1
|
Boniface D, Straube AV, Tierno P. Photocatalytic Magnetic Microgyroscopes with Activity-Tunable Precessional Dynamics. NANO LETTERS 2024; 24:14950-14956. [PMID: 39526365 PMCID: PMC11613690 DOI: 10.1021/acs.nanolett.4c03386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Magnetic nano/microrotors are passive elements spinning around an axis due to an external rotating field while remaining confined to a plane. They have been used to date in different applications related to fluid mixing, drug delivery, or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously driven by a photoactivated catalytic reaction and a rotating magnetic field. We investigate the uplift dynamics of this colloidal spinner when it precesses around its long axis while self-propelling due to the light induced decomposition of hydrogen peroxide in water. By combining experiments with theory, we show that activity emerging from the cooperative action of phoretic and osmotic forces effectively increases the gravitational torque, which counteracts the magnetic and viscous ones, and carefully measure its contribution. Finally, we demonstrate that by modulating the field amplitude, one can induce hysteresis loops in the uplift dynamics of the spinners.
Collapse
Affiliation(s)
- Dolachai Boniface
- Departament
de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Arthur V. Straube
- Zuse
Institute Berlin, Takustraße 7, 14195 Berlin, Germany
- Department
of Mathematics and Computer Science, Freie
Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Pietro Tierno
- Departament
de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat
de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Rulff H, Schmidt RF, Wei LF, Fentker K, Kerkhoff Y, Mertins P, Mall MA, Lauster D, Gradzielski M. Comprehensive Characterization of the Viscoelastic Properties of Bovine Submaxillary Mucin (BSM) Hydrogels and the Effect of Additives. Biomacromolecules 2024; 25:4014-4029. [PMID: 38832927 PMCID: PMC11238336 DOI: 10.1021/acs.biomac.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
This study presents a comprehensive characterization of the viscoelastic and structural properties of bovine submaxillary mucin (BSM), which is widely used as a commercial source to conduct mucus-related research. We conducted concentration studies of BSM and examined the effects of various additives, NaCl, CaCl2, MgCl2, lysozyme, and DNA, on its rheological behavior. A notable connection between BSM concentration and viscoelastic properties was observed, particularly under varying ionic conditions. The rheological spectra could be well described by a fractional Kelvin-Voigt model with a minimum of model parameters. A detailed proteomics analysis provided insight into the protein, especially mucin composition within BSM, showing MUC19 as the main component. Cryo-scanning electron microscopy enabled the visualization of the porous BSM network structure. These investigations give us a more profound comprehension of the BSM properties, especially those pertaining to viscoelasticity, and how they are influenced by concentration and environmental conditions, aspects relevant to the field of mucus research.
Collapse
Affiliation(s)
- Hanna Rulff
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Robert F. Schmidt
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Ling-Fang Wei
- Institute
of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kerstin Fentker
- Proteomics
Platform, Max-Delbrück-Center for
Molecular Medicine, 13125 Berlin, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Yannic Kerkhoff
- Research
Center of Electron Microscopy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Philipp Mertins
- Proteomics
Platform, Max-Delbrück-Center for
Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute
of Health at Charite, Universitätsmedizin
Berlin, 10178 Berlin, Germany
| | - Marcus A. Mall
- Berlin Institute
of Health at Charite, Universitätsmedizin
Berlin, 10178 Berlin, Germany
- Department
of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine,
Charite, Universitätsmedizin Berlin, 13353 Berlin, Germany
- German
Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Daniel Lauster
- Institute
of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Gradzielski
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| |
Collapse
|
3
|
Misra I, Kumaran V. Microfluidic mixing by magnetic particles: Progress and prospects. BIOMICROFLUIDICS 2024; 18:041501. [PMID: 39206143 PMCID: PMC11349378 DOI: 10.1063/5.0211204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Microfluidic systems have enormous potential for enabling point-of-care diagnostics due to a number of advantages, such as low sample volumes, small footprint, low energy requirements, uncomplicated setup, high surface-to-volume ratios, cost-effectiveness, etc. However, fluid mixing operations are constrained by molecular diffusion since the flow is usually in the laminar regime. The slow nature of molecular diffusion is a technological barrier to implementing fluid transformations in a reasonable time. In this context, magnetically actuated micro-mixers of different sizes, shapes, materials, and actuation techniques provide a way to enhance fluid mixing in microfluidic devices. In this paper, we review the currently existing micro-mixing technologies. From a fundamental perspective, the different magnetization models for permanent and induced dipoles are discussed. The single-particle dynamics in steady and oscillating magnetic fields is studied in order to determine the flow generated and the torque exerted on the fluid due to the magnetic particles. The effect of particle interactions, both magnetic and hydrodynamic, is examined.
