1
|
Baranova KF, Titov AA, Shakirova JR, Baigildin VA, Smol'yakov AF, Valyaev DA, Ning GH, Filippov OA, Tunik SP, Shubina ES. Substituents' Effect on the Photophysics of Trinuclear Copper(I) and Silver(I) Pyrazolate-Phosphine Cages. Inorg Chem 2024; 63:16610-16621. [PMID: 39193933 DOI: 10.1021/acs.inorgchem.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A series of structurally similar trinuclear macrocyclic copper(I) and silver(I) pyrazolate complexes bearing various short-bite diphosphine R2PCH(R')PR2 ligands are reported. Upon diphosphine coordination, the planar geometry of the initial complexes undergoes bending along the line between two metal atoms coordinated to the phosphorus moieties. The complexes based on dcpm ligands (R = cyclohexyl, R' = H, Ph) do not exhibit dynamic behavior in solution at room temperature on the 31P NMR time scale as it was previously observed for similar trinuclear copper complexes bearing the dppm (R = Ph, R' = H) scaffold. All copper(I) complexes exhibit thermally activated delayed fluorescence (TADF) behavior in the solid state. Importantly, the use of aliphatic substituents on the phosphorus atoms instead of aromatic ones leads to an almost double increase in the quantum efficiency (ΦPL) of photoluminescence by eliminating nonradiative decay from the 3LCPh states of the dppm aromatic rings. The higher donating ability of the substituents in the pyrazolate ligand (CF3 vs CH3) lowers the energy of the metal-centered excited state, allowing for a significant metal impact on the T1 state. Finally, the Ag(I) complex displays an emission efficiency of approximately 14%, being the highest among known trinuclear silver(I) pyrazolate homometallic derivatives.
Collapse
Affiliation(s)
- Kristina F Baranova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Aleksei A Titov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russia
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| |
Collapse
|
2
|
Zhao ZK, He TF, Gao Q, Ren AM, Wu TS, Guo JF, Chu HY, Su ZM, Li H, Zou LY. Theoretical Investigation and Molecular Design: A Series of Tripod-Type Cu(I) Blue Light Thermally Activated Delayed Fluorescence Materials. Inorg Chem 2024. [PMID: 39231304 DOI: 10.1021/acs.inorgchem.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The photophysical properties and luminescent mechanism of a series of tripod-type Cu(I) complexes in solution and solids were comprehensively investigated through theoretical simulations. From a microscopic perspective, the experimental phenomenon is explained: (1) The intrinsic reason for the quenching of complex 1 in solution was attributed to the significant nonradiative transition caused by structural deformation; (2) In the solid, the reduced ΔEST for complex 2 effectively facilitate reverse intersystem crossing (RISC) and improves its luminescence efficiency; (3) The enhanced performance of complex 3 in solution is attributed to that its stronger steric hindrance is advantageous to decrease not only the ΔEST but also the reorganization energy through intramolecular weak interactions. Based on complex 3, the tert-butyl substituted isomeric complex 4 was designed. Complex 4 further amplifies the advantages of 3 to further promote the RISC to make full use of excitons. Meanwhile, it has an emission wavelength of 462.6 nm, which makes it an excellent candidate for high-efficiency deep-blue TADF materials. This study provides valuable information for obtaining efficient blue phosphorescence and TADF dual-channel luminescent materials.
Collapse
Affiliation(s)
- Zi-Kang Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Teng-Fei He
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Qiang Gao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Tong-Shun Wu
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Hui-Ying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Lu-Yi Zou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
3
|
Ferraro V, Bizzarri C, Bräse S. Thermally Activated Delayed Fluorescence (TADF) Materials Based on Earth-Abundant Transition Metal Complexes: Synthesis, Design and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404866. [PMID: 38984475 PMCID: PMC11426009 DOI: 10.1002/advs.202404866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Materials exhibiting thermally activated delayed fluorescence (TADF) based on transition metal complexes are currently gathering significant attention due to their technological potential. Their application extends beyond optoelectronics, in particular organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs), and include also photocatalysis, sensing, and X-ray scintillators. From the perspective of sustainability, earth-abundant metal centers are preferred to rarer second- and third-transition series elements, thus determining a reduction in costs and toxicity but without compromising the overall performances. This review offers an overview of earth-abundant transition metal complexes exhibiting TADF and their application as photoconversion materials. Particular attention is devoted to the types of ligands employed, helping in the design of novel systems with enhanced TADF properties.
Collapse
Affiliation(s)
- Valentina Ferraro
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Giobbio G, Coto PB, Lohier JF, Renaud JL, Gaillard S, Costa RD. [Ag(IPr)(bpy)][PF 6]: brightness and darkness playing with aggregation induced phosphorescence for light-emitting electrochemical cells. Dalton Trans 2024; 53:12307-12315. [PMID: 38984528 DOI: 10.1039/d4dt01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Heteroleptic silver(I) complexes have recently started to attract attention in thin-film lighting technologies as an alternative to copper(I) analogues due to the lack of flattening distortion upon excitation. However, the interpretation of their photophysical behavior is challenging going from traditional fluorescence/phosphorescence to a temperature-dependent dual emission mechanism and ligand-lock assisted thermally activated delayed fluorescence. Herein, we unveil the photoluminescence behavior of a three-coordinated Ag(I) complex with the N-heterocyclic carbene (NHC) ligand and 2,2'-bipyridine (bpy) as the N^N ligand. In contrast to its low-emissive Cu(I) complex structural analogues, a strong greenish emission was attributed to the presence of aggregates formed by π-π intermolecular interactions as revealed by the X-ray structure and aggregation induced emission (AIE) studies in solution. In addition, the temperature-dependent time-resolved spectroscopic and computational studies demonstrated that the emission mechanism is related to a phosphorescence emission mechanism of two very close lying (ΔE = 0.08 eV) excited triplet states, exhibiting a similar delocalized nature over the bipyridine ligands. Unfortunately, this favourable AIE is lost upon forming homogeneous thin films suitable for lighting devices. Though the films showed very poor emission, the electrochemical stability under device operation conditions is remarkable compared to the prior-art, highlighting the potential of [Ag(NHC)(N^N)][X] complexes in thin-film lighting.
Collapse
Affiliation(s)
- Ginevra Giobbio
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, 94315 Straubing, Germany.
| | - Pedro B Coto
- Spanish National Research Council (CSIC) and Donostia International Physics Center (DIPC), Material Physics Center (CFM), 20018 Donostia - San Sebastián, Spain.
| | | | - Jean-Luc Renaud
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France
| | - Sylvain Gaillard
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, 94315 Straubing, Germany.
| |
Collapse
|
5
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Ueno K, Konishi Y, Cui L, Harada T, Ishibashi K, Konta T, Muranaka A, Hisaeda Y, Hoshino Y, Ono T. Unraveling the Remarkable Influence of Substituents on the Emission Variation and Circularly Polarized Luminescence of Dinuclear Aluminum Triple-Stranded Helicates. Inorg Chem 2024; 63:6296-6304. [PMID: 38526299 DOI: 10.1021/acs.inorgchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study explored the development of functional dyes using aluminum, focusing on aluminum-based dinuclear triple-stranded helicates, and examined the effects of substituent variations on their structural and optical properties. Key findings revealed that the modification of methyl groups to the pyrrole positions significantly extended the conjugation system, resulting in a red shift in the absorption and emission spectra. Conversely, the modification of methyl groups at the methine positions due to steric hindrances increased the torsion angle of the ligands, leading to a blue shift in the absorption and emission spectra. A common feature across all complexes was that in the excited state, one of the three ligands underwent significant structural relaxation. This led to a pronounced Stokes shift and minimal spectra overlap with high photoluminescence behaviors. Moreover, our research extended to the optical resolution of the newly synthesized complexes by analyzing the chiroptical properties of the resulting enantiomers, including their circular dichroism and circularly polarized luminescence. These insights offer valuable contributions to the design and application of novel aluminum-based functional dyes, potentially influencing a range of fields, from materials science to optoelectronics.
