1
|
He Q, Zang S, Zeng Y, Wang B, Song X. A bifunctional fluorescent probe for dual-channel detection of H 2O 2 and HOCl in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125464. [PMID: 39603083 DOI: 10.1016/j.saa.2024.125464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) are critical reactive oxygen species (ROS) that play significant roles in regulating oxidative stress, closely tied to various human diseases. However, investigating their interplay within living cells has been challenging due to the lack of effective tools for simultaneous discrimination. Herein, we present a bifunctional fluorescent probe, PTZ-H-H, capable of simultaneously detecting H2O2 and HOCl in living cells via two distinct fluorescence channels. PTZ-H-H exhibits selective and sensitive responses, emitting red fluorescence in the presence of H2O2 and green fluorescence in response to HOCl, with detection limits of 386 nM and 16.8 nM, respectively. The probe was successfully applied in living cells, enabling real-time monitoring of intracellular H2O2 and HOCl. This study demonstrates the potential of PTZ-H-H as a powerful tool for exploring the dynamic roles of H2O2 and HOCl in various physiological and pathological processes.
Collapse
Affiliation(s)
- Qingguo He
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shunping Zang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Yuyang Zeng
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
2
|
Li H, Cheng J, Ge H, Sun J, Chen Z, Ren J, Du Y, Xu D, Yuan Z. Dopamine-supported HPLC post-column derivatization to fluorescence: Simultaneous and sensitive detection of eight tea polyphenols. Food Chem 2025; 464:141582. [PMID: 39406143 DOI: 10.1016/j.foodchem.2024.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
The effective differentiation and detection of multiple tea polyphenols are often challenging due to their subtle structural similarities. Although post-column derivatization HPLC strategies are commonly employed to distinguish multiple targets, the short physical distance between chromatographic column and detector limits reaction time, thereby reducing the derivatization efficiency. Dopamine (DA) reacts rapidly with resorcinol to form fluorescent azamonardine products, making fast fluorometric derivatization of tea polyphenols containing resorcinol motifs possible. In this study, a DA-driven rapid and post-column fluorescence derivatization method has been applied to sensitively detect eight tea polyphenols. This method is based on fluorescence derivatization and possesses low background interference, high sensitivity, and excellent reproducibility. Moreover, the practical application of this proposed fluorometric derivatization platform was further validated by simultaneous identification of multiple tea polyphenols in different tea samples. This work has great potential to become an alternative to the National Standard method for tea polyphenols determination.
Collapse
Affiliation(s)
- Hongchen Li
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Jing Cheng
- Technology Center of Changsha Customs, Hunan Academy of Inspection and Quarantine, Changsha 410004, China
| | - Hanbing Ge
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingbo Sun
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Zihan Chen
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Jiali Ren
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yi Du
- Analysis Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Zhiqin Yuan
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Prabakaran G, Xiong H. Unravelling the recent advancement in fluorescent probes for detection against reactive sulfur species (RSS) in foodstuffs and cell imaging. Food Chem 2025; 464:141809. [PMID: 39515154 DOI: 10.1016/j.foodchem.2024.141809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Sulfur-containing representative HSO3-/SO32-, H2S, and biothiols (Cys, Hcy, and GSH) present in food items and biological organisms have raised substantial global concerns about food safety due to their reactivity and potential health implications. Adhering to international health standards is essential for these compounds; in particular, plenty of challenges exist in ensuring product quality in the beverage industry. Many fluorescent probes are being employed in various spectroscopic techniques and have developed rapidly to selectively detect sulfur-related species in food products and bio-sensing for cell imaging. This comprehensive review provides a detailed overview of a wide range of fluorescent probes designed using different fluorophores for detecting reactive sulfur species (RSS) using spectroscopic techniques. Additionally, the review explores the detection of RSS components (HSO3-/SO32-, H2S, and biothiols) in food products and cell imaging using different cell lines, highlighting the crucial role of fluorescent probes in swiftly detecting these analytes in both natural and biological contexts. Furthermore, the review discusses future trends and perspectives, emphasizing the on-going progress in detecting these analytes in food products and cell imaging using various fluorescent probes.
Collapse
Affiliation(s)
- Gunasekaran Prabakaran
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
4
|
Sun L, Wang C, Zhou Z, Li Q. An integrated proteomic and phosphoproteomic landscape of chronic kidney disease. J Proteomics 2025; 311:105355. [PMID: 39547397 DOI: 10.1016/j.jprot.2024.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/27/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The prevalence of chronic kidney disease (CKD) is gradually rising worldwide. Patients often remain asymptomatic for an extended period, leaving them unaware of their condition, which can lead to progressing to end-stage renal disease and cause significant economic burden. Improved understanding of CKD pathogenesis can enhance early detection and facilitate advances in drug development. Here, we performed proteomic and phosphoproteomic analyses of the mouse unilateral ureteral obstruction model to explore the molecular mechanisms of chronic kidney injury. 474 significantly differentially expressed proteins and 96 significantly differentially expressed phosphoproteins were screened, respectively. Chronic kidney injury involves complex metabolic pathways such as citrate cycle and hematopoietic system in proteome, and mitochondrial oxidative phosphorylation suppression is a notable alteration. The phosphoproteomic analysis revealed a significant upregulation in epithelial mesenchymal transition and P53 pathways, with a corresponding increase in the phosphorylation of Jun at serine 73. Utilizing HK2 cells, we observed that the reduction oxidative phosphorylation was consistently associated with an augmentation in oxidative stress, which subsequently activated Jun and induced apoptosis. Proteins that act as hubs in these pathways may be candidate targets for CKD intervention. These findings contribute significantly to the current understanding of CKD and provide valuable insights for future studies. SIGNIFICANCE: Chronic kidney disease (CKD) incidence rising annually with varied etiologies, kidney often irreversibly fibrotic, the treatment options are limited and often ineffective due to deficient understanding of renal fibrosis mechanisms. Despite the extensive efforts and numerous omics studies conducted on renal fibrosis, to date, no study has been undertaken to investigate the role of phosphorylated proteins in UUO models. Previously, we performed a comprehensive transcriptome and proteome analysis based on the CKD model, but the potential alterations in the phosphoproteome were not addressed. Here, an integrated proteomic and phosphoproteomic landscape of CKD was completed, which was the the first phosphoproteomic profiles of UUO model. Phosphoproteomic profile suggests that the epithelial mesenchymal transition and P53 pathways is significantly activated in mouse models of kidney injury, and the core protein Jun played a key role in CKD. And a preliminary correlation between P-Jun and oxidative phosphorylation was found base on HK2 cells. Our work contributes to a deeper understanding of the disease characteristics and molecular mechanisms of CKD. Identifying potential CKD targets from proteome and phosphoproteome may provide valuable insights for early diagnosis and treatment of CKD.
