(sp3)─H bond reagent, such as sulfides, amines, alkenes, and toluene derivatives, exerting remarkable chemo-, site-, and enantioselectivity. On the basis of the mechanistic studies, both the C(sp3)─H bond activation and the stereochemistry-determining step are proposed to involve a single-electron transfer/proton transfer process.
Collapse
Affiliation(s)
- Zhenda Tan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Wani AA, Carballo JJG, Jayaprakash H, Wörle M, Widera A, Togni A, Grützmacher H. A Simple Manganese(I) Catalyst for the Efficient and Selective Hydrophosphination of Olefins with PH 3, Primary, and Secondary Phosphanes. Chemistry 2024; 30:e202303848. [PMID: 38312108 DOI: 10.1002/chem.202303848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/06/2024]
Abstract
A tridentate ligand L with a P,NH,N donor motif was synthesized in few steps from commercially available precursors. Upon reaction with [MnBr(CO)5], an octahedral 18-electron complex [Mn(CO)3(L)]Br (1) is obtained in which L adopts a facial arrangement. After deprotonation of the NH group in the cationic complex unit, a neutral Mn(I) amido complex [Mn(CO)2(L-H)] (2) is formed under loss of CO. Rearrangement of L-H leads to a trigonal bipyramidal structure in which the P and N donor centers are in trans position. Further deprotonation of 2 results in a dep-blue anionic complex fragment [Mn(CO)2(L-2H)]- (3). DFT calculations and a QTAIM analysis show that the amido complex 2 contains a Mn-N bond with partial double bond character and 3 an aromatic MnN2C2 ring. The anion [Mn(CO)2(L-2H)]- reacts with Ph2PH to give a phosphido complex, which serves as phosphide transfer reagent to activated olefins. But the catalytic activity is low. However, the neutral amido complex 2 is an excellent catalyst and with loadings as low as 0.04 mol %, turn over frequencies of >40'000 h-1 can be achieved. Furthermore, secondary and primary alkyl phosphines as well as PH3 can be added in a catalytic hydrophosphination reaction to a wide range of activated olefins such as α,β-unsaturated aldehydes, ketones, esters, and nitriles. But also, vinyl pyridine and some styrene derivatives are converted into the corresponding phosphanes.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Juan José Gamboa Carballo
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC), University of Havana, Ave. S., Allende 1110, 10600 Havana, Cuba
| | - Harikrishnan Jayaprakash
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Michael Wörle
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Anna Widera
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| |
Collapse
|
4
|
Ramspoth TF, Kootstra J, Harutyunyan SR. Unlocking the potential of metal ligand cooperation for enantioselective transformations. Chem Soc Rev 2024; 53:3216-3223. [PMID: 38381077 PMCID: PMC10985679 DOI: 10.1039/d3cs00998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/22/2024]
Abstract
Metal-ligand cooperation, in which both the metal and the ligand of a transition metal complex actively participate in chemical transformations leading to enhanced reactivity or selectivity in chemical reactions, has emerged as a powerful and versatile concept in catalysis. This Viewpoint discusses the development trajectory of transition metal-based complexes as catalysts in (de)hydrogenative processes, in particular those cases where metal-ligand cooperation has been invoked to rationalise the observed high reactivities and excellent selectivities. The historical context, mechanistic aspects and current applications are discussed with the suggestion to explore the potential of the MLC mode of action of such catalysts in enantioselective transformations beyond (de)hydrogenative processes.
Collapse
Affiliation(s)
- Tizian-Frank Ramspoth
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Johanan Kootstra
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Syuzanna R Harutyunyan
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Sinnema EG, Ramspoth TF, Bouma RH, Ge L, Harutyunyan SR. Enantioselective Hydrophosphination of Terminal Alkenyl Aza-Heteroarenes. Angew Chem Int Ed Engl 2024; 63:e202316785. [PMID: 38133954 DOI: 10.1002/anie.202316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
This paper presents a Mn(I)-catalysed methodology for the enantioselective hydrophosphination of terminal alkenyl aza-heteroarenes. The catalyst operates through H-P bond activation, enabling successful hydrophosphination of a diverse range of alkenyl-heteroarenes with high enantioselectivity. The presented protocol addresses the inherently low reactivity and the commonly encountered suboptimal enantioselectivities of these challenging substrates. As an important application we show that this method facilitates the synthesis of a non-symmetric tridentate P,N,P-containing ligand like structure in just two synthetic steps using a single catalytic system.