Collapse
Affiliation(s)
- Kodai Ueno
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Luxia Cui
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takunori Harada
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Kohei Ishibashi
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takeru Konta
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Atsuya Muranaka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoshio Hisaeda
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Meyer M, Prescimone A, Constable EC, Housecroft CE. Introducing sterically demanding substituents and π-π-interactions into [Cu(P^P)(N^N)] + complexes. Dalton Trans 2024; 53:5453-5465. [PMID: 38414289 DOI: 10.1039/d4dt00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A series of ten N^N chelating ligands based on a 2,2'-bipyridine (bpy) metal-binding domain and featuring sterically hindering substituents in the 6- and 6,6'-positions has been synthesized and characterized. The ligands have been incorporated into a family of 15 heteroleptic complexes of type [Cu(P^P)(N^N)][PF6] where P^P is the wide bite-angle bisphosphane ligand bis(2(diphenylphosphanyl)phenyl)ether (POP) or (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (xantphos). Substituents in several of the N^N ligands ligands possess phenyl rings remotely tethered to enable intra- and intermolecular π-π-interactions in the [Cu(P^P)(N^N)]+ cations. Single crystal X-ray structures of 12 complexes are reported. The effects of the functional groups in the bpy ligand on the photophysical properties of the complexes have been studied; solid-state emission maxima range from 518 to 567 nm. Values of the solid-state photoluminescence quantum yields (PLQYs) of the [Cu(P^P)(N^N)][PF6] compounds respond to the nature of the N^N ligand. In general, we observed that the [Cu(P^P)(N^N)]+ complexes containing 6,6'-disubstituted complexes with phenyl moieties connected via a CH2CH2 or CH2CH2CH2 spacer to the bpy domain have the highest values of PLQY. The most significant compounds are [Cu(POP)((2-PhEt)2bpy)][PF6] (PLQY = 67%) and [Cu(POP)((3-PhPr)2bpy)][PF6] (PLQY = 72%) where (2-PhEt)2bpy = 6,6'-bis(2-phenylethyl)-2,2'-bipyridine and (3-PhPr)2bpy = 6,6'-bis(3-phenylpropyl)-2,2'-bipyridine. These PLQY values are among the best performing previously reported families of [Cu(P^P)(N^N)][PF6] compounds.
Collapse
Affiliation(s)
- Marco Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Edwin C Constable
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| |
Collapse
|
8
|
Sanz-Velasco A, Amargós-Reyes O, Kähäri A, Lipinski S, Cavinato LM, Costa RD, Kostiainen MA, Anaya-Plaza E. Controlling aggregation-induced emission by supramolecular interactions and colloidal stability in ionic emitters for light-emitting electrochemical cells. Chem Sci 2024; 15:2755-2762. [PMID: 38404386 PMCID: PMC10882460 DOI: 10.1039/d3sc05941c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Chromophores face applicability limitations due to their natural tendency to aggregate, with a subsequent deactivation of their emission features. Hence, there has been a fast development of aggregation induced emission (AIE) emitters, in which non-radiative motional deactivation is inhibited. However, a fine control of their colloidal properties governing the emitting performance is fundamental for their application in thin film optoelectronics. In addition, ion-based lighting devices, such as light emitting electrochemical cells (LECs), requires the design of ionic AIE emitters, whose structure allows (i) an easy ion polarizability to assist charge injection and (ii) a reversible electrochemical behavior. To date, these fundamental questions have not been addressed. Herein, the hydrophilic/hydrophobic balance of a family of cationic tetraphenyl ethene (TPE) derivatives is finely tuned by chemical design. The hydrophilic yet repulsive effect of pyridinium-based cationic moieties is balanced with hydrophobic variables (long alkyl chains or counterion chemistry), leading to (i) a control between monomeric/aggregate state ruling photoluminescence, (ii) redox behavior, and (iii) enhanced ion conductivity in thin films. This resulted in a LEC enhancement with the first ionic AIE emitters, reaching values of 0.19 lm W-1 at ca. 50 cd m-2. Overall, this design rule will be key to advance ionic active species for optoelectronics.
Collapse
Affiliation(s)
- Alba Sanz-Velasco
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| | - Olivia Amargós-Reyes
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability Schulgasse 22 94315 Straubing Germany
| | - Aya Kähäri
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| | - Sophia Lipinski
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability Schulgasse 22 94315 Straubing Germany
| | - Luca M Cavinato
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability Schulgasse 22 94315 Straubing Germany
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| | - Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| |
Collapse
|
9
|
Andelescu AA, Candreva A, Popa E, Visan A, Cretu C, La Deda M, Szerb EI. Role of the Environment Polarity on the Photophysical Properties of Mesogenic Hetero-Polymetallic Complexes. Molecules 2024; 29:750. [PMID: 38398502 PMCID: PMC10893215 DOI: 10.3390/molecules29040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
New hetero-polynuclear coordination complexes based on a pentacoordinated Zn(II) metal center with tridentate terpyridine-based ligands and monoanionic gallates functionalized with long alkyl chains containing ferrocene units were designed, synthesized and characterized using spectroscopic and analytical methods. The complexes are mesomorphic, exhibiting columnar hexagonal mesophases. The photophysical properties in a solution and in an ordered condensed state were accurately investigated and the influence of the polarity of the solvent was evidenced.
Collapse
Affiliation(s)
- Adelina A. Andelescu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| | - Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy;
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), UOS Cosenza, 87036 Rende, Italy
| | - Evelyn Popa
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| | - Alexandru Visan
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| | - Carmen Cretu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy;
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), UOS Cosenza, 87036 Rende, Italy
| | - Elisabeta I. Szerb
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| |
Collapse
|
10
|
Alvarado-Castillo MA, Cortés-Mendoza S, Barquera-Lozada JE, Delgado F, Toscano RA, Ortega-Alfaro MC, López-Cortés JG. Well-defined Cu(I) complexes based on [N,P]-pyrrole ligands catalyzed a highly endoselective 1,3-dipolar cycloaddition. Dalton Trans 2024; 53:2231-2241. [PMID: 38193761 DOI: 10.1039/d3dt03692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We herein report the synthesis and catalytic application of a new family of dinuclear Cu(I) complexes based on [N,P]-pyrrole ligands. The Cu(I) complexes (4a-d) were obtained in good yields and their catalytic properties were evaluated in the1,3-dipolar cycloaddition of azomethine ylides and electron-deficient alkenes. The air-stable complexes 4a-d exhibited high endo-diasteroselectivity to obtain substituted pyrrolidines, and the catalytic system showed excellent reactivity and wide substitution tolerance.