Collapse
Affiliation(s)
- I. Misra
- Chemical Engineering Department, Indian Institute of Science, Bengaluru, India
| | - V. Kumaran
- Chemical Engineering Department, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
Kavishvar D, Ramachandran A. The yielding behaviour of human mucus. Adv Colloid Interface Sci 2023; 322:103049. [PMID: 38039907 DOI: 10.1016/j.cis.2023.103049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Mucus is a viscoelastic material with non-linear rheological properties such as a yield stress of the order of a few hundreds of millipascals to a few tens of pascals, due to a complex network of mucins in water along with non-mucin proteins, DNA and cell debris. In this review, we discuss the origin of the yield stress in human mucus, the changes in the rheology of mucus with the occurrence of diseases, and possible clinical applications in disease detection as well as cure. We delve into the domain of mucus rheology, examining both macro- and microrheology. Macrorheology involves investigations conducted at larger length scales (∼ a few hundreds of μm or higher) using traditional rheometers, which probe properties on a bulk scale. It is significant in elucidating various mucosal functions within the human body. This includes rejecting unwanted irritants out of lungs through mucociliary and cough clearance, protecting the stomach wall from the acidic environment as well as biological entities, safeguarding cervical canal from infections and providing a swimming medium for sperms. Additionally, we explore microrheology, which encompasses studies performed at length scales ranging from a few tens of nm to a μm. These microscale studies find various applications, including the context of drug delivery. Finally, we employ scaling analysis to elucidate a few examples in lung, cervical, and gastric mucus, including settling of irritants in lung mucus, yielding of lung mucus in cough clearance and cilial beating, spreading of exogenous surfactants over yielding mucus, swimming of Helicobacter pylori through gastric mucus, and lining of protective mucus in the stomach. The scaling analyses employed on the applications mentioned above provide us with a deeper understanding of the link between the rheology and the physiology of mucus.
Collapse
Affiliation(s)
- Durgesh Kavishvar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Vasquez PA, Walker B, Bloom K, Kolbin D, Caughman N, Freeman R, Lysy M, Hult C, Newhall KA, Papanikolas M, Edelmaier C, Forest MG. The power of weak, transient interactions across biology: A paradigm of emergent behavior. PHYSICA D. NONLINEAR PHENOMENA 2023; 454:133866. [PMID: 38274029 PMCID: PMC10806540 DOI: 10.1016/j.physd.2023.133866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A growing list of diverse biological systems and their equally diverse functionalities provides realizations of a paradigm of emergent behavior. In each of these biological systems, pervasive ensembles of weak, short-lived, spatially local interactions act autonomously to convey functionalities at larger spatial and temporal scales. In this article, a range of diverse systems and functionalities are presented in a cursory manner with literature citations for further details. Then two systems and their properties are discussed in more detail: yeast chromosome biology and human respiratory mucus.