Collapse
Affiliation(s)
- Esther G Sinnema
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tizian-Frank Ramspoth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Reinder H Bouma
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Luo Ge
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
6
|
Sun F, Chen X, Wang S, Sun F, Zhao SY, Liu W. Borrowing Hydrogen β-Phosphinomethylation of Alcohols Using Methanol as C1 Source by Pincer Manganese Complex. J Am Chem Soc 2023; 145:25545-25552. [PMID: 37962982 DOI: 10.1021/jacs.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of β-H containing alcohols, methanol, and phosphines for the synthesis of γ-hydroxy phosphines via a borrowing hydrogen strategy. In this development, methanol serves as a sustainable C1 source. A variety of aromatic and aliphatic substituted alcohols and phosphines could undergo the dehydrogenative cross-coupling process efficiently and deliver the corresponding β-phosphinomethylated alcohol products in moderate to good yields. Mechanistic studies suggest that this transformation proceeds in a sequential manner including catalytic dehydrogenation, aldol condensation, Michael addition, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Feixiang Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Siyi Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fan Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
7
|
Zhang S, Jiang N, Xiao JZ, Lin GQ, Yin L. Copper(I)-Catalyzed Asymmetric Hydrophosphination of 3,3-Disubstituted Cyclopropenes. Angew Chem Int Ed Engl 2023; 62:e202218798. [PMID: 37591817 DOI: 10.1002/anie.202218798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Herein, a copper(I)-catalyzed asymmetric hydrophosphination of 3,3-disubstituted cyclopropenes is reported. It provides a series of phosphine derivatives in high to excellent diastereo- and enantioselectivities. The methodology enjoys broad substrate scope on both 3,3-disubstituted cyclopropenes and diarylphosphines. The high stereoselectivity is attributed to both the high stability of the Cu(I)-(R,R)-QUINOXP* complex in the presence of stoichiometric HPPh2 and the produced phosphines, and the high-performance asymmetric induction of the Cu(I)-(R,R)-QUINOXP* complex. Finally, the method is used for the synthesis of new chiral phosphine-olefin compounds built on a cyclopropane skeleton, one of which serves as a wonderful ligand in Rh-catalyzed asymmetric conjugate addition of phenylboronic acid to various α,β-unsaturated compounds.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Nan Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jun-Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
8
|
Daniels BS, Hou X, Corio SA, Weissman LM, Dong VM, Hirschi JS, Nie S. Copper-Phosphido Catalysis: Enantioselective Addition of Phosphines to Cyclopropenes. Angew Chem Int Ed Engl 2023; 62:e202306511. [PMID: 37332088 PMCID: PMC11365472 DOI: 10.1002/anie.202306511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
We describe a copper catalyst that promotes the addition of phosphines to cyclopropenes at ambient temperature. A range of cyclopropylphosphines bearing different steric and electronic properties can now be accessed in high yields and enantioselectivities. Enrichment of phosphorus stereocenters is also demonstrated via a Dynamic Kinetic Asymmetric Transformation (DyKAT) process. A combined experimental and theoretical mechanistic study supports an elementary step featuring insertion of a CuI -phosphido into a carbon-carbon double bond. Density functional theory calculations reveal migratory insertion as the rate- and stereo-determining step, followed by a syn-protodemetalation.