Collapse
Affiliation(s)
- Miguel A Alvarado-Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
- Departamento de Química Organica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico
| | - Salvador Cortés-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - José E Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - Francisco Delgado
- Departamento de Química Organica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico
| | - Ruben A Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - M Carmen Ortega-Alfaro
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510 CdMx, Mexico
| | - José G López-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| |
Collapse
|
11
|
Wang LX, Cheng SC, Liu Y, Leung CF, Liu JY, Ko CC, Lau TC, Xiang J. Synthesis, structure and photoluminescence of Cu(I) complexes containing new functionalized 1,2,3-triazole ligands. Dalton Trans 2023; 52:16032-16042. [PMID: 37850402 DOI: 10.1039/d3dt02242k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The reaction of a triazole ligand, 2-(1H-1,2,3-triazol-4-yl)pyridine (L1), with 2-bromopyridine afforded three new ligands, 2,2'-(1H-1,2,3-triazole-1,4-diyl)dipyridine (L2), 2,2'-(2H-1,2,3-triazole-2,4-diyl)dipyridine (L3) and 2,2'-(1H-1,2,3-triazole-1,5-diyl)dipyridine (L4). A series of luminescent mononuclear copper(I) complexes of these ligands [Cu(Ln)(P^P)](ClO4) [n = 1, P^P = (PPh3)2 (1); n = 1, P^P = POP (2); n = 2, P^P = (PPh3)2 (3); n = 2, P^P = POP (4); n = 3, P^P = (PPh3)2 (5); n = 3, P^P = POP (6); n = 4, P^P = (PPh3)2 (9); n = 4, P^P = POP (10)] have been obtained from the reaction of Ln with [Cu(MeCN)4]ClO4 in the presence of PPh3 and POP. L3 was also found to form dinuclear compounds [Cu2(L3)(PPh3)4](ClO4)2 (7) and [Cu2(L3)(POP)2](ClO4)2 (8). All of the Cu(I) compounds have been characterized by IR, UV/vis, CV, 1H NMR, and 31P{1H} NMR. The molecular structures of 1-3, 5, and 7 have been further determined by X-ray crystallography. In CH2Cl2 solutions, these Cu(I) complexes exhibit tunable green to orange emissions (563-621 nm) upon excitation at λex = 380 nm. In the solid state, these complexes show intense emissions and it is interesting to note that 1 and 3 are blue-light emitters. Density functional theory (DFT) calculations revealed that the lowest energy electronic transition associated with these complexes predominantly originates from metal-to-ligand charge transfer transitions (MLCT).
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
12
|
Gusev A, Braga E, Zamnius E, Kiskin M, Ali A, Baryshnikov G, Linert W. Mononuclear copper(I) complexes bearing a 3-phenyl-5-(pyridin-4-yl)-1,2,4-triazole ligand: synthesis, crystal structure, TADF-luminescence, and mechanochromic effects. Dalton Trans 2023; 52:14995-15008. [PMID: 37811719 DOI: 10.1039/d3dt02633g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Three new mononuclear heteroleptic copper(I) halide complexes, [CuL(PPh3)2X] (X = Cl, Br, I), based on 3-phenyl-5-(pyridin-4-yl)-1,2,4-triazole (L) and triphenylphosphine (PPh3) ligands, have been prepared by reaction of CuX (X = Cl, Br, I), L and PPh3 in a molar ratio of 1 : 1 : 2 in MeCN solutions. The synthesized complexes exhibit blue light emission in solutions and bright green emission in the crystal state with quantum yields of up to 100%. The luminescence decay analysis and density functional theory calculations revealed that the emission of solid samples at room temperature corresponds to the thermally activated delayed fluorescence, while that at 77 K is assigned to phosphorescence. Utilizing the studied complexes in OLED heterostructures resulted in high-performing green-emitting devices with an external quantum efficiency of up to 13.4%.
Collapse
Affiliation(s)
- Alexey Gusev
- Crimean Federal University, Simferopol, 295007, Crimea, Russia.
| | - Elena Braga
- Crimean Federal University, Simferopol, 295007, Crimea, Russia.
| | | | - Mikhail Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Amjad Ali
- Linköping University, Department of Science and Technology, Laboratory of Organic Electronics, Norrköping, SE-60174, Sweden
| | - Glib Baryshnikov
- Linköping University, Department of Science and Technology, Laboratory of Organic Electronics, Norrköping, SE-60174, Sweden
| | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Vienna, Austria
| |
Collapse
|
13
|
Jouaiti A, Ballerini L, Shen HL, Viel R, Polo F, Kyritsakas N, Haacke S, Huang YT, Lu CW, Gourlaouen C, Su HC, Mauro M. Binuclear Copper(I) Complexes for Near-Infrared Light-Emitting Electrochemical Cells. Angew Chem Int Ed Engl 2023; 62:e202305569. [PMID: 37345993 DOI: 10.1002/anie.202305569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3 MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters.
Collapse
Affiliation(s)
- Abdelaziz Jouaiti
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaires, UMR7140 Chimie de la Matiere Complexe, Université de Strasbourg & CNRS, 4 rue Blaise, Pascal, 67000, Strasbourg, France
| | - Lavinia Ballerini
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504, Université de Strasbourg & CNRS, 23 rue du Loess, 67083, Strasbourg, France
| | - Hsiang-Ling Shen
- Institute of Lighting and Energy Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| | - Ronan Viel
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504, Université de Strasbourg & CNRS, 23 rue du Loess, 67083, Strasbourg, France
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Nathalie Kyritsakas
- Service de Radiocristallographie, Fédération de chimie Le Bel - FR2010, Université de Strasbourg & CNRS, 1, rue Blaise Pascal, 67008, Strasbourg, France
| | - Stefan Haacke
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504, Université de Strasbourg & CNRS, 23 rue du Loess, 67083, Strasbourg, France
| | - Yu-Ting Huang
- Department of Applied Chemistry, Providence University, Taichung, 43301, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung, 43301, Taiwan
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg UMR7177, Université de Strasbourg & CNRS, 4 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Hai-Ching Su
- Institute of Lighting and Energy Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504, Université de Strasbourg & CNRS, 23 rue du Loess, 67083, Strasbourg, France
| |
Collapse
|
14
|
Siddiqui I, Kumar S, Tsai YF, Gautam P, Shahnawaz, Kesavan K, Lin JT, Khai L, Chou KH, Choudhury A, Grigalevicius S, Jou JH. Status and Challenges of Blue OLEDs: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2521. [PMID: 37764550 PMCID: PMC10536903 DOI: 10.3390/nano13182521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue emissions with much higher power efficiency and operation time are necessary prerequisites. This article reviews over 700 papers covering various factors, namely, the crucial role of blue emission for full-color displays and solid-state lighting, the performance status of blue OLEDs, and the systematic development of fluorescent, phosphorescent, and thermally activated delayed fluorescence blue emitters. In addition, various challenges concerning deep blue efficiency, lifetime, and approaches to realizing deeper blue emission and higher efficacy for blue OLED devices are also described.