Collapse
Affiliation(s)
- Paula A. Vasquez
- Department of Mathematics, University of South Carolina, United States of America
| | - Ben Walker
- Department of Mathematics, University of California at Irvine, United States of America
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, United States of America
| | - Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, United States of America
| | - Neall Caughman
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Canada
| | - Caitlin Hult
- Department of Mathematics, Gettysburg College, United States of America
| | - Katherine A. Newhall
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
| | - Micah Papanikolas
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| | - Christopher Edelmaier
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
- Center for Computational Biology, Flatiron Institute, United States of America
| | - M. Gregory Forest
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
6
|
Abstracts from The International Society for Aerosols in Medicine. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37906031 DOI: 10.1089/jamp.2023.ab02.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
|
7
|
Esteban Enjuto L, Robert de Saint Vincent M, Maurin M, Degano B, Bodiguel H. Sputum handling for rheology. Sci Rep 2023; 13:7695. [PMID: 37169792 PMCID: PMC10173912 DOI: 10.1038/s41598-023-34043-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] Open
Abstract
The rheology of sputum is viewed as a powerful emerging biophysical marker for monitoring muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). However, there is no unified practice to process sputa from collection to analysis, which can lead to highly variable, and sometimes inconsistent results. The main objective of this study is to bring light into the handling of sputum samples to establish a standardised and robust protocol before rheological measurements. Sputum collected from 22 CF and 10 NCFB adults, was divided into control (vortexed and fresh: non-heated and non-frozen) and three treated conditions (either non-vortexed, heated or frozen). In addition, 6 CF expectorations were used to study the dynamics of ageing over 24 h. Sputum's mechanical properties were measured with a rotational rheometer to obtain their properties at rest, elastic ([Formula: see text]) and viscous moduli ([Formula: see text]), and at the onset of flow, critical deformation ([Formula: see text]) and critical stress ([Formula: see text]). We demonstrate that heating sputum is completely destructive while freezing sputa at [Formula: see text] has no discernible effect on their rheology. We also show that the variability of rheological measurements largely resulted from the sample's macroscopic heterogeneity, and can be greatly reduced by non-destructive vortex homogenisation. Finally, we observed contrasted ageing effects as a fonction of purulence: while the viscoelasticity of purulent samples reduced by half within 6 h after collection, semi-purulent samples did not evolve. These results guide towards a robust unified protocol for simple sputum handling in rheometry. We therefore suggest to vortex and snap freeze sputum samples immediately after collection when direct testing is not possible.
Collapse
Affiliation(s)
- Lydia Esteban Enjuto
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LRP UMR5520, Grenoble, France.
- Rheonova, 1 Allée de Certèze, 38610, Gières, France.
| | | | - Max Maurin
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC, Grenoble, France
| | - Bruno Degano
- Univ. Grenoble Alpes, INSERM U1030, CHU Grenoble Alpes, Grenoble, France
| | - Hugues Bodiguel
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LRP UMR5520, Grenoble, France
| |
Collapse
|
8
|
Radiom M, Keys T, Turgay Y, Ali A, Preet S, Chesnov S, Lutz-Bueno V, Slack E, Mezzenga R. Mechanical tuning of virus-like particles. J Colloid Interface Sci 2023; 634:963-971. [PMID: 36571858 DOI: 10.1016/j.jcis.2022.12.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Virus-like particles (VLPs) are promising scaffolds for developing mucosal vaccines. For their optimal performance, in addition to design parameters from an immunological perspective, biophysical properties may need to be considered. EXPERIMENTS We investigated the mechanical properties of VLPs scaffolded on the coat protein of Acinetobacter phage AP205 using atomic force microscopy and small angle X-ray scattering. FINDINGS Investigations showed that AP205 VLP is a tough nanoshell of stiffness 93 ± 23 pN/nm and elastic modulus 0.11 GPa. However, its mechanical properties are modulated by attaching muco-inert polyethylene glycol to 46 ± 10 pN/nm and 0.05 GPa. Addition of antigenic peptides derived from SARS-CoV2 spike protein by genetic fusion increased the stiffness to 146 ± 54 pN/nm although the elastic modulus remained unchanged. These results, which are interpreted in terms of shell thickness and coat protein net charge variations, demonstrate that surface conjugation can induce appreciable changes in the biophysical properties of VLP-scaffolded vaccines.
Collapse
Affiliation(s)
- Milad Radiom
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland; Laboratory of Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.
| | - Tim Keys
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Yagmur Turgay
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Ahmed Ali
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Swapan Preet
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Serge Chesnov
- University of Zürich/ETH Zürich, Functional Genomics Centre Zürich, Zürich, Switzerland
| | | | - Emma Slack
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Junot G, Calero C, García-Torres J, Pagonabarraga I, Tierno P. Unveiling the Rolling to Kayak Transition in Propelling Nanorods with Cargo Trapping and Pumping. NANO LETTERS 2023; 23:850-857. [PMID: 36689916 DOI: 10.1021/acs.nanolett.2c03897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers undergo a dynamic transition from a rolling to a kayak-like motion due to the increase in viscous drag and acquire a finite inclination angle with respect to the plane perpendicular to the bottom surface. We explain these experimental observations with a theoretical model which considers the nanorod as a pair of ferromagnetic particles hydrodynamically interacting with a close stationary surface. Further, we quantify how efficiently microscopic cargoes can be trapped or expelled from the moving nanorod and use numerical simulations to unveil the generated hydrodynamic flow field. These propulsion regimes can be implemented in microfluidic devices to perform precise operations based on the selective sorting of microscopic cargoes.