Collapse
Affiliation(s)
- Brian S Daniels
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Lindsey M Weissman
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Shaozhen Nie
- Department of Medicinal Chemistry, GSK, 1250 S. Collegeville Rd, 19426, Collegeville, PA, USA
| |
Collapse
|
9
|
Zhou J, Meng L, Lin S, Cai B, Wang J. Palladium-catalyzed Enantio- and Regioselective Ring-Opening Hydrophosphinylation of Methylenecyclopropanes. Angew Chem Int Ed Engl 2023:e202303727. [PMID: 37186017 DOI: 10.1002/anie.202303727] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Transition metal-catalyzed hydrofunctionalization of methylenecyclopropanes (MCP) has presented a considerable challenge due to the difficult manipulation of regioselectivity and complicated reaction patterns. Herein, we report a straightforward Pd-catalyzed ring-opening hydrophosphinylation reaction of MCP via highly selective C-C bond cleavage. This allows for rapid and efficient access to a wide range of chiral allylic phosphine oxides in good yields and high enantioselectivities. Additionally, density functional theory (DFT) calculations were performed to elucidate the reaction mechanism and the origin of product enantioselectivity.
Collapse
Affiliation(s)
- Jian Zhou
- Hong Kong Baptist University, Department of Chemistry, HONG KONG
| | - Ling Meng
- Hong Kong Baptist University, Department of Chemistry, HONG KONG
| | - Shujuan Lin
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Department of Chemistry, CHINA
| | - Baohua Cai
- Southern University of Science and Technology, Department of Chemistry, CHINA
| | - Jun Wang
- Hong Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 000000, Hong Kong, HONG KONG
| |
Collapse
|
10
|
Postolache R, Pérez JM, Castiñeira Reis M, Ge L, Sinnema EG, Harutyunyan SR. Manganese(I)-Catalyzed Asymmetric Hydrophosphination of α,β-Unsaturated Carbonyl Derivatives. Org Lett 2023; 25:1611-1615. [PMID: 36892214 PMCID: PMC10028696 DOI: 10.1021/acs.orglett.2c04256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Here we report catalytic asymmetric hydrophosphination of α,β-unsaturated carbonyl derivatives using a chiral Mn(I) complex as a catalyst. Through H-P bond activation, various phosphine-containing chiral products can be accessed via hydrophosphination of various ketone-, ester-, and carboxamide-based Michael acceptors.
Collapse
Affiliation(s)
- Roxana Postolache
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Juana M Pérez
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Luo Ge
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Esther G Sinnema
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Cai B, Cui Y, Zhou J, Wang YB, Yang L, Tan B, Wang JJ. Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styrene-Phosphines. Angew Chem Int Ed Engl 2023; 62:e202215820. [PMID: 36424372 DOI: 10.1002/anie.202215820] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
A Cu/CPA co-catalytic system has been developed for achieving the direct hydrophosphinylation of alkynes with phosphine oxides in delivering novel axially chiral phosphorus-containing alkenes in high yields and excellent enantioselectivities (up to 99 % yield and 99 % ee). DFT calculations were performed to elucidate the reaction pathway and the origin of enantiocontrol. This streamlined and modular methodology establishes a new platform for the design and application of new axially chiral styrene-phosphine ligands.
Collapse
Affiliation(s)
- Baohua Cai
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Cui
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Joelle Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
12
|
Ge L, Sinnema EG, Pérez JM, Postolache R, Castiñeira Reis M, Harutyunyan SR. Enantio- and Z-selective synthesis of functionalized alkenes bearing tertiary allylic stereogenic center. SCIENCE ADVANCES 2023; 9:eadf8742. [PMID: 36638168 PMCID: PMC9839328 DOI: 10.1126/sciadv.adf8742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Olefins are ubiquitous in biologically active molecules and frequently used as building blocks in chemical transformations. However, although many strategies exist for the synthesis of stereodefined E-olefines, their thermodynamically less stable Z counterparts are substantially more demanding, while access to those bearing an allylic stereocenter with an adjacent reactive functionality remains unsolved altogether. Even the classic Wittig reaction, arguably the most versatile and widely used approach to construct Z-alkenes, falls short for the synthesis of these particularly challenging yet highly useful structural motives. Here, we report a general methodology for Z-selective synthesis of functionalized chiral alkenes that establishes readily available alkene-derived phosphines as an alternative to alkylating reagents in Wittig olefination, thus offering previously unidentified retrosynthetic disconnections for the formation of functionalized disubstituted alkenes. We demonstrate the potential of this method by structural diversification of several bioactive molecules.