Collapse
Affiliation(s)
- Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Yi-Fang Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Prakalp Gautam
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shahnawaz
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kiran Kesavan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jin-Ting Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Luke Khai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuo-Hsien Chou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Abhijeet Choudhury
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
15
|
Cîrcu V, Ganea CP, Secu M, Manaila-Maximean D, Marinescu GC, Popescu RG, Pasuk I. Columnar Liquid Crystals of Copper(I) Complexes with Ionic Conductivity and Solid State Emission. Molecules 2023; 28:molecules28104196. [PMID: 37241937 DOI: 10.3390/molecules28104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Two neutral copper(I) halide complexes ([Cu(BTU)2X], X = Cl, Br) were prepared by the reduction of the corresponding copper(II) halides (chloride or bromide) with a benzoylthiourea (BTU, N-(3,4-diheptyloxybenzoyl)-N'-(4-heptadecafluorooctylphenyl)thiourea) ligand in ethanol. The two copper(I) complexes show a very interesting combination of 2D supramolecular structures, liquid crystalline, emission, and 1D ionic conduction properties. Their chemical structure was ascribed based on ESI-MS, elemental analysis, IR, and NMR spectroscopies (1H and 13C), while the mesomorphic behavior was analyzed through a combination of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and powder X-ray diffraction (XRD). These new copper(I) complexes have mesomorphic properties and exhibit a hexagonal columnar mesophase over a large temperature range, more than 100 K, as evidenced by DSC studies and POM observations. The thermogravimetric analysis (TG) indicated a very good thermal stability of these samples up to the isotropization temperatures and over the whole temperature range of the liquid crystalline phase existence. Both complexes displayed a solid-state emission with quantum yields up to 8% at ambient temperature. The electrical properties of the new metallomesogens were investigated by variable temperature dielectric spectroscopy over the entire temperature range of the liquid crystalline phase. It was found that the liquid crystal phases favoured anhydrous proton conduction provided by the hydrogen-bonding networks formed by the NH…X moieties (X = halide or oxygen) of the benzoylthiourea ligand in the copper(I) complexes. A proton conductivity of 2.97 × 10-7 S·cm-1 was achieved at 430 K for the chloro-complex and 1.37 × 10-6 S·cm-1 at 440K for the related bromo-complex.
Collapse
Affiliation(s)
- Viorel Cîrcu
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, 4-12 Regina Elisabeta Bld., Sector 5, 030018 Bucharest, Romania
| | - Constantin P Ganea
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Mihail Secu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Doina Manaila-Maximean
- Department of Physics, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
| | | | - Roua Gabriela Popescu
- Asociația Independent Research, 58 Timișului, Sector 1, 012416 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Iuliana Pasuk
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| |
Collapse
|
16
|
Perspectives on the Structural Design and Luminescent Behavior of Liquid Crystalline Materials Based on Copper(I) Complexes. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
This paper provides insight into the various studies that have been carried out to date on liquid crystalline materials based on copper(I) complexes. Although the study of copper(I) complexes with respect to their liquid crystalline property is quite limited, metallomesogens prepared with different structural components and ligands from groups such as azamacrocycles, alkythiolates, ethers, isocyanides, phenanthroline, Schiff bases, pyrazolates, phosphines, biquinolines, and benzoylthioureas are reported and summarized in this review. A special section is dedicated to the discussion of emission properties of copper(I) metallomesogens.
Collapse
|
17
|
Baranov AY, Rakhmanova MI, Hei X, Samsonenko DG, Stass DV, Bagryanskaya IY, Ryzhikov MR, Fedin VP, Li J, Artem'ev AV. A new subclass of copper(I) hybrid emitters showing TADF with near-unity quantum yields and a strong solvatochromic effect. Chem Commun (Camb) 2023; 59:2923-2926. [PMID: 36799209 DOI: 10.1039/d3cc00119a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We introduce here a new subclass of copper(I) hybrid emitters simultaneously containing [CuxIy]z- anions and Cu+ cations, separated in space by a Janus head ligand. When UV-irradiated at 298 K, these unique "Two-In-One" hybrids exhibit a short-lived green TADF with near-unity quantum yield and a strong solvatochromic effect. Moreover, they manifest a strong radioluminescence upon X-ray irradiation. These findings open up new possibilities for the design of highly performing TADF materials.
Collapse
Affiliation(s)
- Andrey Yu Baranov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Dmitri V Stass
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya St., Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Irina Yu Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maxim R Ryzhikov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| |
Collapse
|
18
|
Artem'ev AV, Doronina EP, Rakhmanova MI, Hei X, Stass DV, Tarasova OA, Bagryanskaya IY, Samsonenko DG, Novikov AS, Nedolya NA, Li J. A family of CuI-based 1D polymers showing colorful short-lived TADF and phosphorescence induced by photo- and X-ray irradiation. Dalton Trans 2023; 52:4017-4027. [PMID: 36880169 DOI: 10.1039/d3dt00035d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exploiting 2-(alkylsulfonyl)pyridines as 1,3-N,S-ligands, herein we have constructed 1D CuI-based coordination polymers (CPs) bearing unprecedented (CuI)n chains and possessing remarkable photophysical properties. At room temperature, these CPs show efficient TADF, phosphorescence or dual emission in the deep-blue to red range with outstandingly short decay times of 0.4-2.0 μs and good quantum performance. Owing to great structural diversity, the CPs demonstrate a variety of emissive mechanisms, spanning from TADF of 1(M + X)LCT type to 3CC and 3(M + X)LCT phosphorescence. Moreover, the designed compounds emit strong X-ray radioluminescence with the quantum efficiency of up to an impressive 55% relative to all-inorganic BGO scintillators. The presented findings push the boundaries in designing TADF and triplet emitters with very short decay times.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Evgeniya P Doronina
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS, 1 Favorsky Str., Irkutsk, 664033 Russia
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Dmitri V Stass
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk, 630090, Russia.,Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Ol'ga A Tarasova
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS, 1 Favorsky Str., Irkutsk, 664033 Russia
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Alexander S Novikov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Nina A Nedolya
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS, 1 Favorsky Str., Irkutsk, 664033 Russia
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
19
|
Artem’ev AV, Baranov AY, Berezin AS, Stass DV, Hettstedt C, Kuzmina UA, Karaghiosoff K, Bagryanskaya IY. TADF and X-ray Radioluminescence of New Cu(I) Halide Complexes: Different Halide Effects on These Processes. Int J Mol Sci 2023; 24:ijms24065145. [PMID: 36982219 PMCID: PMC10049412 DOI: 10.3390/ijms24065145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
A series of complexes [Cu2X2(Pic3PO)2] (X = Cl, Br, I) based on tris(pyridin-2-ylmethyl)phosphine oxide (Pic3PO) has been synthesized. At 298 K, these compounds exhibit thermally activated delayed fluorescence (TADF) of 1(M+X)LCT type with λmax varying from 485 to 545 nm, and quantum efficiency up to 54%. In the TADF process, the halide effect appears as the emission intensification and bathochromic shift of λmax in the following order X = I < Br < Cl. Upon X-ray irradiation, the title compounds emit radioluminescence, the emission bands of which have the same shape as those at TADF, thereby meaning a similar radiative excited state. By contrast to TADF, the halide effect in the radioluminescence is reversed: its intensity grows in the order X = Cl < Br < I, since heavier atoms absorb X-rays more efficiently. These findings essentially contribute to our knowledge about the halide effect in the photo- and radioluminescent Cu(I) halide emitters.