Collapse
Affiliation(s)
- Gaspard Junot
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - José García-Torres
- Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politécnica de Catalunya (UPC), 08930Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne (EPFL), Batochime, Avenue Forel 2, 1015Lausanne, Switzerland
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| |
Collapse
|
10
|
Jory M, Donnarumma D, Blanc C, Bellouma K, Fort A, Vachier I, Casanellas L, Bourdin A, Massiera G. Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales. Interface Focus 2022; 12:20220028. [PMID: 36330325 PMCID: PMC9560788 DOI: 10.1098/rsfs.2022.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/17/2022] [Indexed: 10/16/2023] Open
Abstract
Mucus is a viscoelastic aqueous fluid that participates in the protective barrier of many mammals' epithelia. In the airways, together with cilia beating, mucus rheological properties are crucial for lung mucociliary function, and, when impaired, potentially participate in the onset and progression of chronic obstructive pulmonary disease (COPD). Samples of human mucus collected in vivo are inherently contaminated and are thus poorly characterized. Human bronchial epithelium (HBE) cultures, differentiated from primary cells at an air-liquid interface, are highly reliable models to assess non-contaminated mucus. In this paper, the viscoelastic properties of HBE mucus derived from healthy subjects, patients with COPD and from smokers are measured. Hallmarks of shear-thinning and elasticity are obtained at the macroscale, whereas at the microscale mucus appears as a heterogeneous medium showing an almost Newtonian behaviour in some extended regions and an elastic behaviour close to boundaries. In addition, we developed an original method to probe mucus adhesion at the microscopic scale using optical tweezers. The measured adhesion forces and the comparison with mucus-simulants rheology as well as mucus imaging collectively support a structure composed of a network of elastic adhesive filaments with a large mesh size, embedded in a very soft gel.
Collapse
Affiliation(s)
- Myriam Jory
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Dario Donnarumma
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Christophe Blanc
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Karim Bellouma
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Aurélie Fort
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
- Médecine Biologie Méditerranée, Montpellier, France
| | - Isabelle Vachier
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
- Médecine Biologie Méditerranée, Montpellier, France
| | - Laura Casanellas
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Arnaud Bourdin
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
| | - Gladys Massiera
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| |
Collapse
|
11
|
Berret JF. Comment on "Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions" by C. O. Ciutara and J. A. Zasadzinski, Soft Matter, 2021, 17, 5170-5182. SOFT MATTER 2022; 18:8514-8519. [PMID: 36300502 DOI: 10.1039/d2sm00653g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For applications of pulmonary surfactant delivery to the lungs, the question of rheology of the existing clinical formulations is of upmost importance. Recently, Ciutara and Zasadsinky (C. O. Ciutara and J. A. Zasadzinski, Soft Matter, 2021, 17, 5170-5182.) measured the rheological properties of Infasurf®, Survanta® and Curosurf®, three of the most used pulmonary surfactant substitutes. This study revealed that these fluids are shear-thinning and characterized by a yield stress. The results obtained by Ciutara et al. on Curosurf® differ from our results published in L.-P.-A. Thai, F. Mousseau, E. Oikonomou, M. Radiom and J.-F. Berret, Colloids Surf., B, 2019, 178, 337-345. and in L.-P.-A. Thai, F. Mousseau, E. Oikonomou, M. Radiom and J.-F. Berret, ACS Nano, 2020, 14, 466-475. In contrast, we found that Curosurf® suspensions are viscous Newtonian or slightly shear-thinning fluids, with no evidence of yield stress. The purpose of this Comment is to discuss possible causes for the discrepancy between the two studies, and to suggest that for biological fluids such as surfactant substitutes, the microrheology technique of rotational magnetic spectroscopy (MRS) can provide valuable results.
Collapse
Affiliation(s)
- Jean-François Berret
- Université Paris Cité, CNRS, Matière et Systèmes Complexes, 75013 Paris, France.
| |
Collapse
|
12
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|