Collapse
|
13
|
Yang Q, Zhou J, Wang J(J. Enantioselective copper-catalyzed hydrophosphination of alkenyl isoquinolines. Chem Sci 2023; 14:4413-4417. [PMID: 37123192 PMCID: PMC10132128 DOI: 10.1039/d2sc06950d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
An enantioselective Cu-catalyzed hydrophosphination of alkenyl quinolines was developed to access a variety of potential chiral bidentate P,N-ligands.
Collapse
Affiliation(s)
- Qingjing Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jian Zhou
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun (Joelle) Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Nowak-Król A, Dydio P. The 55 th Bürgenstock Conference under the Banner of Sustainability. Angew Chem Int Ed Engl 2022; 61:e202214722. [PMID: 36477955 DOI: 10.1002/anie.202214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
15
|
Dannenberg SG, Seth DM, Finfer EJ, Waterman R. Divergent Mechanistic Pathways for Copper(I) Hydrophosphination Catalysis: Understanding That Allows for Diastereoselective Hydrophosphination of a Tri-substituted Styrene. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Steven G. Dannenberg
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Dennis M. Seth
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Emma J. Finfer
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Rory Waterman
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| |
Collapse
|
16
|
Nowak‐Król A, Dydio P. The 55
th
Bürgenstock Conference under the Banner of Sustainability**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Agnieszka Nowak‐Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Paweł Dydio
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
17
|
Ni-catalyzed regiodivergent hydrophosphorylation of enynes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Afanasyev OI, Kliuev FS, Tsygankov AA, Nelyubina YV, Gutsul E, Novikov VV, Chusov D. Fluoride Additive as a Simple Tool to Qualitatively Improve Performance of Nickel-Catalyzed Asymmetric Michael Addition of Malonates to Nitroolefins. J Org Chem 2022; 87:12182-12195. [PMID: 36069733 DOI: 10.1021/acs.joc.2c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nowadays, design of the new chiral ligands for organometallic catalysts is often based on the step-by-step increase in their complexity to improve efficiency. Herein we describe that simple in situ addition of the fluoride source to the asymmetric organometallic catalyst can improve not only activity but also enantioselectivity. Bromide-nickel diimine complexes were found to catalyze asymmetric Michael addition in low yields and ee, but activation with fluoride leads to a significant improvement in catalyst performance. The developed approach was applied to prepare several enantioenriched GABA analogues.
Collapse
Affiliation(s)
- Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Fedor S Kliuev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Alexey A Tsygankov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,Bauman Moscow State Technical University, Baumanskaya Str., 5, 105005 Moscow, Russia
| | - Evgenii Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Valentin V Novikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
19
|
Palladium-catalyzed asymmetric hydrophosphination of internal alkynes: Atroposelective access to phosphine-functionalized olefins. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Lau S, Hood TM, Webster RL. Broken Promises? On the Continued Challenges Faced in Catalytic Hydrophosphination. ACS Catal 2022; 12:10939-10949. [PMID: 36082053 PMCID: PMC9442583 DOI: 10.1021/acscatal.2c03144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Indexed: 11/29/2022]
Abstract
![]()
In this Perspective, we discuss what we perceive to be
the continued
challenges faced in catalytic hydrophosphination chemistry. Currently
the literature is dominated by catalysts, many of which are highly
effective, that generate the same phosphorus architectures, e.g.,
anti-Markovnikov products from the reaction of activated alkenes and
alkynes with diarylphosphines. We highlight the state of the art in
stereoselective hydrophosphination and the scope and limitations of
chemoselective hydrophosphination with primary phosphines and PH3. We also highlight the progress in the chemistry of the heavier
homologues. In general, we have tried to emphasize what is missing
from our hydrophosphination armament, with the aim of guiding future
research targets.
Collapse
Affiliation(s)
- Samantha Lau
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Thomas M. Hood
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Ruth L. Webster
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
21
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
22
|
Belli RG, Yang J, Bahena EN, McDonald R, Rosenberg L. Mechanism and Catalyst Design in Ru-Catalyzed Alkene Hydrophosphination. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roman G. Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Jin Yang
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Erick Nuñez Bahena
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Robert McDonald
- X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|