Collapse
Affiliation(s)
- Alexander V. Artem’ev
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Correspondence:
| | - Andrey Yu. Baranov
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry V. Stass
- Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya St., Novosibirsk 630090, Russia
| | - Christina Hettstedt
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany
| | - Ul’yana A. Kuzmina
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
20
|
Lin YD, Lu CW, Su HC. Long-Wavelength Light-Emitting Electrochemical Cells: Materials and Device Engineering. Chemistry 2023; 29:e202202985. [PMID: 36346637 DOI: 10.1002/chem.202202985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Long-wavelength light-emitting electrochemical cells (LECs) are potential deep-red and near infrared light sources with solution-processable simple device architecture, low-voltage operation, and compatibility with inert metal electrodes. Many scientific efforts have been made to material design and device engineering of the long-wavelength LECs over the past two decades. The materials designed the for long-wavelength LECs cover ionic transition metal complexes, small molecules, conjugated polymers, and perovskites. On the other hand, device engineering techniques, including spectral modification by adjusting microcavity effect, light outcoupling enhancement, energy down-conversion from color conversion layers, and adjusting intermolecular interactions, are also helpful in improving the device performance of long-wavelength LECs. In this review, recent advances in the long-wavelength LECs are reviewed from the viewpoints of materials and device engineering. Finally, discussions on conclusion and outlook indicate possible directions for future developments of the long-wavelength LECs. This review would like to pave the way for the researchers to design materials and device engineering techniques for the long-wavelength LECs in the applications of displays, bio-imaging, telecommunication, and night-vision displays.
Collapse
Affiliation(s)
- Yan-Ding Lin
- Department of Applied Chemistry, Providence University, Taichung, 43301, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung, 43301, Taiwan
| | - Hai-Ching Su
- Institute of Lighting and Energy Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| |
Collapse
|
21
|
Strelnik I, Shamsieva A, Akhmadgaleev K, Gerasimova T, Dayanova I, Kolesnikov I, Fayzullin R, Islamov D, Musina E, Karasik A, Sinyashin O. Emission and Luminescent Vapochromism Control of Octahedral Cu 4 I 4 Complexes by Conformationally Restricted P,N Ligands. Chemistry 2023; 29:e202202864. [PMID: 36420785 DOI: 10.1002/chem.202202864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
A conformationally restricted P,N-ligand capable of the design of polynuclear copper(I) complexes was synthesized via the reaction of primary pyridylphosphine, paraformaldehyde, and benzhydrylamine. The reaction of the ligand with copper(I) iodide leads to the tetranuclear copper(I) complex with the octahedral type of copper-iodide core. Different orientation of coordination bonds of the ligands relative to the P,N2 -heterocyclic fragments and to the Cu4 I4 cores leads to the existence of two types of conformers of the complex with "compact" or "stretched" geometry of the Cu4 I4 cluster. This lability of the complex allowed for obtaining two crystalline phases displaying green or red luminescence. The TDDFT computations along with XRD structural analysis gave a strong interpretation of the green emission belonging to the "compact" form of the complex and belonging of the red emission to the "stretched" form. Moreover, both crystalline phases demonstrate the strong vapochromic responses of luminescence on the vapors of wide range of solvents.
Collapse
Affiliation(s)
- Igor Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Aliia Shamsieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Kamil Akhmadgaleev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Irina Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Ilya Kolesnikov
- Center for Optical and Laser Materials Research, Saint Petersburg State University, Sankt-Peterburg, 5 Ulianovskaya Street, 198504 Saint Petersburg, Russian Federation
| | - Robert Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Daut Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Elvira Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Andrey Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| |
Collapse
|
22
|
Tetranuclear Copper(I) and Silver(I) Pyrazolate Adducts with 1,1'-Dimethyl-2,2'-bibenzimidazole: Influence of Structure on Photophysics. Molecules 2023; 28:molecules28031189. [PMID: 36770855 PMCID: PMC9920877 DOI: 10.3390/molecules28031189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
A reaction of a cyclic trinuclear copper(I) or silver(I) pyrazolate complex ([MPz]3, M = Cu, Ag) with 1,1'-dimethyl-2,2'-bibenzimidazole (L) leads to the formation of tetranuclear adducts decorated by one or two molecules of a diimine ligand, depending on the amount of the ligand added (0.75 or 1.5 equivalents). The coordination of two L molecules stabilizes the formation of a practically idealized tetrahedral four-metal core in the case of a copper-containing complex and a distorted tetrahedron in the case of a Ag analog. In contrast, complexes containing one molecule of diimine possess two types of metals, two- and three-coordinated, forming the significantly distorted central M4 cores. The diimine ligands are twisted in these complexes with dihedral angles of ca. 50-60°. A TD-DFT analysis demonstrated the preference of a triplet state for the twisted 1,1'-dimethyl-2,2'-bibenzimidazole and a singlet state for the planar geometry. All obtained complexes demonstrated, in a solution, the blue fluorescence of the ligand-centered (LC) nature typical for free diimine. In contrast, a temperature decrease to 77 K stabilized the structure close to that observed in the solid state and activated the triplet states, leading to green phosphorescence at ca. 500 nm. The silver-containing complex Ag4Pz4L exhibited dual emission from both the singlet and triplet states, even at room temperature.
Collapse
|
23
|
Isegawa M. Mechanism of Photocatalytic CO 2 Reduction by Iron Spin-Crossover Complex with Copper Photosensitizer. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Geng Y, Zhang W, Liang JC, Zhou RS, Gong SM, Wang JR, Song JF. Two new 5-mercapto-1-phenyl-1H-tetrazole-based Cu(I) coordination polymers with double layer structures: Crystal structures, substituent effects and sensing responses to NACs. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Karaman M, Kumar Gupta A, Madayanad Suresh S, Matulaitis T, Mardegan L, Tordera D, Bolink HJ, Wu S, Warriner S, Samuel ID, Zysman-Colman E. Ionic multiresonant thermally activated delayed fluorescence emitters for light emitting electrochemical cells. Beilstein J Org Chem 2022; 18:1311-1321. [PMID: 36225727 PMCID: PMC9520854 DOI: 10.3762/bjoc.18.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
We designed and synthesized two new ionic thermally activated delayed fluorescent (TADF) emitters that are charged analogues of a known multiresonant TADF (MR-TADF) compound, DiKTa. The emission of the charged derivatives is red-shifted compared to the parent compound. For instance, DiKTa-OBuIm emits in the green (λPL = 499 nm, 1 wt % in mCP) while DiKTa-DPA-OBuIm emits in the red (λPL = 577 nm, 1 wt % in mCP). In 1 wt % mCP films, both emitters showed good photoluminescence quantum yields of 71% and 61%, and delayed lifetimes of 316.6 μs and 241.7 μs, respectively, for DiKTa-OBuIm and DiKTa-DPA-OBuIm, leading to reverse intersystem crossing rates of 2.85 × 103 s−1 and 3.04 × 103 s−1. Light-emitting electrochemical cells were prepared using both DiKTa-OBuIm and DiKTa-DPA-OBuIm as active emitters showing green (λmax = 534 nm) and red (λmax = 656 nm) emission, respectively.
Collapse
Affiliation(s)
- Merve Karaman
- Department of Material Science and Engineering, Faculty of Engineering and Architecture, Izmir Katip, Celebi University, Cigli, 35620-Izmir, Turkey
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, UK, KY16 9ST
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, UK, KY16 9ST
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Subeesh Madayanad Suresh
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, UK, KY16 9ST
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, UK, KY16 9ST
| | - Lorenzo Mardegan
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna (Valencia), Spain
| | - Daniel Tordera
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna (Valencia), Spain
| | - Henk J Bolink
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna (Valencia), Spain
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, UK, KY16 9ST
| | - Stuart Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK
| | - Ifor D Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, UK, KY16 9ST
| |
Collapse
|
26
|
Demyanov YV, Sadykov EH, Rakhmanova MI, Novikov AS, Bagryanskaya IY, Artem’ev AV. Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186059. [PMID: 36144790 PMCID: PMC9503387 DOI: 10.3390/molecules27186059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
The coordination behavior of tris(2-pyridyl)arsine (Py3As) has been studied for the first time on the example of the reactions with CuI, CuBr and AgClO4. When treated with CuI in CH2Cl2 medium, Py3As unexpectedly affords the scorpionate complex [Cu(Py3As)I]∙CH2Cl2 only, while this reaction in MeCN selectively leads to the dimer [Cu2(Py3As)2I2]. At the same time, the interaction of CuBr with Py3As exclusively gives the dimer [Cu2(Py3As)2Br2]. It is interesting to note that the scorpionate [Cu(Py3As)I]∙CH2Cl2, upon fuming with a MeCN vapor (r.t., 1 h), undergoes quantitative dimerization into the dimer [Cu2(Py3As)2I2]. The reaction of Py3As with AgClO4 produces complex [Ag@Ag4(Py3As)4](CIO4)5 featuring a Ag-centered Ag4 tetrahedral kernel. At ambient temperature, the obtained Cu(I) complexes exhibit an unusually short-lived photoluminescence, which can be tentatively assigned to the thermally activated delayed fluorescence of (M + X) LCT type (M = Cu, L = Py3As; X = halogen). For the title Ag(I) complexes, QTAIM calculations reveal the pronounced argentophilic interactions for all short Ag∙∙∙Ag contacts (3.209–3.313 Å).
Collapse
Affiliation(s)
- Yan V. Demyanov
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Evgeniy H. Sadykov
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Marianna I. Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexander S. Novikov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexander V. Artem’ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
27
|
Arbuzova SN, Verkhoturova SI, Borodina TN, Artem΄ev AV. CuI COMPLEXES BASED ON DI(2-PYRIDYL) (2-AROYLETHENYL)PHOSPHINE OXIDES: SYNTHESIS, STRUCTURE, AND DARK RED PHOTOLUMINESCENCE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622090013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Wöhler J, Meyer M, Prescimone A, Housecroft CE, Constable EC. The effects of introducing terminal alkenyl substituents into the 2,2'-bipyridine domain in [Cu(N^N)(P^P)] + coordination compounds. Dalton Trans 2022; 51:13094-13105. [PMID: 35975676 DOI: 10.1039/d2dt01799g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The N^N chelating ligands 6,6'-bis(but-3-en-1-yl)-2,2'-bipyridine (1), 6-(but-3-en-1-yl)-6'-methyl-2,2'-bipyridine (2), 6,6'-bis(pent-4-en-1-yl)-2,2'-bipyridine (3) and 6-(pent-4-en-1-yl)-6'-methyl-2,2'-bipyridine (4) have been prepared, characterized, and incorporated into the heteroleptic [Cu(N^N)(P^P)][PF6] complexes in which P^P is either POP (bis(2-(diphenylphosphanyl)phenyl)ether) or xantphos (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane). The eight coordination compounds have been fully characterized, including the single crystal structures of [Cu(1)(xantphos)][PF6], [Cu(1)(POP)][PF6]·CH2Cl2, [Cu(2)(xantphos)][PF6], [Cu(2)(POP)][PF6] and [Cu(3)(POP)][PF6]·0.5Et2O. The [Cu(N^N)(P^P)]+ cations exhibit a partially reversible or irreversible Cu+/Cu2+ oxidation at more positive potentials than the benchmark [Cu(bpy)(P^P)]+ and [Cu(Me2bpy)(P^P)]+ complexes consistent with the increase in steric hindrance of the terminal alkenyl substituents. When excited in the region of the metal-to-ligand charge transfer (MLCT) absorption, solutions of the [Cu(N^N)(P^P)][PF6] complexes are weak emitters with λmaxem in the range 565-578 nm. However, powdered samples achieve photoluminescence quantum yields in the range of 28.5 to 62.3%, with the highest PLQY found for [Cu(3)(POP)][PF6] with an excited-state lifetime, τ, of 16.1 μs. For [Cu(3)(POP)][PF6], the excited state lifetime was measured in MeTHF at 293 and 77 K, and the increase in τ from 1.77 to 59.4 μs upon cooling supports thermally activated delayed fluorescence (TADF) at ambient temperatures.
Collapse
Affiliation(s)
- Jannika Wöhler
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Marco Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Edwin C Constable
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| |
Collapse
|
29
|
Lou X, Tian Y, Wang Z. Synthesis, structures, and photophysical properties of two Cu(I) complexes supported by N-heterocyclic carbene and phosphine ligands. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two new cationic four-coordinate Cu(I) complexes supported by different chelating N-heterocyclic carbene ligands and the diphosphine ligand bis[2-(diphenylphosphino)phenyl]ether (POP) have been synthesized. The chemical structures of both complexes have been characterized by 1H NMR, 13C NMR, 31P NMR, and mass spectroscopy, and the crystal structure of one complex has been determined by single-crystal X-ray diffraction. Results of theoretical calculations indicate that the lowest energy electronic transitions of these complexes are mainly the metal-to-ligand charge transfer and ligand-to-ligand charge transfer transitions. The complexes in solid state show intense emissions with high photoluminescence quantum yields. The photophysical behavior at 298 and 77K shows that emissions of these complexes at room temperature are thermally activated delayed fluorescence mixed with phosphorescence.
Collapse
Affiliation(s)
- Xinhua Lou
- School of Food and Drug, Luoyang Normal University , Luoyang 471934 , P. R. China
| | - Yunfei Tian
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang 471934 , P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang 471934 , P. R. China
| |
Collapse
|
30
|
Visualizing the effects of salt concentration in planar polymer light-emitting electrochemical cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Diphosphine modified copper(I)-thiacalixarene supramolecular structure for effective photocurrent response and photodegradation of methylene blue. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Artem'ev AV, Davydova MP, Berezin AS, Samsonenko DG, Bagryanskaya IY, Brel VK, Hei X, Brylev KA, Artyushin OI, Zelenkov LE, Shishkin II, Li J. New Approach toward Dual-Emissive Organic-Inorganic Hybrids by Integrating Mn(II) and Cu(I) Emission Centers in Ionic Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31000-31009. [PMID: 35758694 DOI: 10.1021/acsami.2c06438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inorganic-organic hybrid luminescent materials have received great attention for their potential applications in a wide range of clean/renewable energy-related areas, including photovoltaics and solid-state lighting. Herein, we present a unique and general "Mn + Cu" approach by blending two earth-abundant luminogenic metals, manganese and copper, within a single ionic structure to construct a remarkable family of low-cost and multifunctional hybrid materials featuring dual emission, as well as triboluminescence and second-harmonic generation response. The novel hybrid materials are made of diphosphine dioxide-chelated [Mn(O∧O)3]2+ cations and various anionic [CuxIy](y-x)- clusters, ensuring manifestation of dual phosphorescence streamed from octahedral Mn2+ ions (605-648 nm) and iodocuprate anions (480-728 nm). Noteworthily, the relative ratio of the emission bands, and hence a resulting emission chromaticity, can be tuned in a wide range through modification of cluster [CuxIy](y-x)- modules. The structural diversity, enhanced robustness, and up to 100% luminescence quantum yield make the designed materials promising phosphors for lighting and sensing applications.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Maria P Davydova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - Valery K Brel
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 28, Vavilova Str., Moscow 119991, Russian Federation
| | - Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Oleg I Artyushin
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 28, Vavilova Str., Moscow 119991, Russian Federation
| | - Lev E Zelenkov
- ITMO University, Lomonosova Str. 9, 197101 St. Petersburg, Russian Federation
| | - Ivan I Shishkin
- ITMO University, Lomonosova Str. 9, 197101 St. Petersburg, Russian Federation
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
33
|
Wang R, Wu Y, Wang J, Huang H, Wang Y, Xu S, Zhao F. Synthesis, structures, and photophysical properties of three-coordinate copper(I) complexes bearing bidentate bis[(2-diphenylphosphino)phenyl]ether (POP) ligand and monodentate substituted-quinoline ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Carpenter JP, Ronson TK, Rizzuto FJ, Héliot T, Grice P, Nitschke JR. Incorporation of a Phosphino(pyridine) Subcomponent Enables the Formation of Cages with Homobimetallic and Heterobimetallic Vertices. J Am Chem Soc 2022; 144:8467-8473. [PMID: 35511929 PMCID: PMC9121369 DOI: 10.1021/jacs.2c02261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Biological systems employ multimetallic assemblies to achieve a range of functions. Here we demonstrate the preparation of metal-organic cages that contain either homobimetallic or heterobimetallic vertices. These vertices are constructed using 2-formyl-6-diphenylphosphinopyridine, which forms ligands that readily bridge between a pair of metal centers, thus enforcing the formation of bimetallic coordination motifs. Two pseudo-octahedral homometallic MI12L4 cages (MI = CuI or AgI) were prepared, with a head-to-head configuration of their vertices confirmed by X-ray crystallography and multinuclear NMR for AgI. The phosphino-pyridine subcomponent also enabled the formation of a class of octanuclear CdII4CuI4L4 tetrahedral cages, representing an initial example of self-assembled cages containing well-defined heterobimetallic vertices.
Collapse
Affiliation(s)
| | | | | | - Théophile Héliot
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Peter Grice
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
35
|
Sandoval-Pauker C, Santander-Nelli M, Dreyse P. Thermally activated delayed fluorescence in luminescent cationic copper(i) complexes. RSC Adv 2022; 12:10653-10674. [PMID: 35425025 PMCID: PMC8985689 DOI: 10.1039/d1ra08082b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/27/2022] [Indexed: 01/02/2023] Open
Abstract
In this work, the photophysical characteristics of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ complexes were described. The concept of thermally activated delayed fluorescence (TADF) and its development throughout the years was also explained. The importance of ΔE (S1-T1) and spin-orbital coupling (SOC) values on the TADF behavior of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ complexes is discussed. Examples of ΔE (S1-T1) values reported in the literature were collected and some trends were proposed (e.g. the effect of the substituents at the 2,9 positions of the phenanthroline ligand). Besides, the techniques (or calculation methods) used for determining ΔE (S1-T1) values were described. The effect of SOC in TADF was also discussed, and examples of the determination of SOC values by DFT and TD-DFT calculations are provided. The last chapter covers the applications of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ TADF complexes and the challenges that are still needed to be addressed to ensure the industrial applications of these compounds.
Collapse
Affiliation(s)
- Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso TX 79968 USA
- Departamento de Química, Universidad Técnica Federico Santa María Av. España 1680 Casilla 2390123 Valparaíso Chile
| | - Mireya Santander-Nelli
- Advanced Integrated Technologies (AINTECH) Chorrillo Uno, Parcela 21 Lampa Santiago Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins General Gana 1702 Santiago 8370854 Chile
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María Av. España 1680 Casilla 2390123 Valparaíso Chile
| |
Collapse
|
36
|
Nohara I, Wegeberg C, Devereux M, Prescimone A, Housecroft CE, Constable EC. The surprising effects of sulfur: achieving long excited-state lifetimes in heteroleptic copper(i) emitters. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:3089-3102. [PMID: 35340713 PMCID: PMC8870442 DOI: 10.1039/d1tc05591g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A series of heteroleptic [Cu(N^N)(P^P)][PF6] complexes is reported in which N^N is a di(methylsulfanyl)-1,10-phenanthroline (2,9-, 3,8- or 4,7-(MeS)2phen) or di(methoxy)-1,10-phenanthroline (2,9-, 3,8- or 4,7-(MeO)2phen) and P^P is bis(2-(diphenylphosphano)phenyl)ether (POP) or 4,5-bis(diphenylphosphano)-9,9-dimethylxanthene (xantphos). The effects of the different substituents are investigated through structural, electrochemical and photophysical studies and by using DFT and TD-DFT calculations. Introducing methylsulfanyl groups in the 2,9-, 3,8- or 4,7-positions of the phen domain alters the composition of the frontier molecular orbitals of the [Cu(N^N)(P^P)]+ complexes significantly, so that ligand-centred (LC) transitions become photophysically relevant with respect to metal-to-ligand charge transfer (MLCT). Within this series, [Cu(2,9-(MeS)2phen)(POP)][PF6] exhibits the highest photoluminescence quantum yield of 15% and the longest excited-state lifetime of 8.3 μs in solution. In the solid state and in frozen matrices at 77 K, the electronic effects of the methylsulfanyl or methoxy substituents are highlighted, thus resulting in luminescence lifetimes of 2 to 4.2 ms at 77 K with predominantly LC character for both the 3,8- and 4,7-(MeS)2phen containing complexes. The results of the investigation give new guidelines on how to influence the luminescence properties in [Cu(N^N)(P^P)]+ complexes which will aid in the development of new sustainable and efficient copper(i) emitters.
Collapse
Affiliation(s)
- Isaak Nohara
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
- Department of Chemistry, University of Basel St Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Mike Devereux
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| |
Collapse
|
37
|
Housecroft CE, Constable EC. Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chem Sci 2022; 13:1225-1262. [PMID: 35222908 PMCID: PMC8809415 DOI: 10.1039/d1sc06828h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
The use of renewable energy is essential for the future of the Earth, and solar photons are the ultimate source of energy to satisfy the ever-increasing global energy demands. Photoconversion using dye-sensitized solar cells (DSCs) is becoming an established technology to contribute to the sustainable energy market, and among state-of-the art DSCs are those which rely on ruthenium(ii) sensitizers and the triiodide/iodide (I3 -/I-) redox mediator. Ruthenium is a critical raw material, and in this review, we focus on the use of coordination complexes of the more abundant first row d-block metals, in particular copper, iron and zinc, as dyes in DSCs. A major challenge in these DSCs is an enhancement of their photoconversion efficiencies (PCEs) which currently lag significantly behind those containing ruthenium-based dyes. The redox mediator in a DSC is responsible for regenerating the ground state of the dye. Although the I3 -/I- couple has become an established redox shuttle, it has disadvantages: its redox potential limits the values of the open-circuit voltage (V OC) in the DSC and its use creates a corrosive chemical environment within the DSC which impacts upon the long-term stability of the cells. First row d-block metal coordination compounds, especially those containing cobalt, and copper, have come to the fore in the development of alternative redox mediators and we detail the progress in this field over the last decade, with particular attention to Cu2+/Cu+ redox mediators which, when coupled with appropriate dyes, have achieved V OC values in excess of 1000 mV. We also draw attention to aspects of the recyclability of DSCs.
Collapse
Affiliation(s)
- Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
38
|
Wang XF, Tan C, Sun YK, Li N, feng Y, Cheng L, Cao M. Halogen-induced Core Structural Evolution of Four Dinuclear Copper(Ι) Luminescent Coordination Compounds. CrystEngComm 2022. [DOI: 10.1039/d2ce00793b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of [Cu(CH3CN)4]ClO4 and 2-(diphenylphosphino) pyridine (dppy) along with different halogen reagents NH4X (X = Cl-, Br- and I-), four luminescent di-copper(I) coordination compounds, namely [Cu2(μ-dppy)3Cl]ClO4·H2O (1a), [Cu2(μ-dppy)3Br]ClO4 (2a), Cu2(μ-Br)2(μ-dppy)(η-dppy)2...
Collapse
|
39
|
Wu Z, Cui S, Zhao Z, He B, Li XL. Photophysical properties of homobimetallic Cu( i)–Cu( i) and heterobimetallic Cu( i)–Ag( i) complexes of 2-(6-bromo-2-pyridyl)-1 H-imidazo[4,5- f][1,10]phenanthroline. NEW J CHEM 2022. [DOI: 10.1039/d2nj00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heteronuclear Cu(i)–Ag(i) complexes show dual emission bands and enhanced luminescence compared with their isostructural homobinuclear Cu(i) complexes.
Collapse
Affiliation(s)
- Zhan Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shu Cui
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhenqin Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Bingling He
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiu-Ling Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
40
|
Artem'ev AV, Demyanov YV, Rakhmanova MI, Bagryanskaya IY. Pyridylarsine-based Cu(I) complexes showing TADF mixed with fast phosphorescence: a speeding-up emission rate using arsine ligands. Dalton Trans 2021; 51:1048-1055. [PMID: 34935846 DOI: 10.1039/d1dt03759e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Can arsine ligands be preferred over similar phosphines to design Cu(I)-based TADF materials? The present study reveals that arsines can indeed be superior to reach shorter decay times of Cu(I) emitters. This has been exemplified on a series of bis(2-pyridyl)phenylarsine-based complexes [Cu2(Py2AsPh)2X2] (X = Cl, Br, and I), the emission decay times of which are significantly shorter (2-9 μs at 300 K) than those of their phosphine analogs [Cu2(Py2PPh)2X2] (5-33 μs). This effect is caused by two factors: (i) large ΔE(S1-T1) gaps of the arsine complexes (1100-1345 cm-1), thereby phosphorescence is admixed with TADF at 300 K, thus reducing the total emission decay time compared to the TADF-only process by 5-28%; (ii) higher SOC strength of arsenic (ζl = 1202 cm-1) against phosphorus (ζl = 230 cm-1) makes the kr(T1 → S0) rate of the Cu(I)-arsine complexes by 1.3 to 4.2 times faster than that of their phosphine analogs. It is also noteworthy that the TADF/phosphorescence ratio for [Cu2(Py2AsPh)2X2] at 300 K is halogen-regulated and varies in the order: Cl (1 : 1) < Br (3 : 1) ≈ I (3.5 : 1). These findings provide a new insight into the future design of dual-mode (TADF + phosphorescence) emissive materials with reduced lifetimes.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| | - Yan V Demyanov
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| | - Marianna I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
41
|
Meyer M, Mardegan L, Tordera D, Prescimone A, Sessolo M, Bolink HJ, Constable EC, Housecroft CE. A counterion study of a series of [Cu(P^P)(N^N)][A] compounds with bis(phosphane) and 6-methyl and 6,6'-dimethyl-substituted 2,2'-bipyridine ligands for light-emitting electrochemical cells. Dalton Trans 2021; 50:17920-17934. [PMID: 34757348 PMCID: PMC8669729 DOI: 10.1039/d1dt03239a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
The syntheses and characterisations of a series of heteroleptic copper(I) compounds [Cu(POP)(Mebpy)][A], [Cu(POP)(Me2bpy)][A], [Cu(xantphos)(Mebpy)][A] and [Cu(xantphos)(Me2bpy)][A] in which [A]- is [BF4]-, [PF6]-, [BPh4]- and [BArF4]- (Mebpy = 6-methyl-2,2'-bipyridine, Me2bpy = 6,6'-dimethyl-2,2'-bipyridine, POP = oxydi(2,1-phenylene)bis(diphenylphosphane), xantphos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane), [BArF4]- = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) are reported. Nine of the compounds have been characterised by single crystal X-ray crystallography, and the consequences of the different anions on the packing interactions in the solid state are discussed. The effects of the counterion on the photophysical properties of [Cu(POP)(N^N)][A] and [Cu(xantphos)(N^N)][A] (N^N = Mebpy and Me2bpy) have been investigated. In the solid-state emission spectra, the highest energy emission maxima are for [Cu(xantphos)(Mebpy)][BPh4] and [Cu(xantphos)(Me2bpy)][BPh4] (λemmax = 520 nm) whereas the lowest energy λemmax values occur for [Cu(POP)(Mebpy)][PF6] and [Cu(POP)(Mebpy)][BPh4] (565 nm and 563 nm, respectively). Photoluminescence quantum yields (PLQYs) are noticeably affected by the counterion; in the [Cu(xantphos)(Me2bpy)][A] series, solid-state PLQY values decrease from 62% for [PF6]-, to 44%, 35% and 27% for [BF4]-, [BPh4]- and [BArF4]-, respectively. This latter series of compounds was used as active electroluminescent materials on light-emitting electrochemical cells (LECs). The luminophores were mixed with ionic liquids (ILs) [EMIM][A] ([EMIM]+ = [1-ethyl-3-methylimidazolium]+) containing the same or different counterions than the copper(I) complex. LECs containing [Cu(xantphos)(Me2bpy)][BPh4] and [Cu(xantphos)(Me2bpy)][BArF4] failed to turn on under the LEC operating conditions, whereas those with the smaller [PF6]- or [BF4]- counterions had rapid turn-on times and exhibited maximum luminances of 173 and 137 cd m-2 and current efficiencies of 3.5 and 2.6 cd A-1, respectively, when the IL contained the same counterion as the luminophore. Mixing the counterions ([PF6]- and [BF4]-) of the active complex and the IL led to a reduction in all the figures of merit of the LECs.
Collapse
Affiliation(s)
- Marco Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Lorenzo Mardegan
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Daniel Tordera
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Michele Sessolo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Henk J Bolink
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Edwin C Constable
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| |
Collapse
|