Collapse
Affiliation(s)
- Linxiao Sun
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang 325000, China
| | - Cheng Wang
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiangqiang Li
- Department of General Surgery, the People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| |
Collapse
|
5
|
Wang A, Shu W, Wang Y, Liu K, Yu S, Zhang Y, Wang K, Li D, Sun Z, Sun X, Xiao H. A near-infrared fluorescent molecular rotor for viscosity detection in biosystem and fluid beverages. Food Chem 2025; 463:141458. [PMID: 39362090 DOI: 10.1016/j.foodchem.2024.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Viscosity is closely associated with physiological and pathological processes, as well as food quality. Herein, a novel fluorescent molecular rotor, BMCY-V, was presented and applied for detection of viscosity. BMCY-V contained a benzoindole unit as electron donor and a malononitrile group as acceptor. In low-viscous solvents, the rotor can freely rotate, leading to dissipation of excited-state energy. In high-viscous media, however, the free rotation of the rotor is severely restricted, thus reducing non-radiative transition and resulting in significantly enhanced fluorescence intensity. BMCY-V is extremely sensitive to viscosity, showing about 3968 times increase of fluorescence intensity at 728 nm from water to 95 % glycerol. Due to the excellent photophysical property such as near-infrared emission, BMCY-V was successfully used to visualize viscosity in live cells and in liver tissues. In addition, BMCY-V can also evaluate the thickening effect of various thickeners and visualize the changes of viscosity during deterioration of fluid drinks.
Collapse
Affiliation(s)
- Anyang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Yu Wang
- Zibo Qisu Environmental Technology Co., Ltd., Zibo 255400, PR China
| | - Kaile Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Sinian Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Zifei Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
6
|
Huang Y, Liu P, Li B, Wu C, Li Z, Zhang P, Xie X. A near-infrared ratiometric fluorescent probe for the sensing and imaging of sulfur dioxide derivatives in living systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:125013. [PMID: 39186875 DOI: 10.1016/j.saa.2024.125013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
As a reactive sulfur species, sulfur dioxide (SO2) and its derivatives play crucial role in various physiological processes, which can maintain redox homeostasis at normal levels and lead to the occurrence of many diseases at abnormal levels. So, the development of a suitable fluorescent probe is a crucial step in advancing our understanding of the role of SO2 derivatives in living organisms. Herein, we developed a near-infrared fluorescent probe (SP) based on the ICT mechanism to monitor SO2 derivatives in living organisms in a ratiometric manner. The probe SP exhibited excellent selectivity, good sensitivity, fast response rate (within 50 s), and low detection limit (1.79 µM). In addition, the cell experiment results suggested that the SP has been successfully employed for the real-time monitoring of endogenous and exogenous SO2 derivatives with negligible cytotoxicity. Moreover, SP was effective in detecting SO2 derivatives in mice.
Collapse
Affiliation(s)
- Yong Huang
- Research Center of Nano Technology and Application Engineering, School of Pharmacy, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Peilian Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore.
| | - Chongzhi Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhiyao Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Xin Xie
- Research Center of Nano Technology and Application Engineering, School of Pharmacy, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
7
|
Zhang ZY, Li ZJ, Tang YH, Hou TT, Xu L, Wang ZH, Qin TY, Wang YL, Zhu MQ. Tailoring near-infrared amyloid-β probes with high-affinity and low background based on CN and amphipathic regulatory strategies and in vivo imaging of AD mice. Talanta 2025; 281:126858. [PMID: 39260248 DOI: 10.1016/j.talanta.2024.126858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Amyloid-β (Aβ) species (Aβ fibrils and Aβ plaques), as one of the typical pathological markers of Alzheimer's disease (AD), plays a crucial role in AD diagnosis. Currently, some near-infrared I (NIR I) Aβ probes have been reported in AD diagnosis. However, they still face challenges such as strong background interference and the lack of effective probe design. In this study, we propose molecular design strategy that incorporates CN group and amphiphilic modulation to synthesize a series of amphiphilic NIR I Aβ probes, surpassing the commercial probe ThT and ThS. Theoretical calculations indicate that these probes exhibit stronger interaction with amino acid residues in the cavities of Aβ. Notably, the probes containing CN group display the ability of binding two distinct sites of Aβ, which dramatically enhanced the affinity to Aβ species. Furthermore, these probes exhibit minimal fluorescence in aqueous solution and offer ultra-high signal-to-noise ratio (SNR) for in vitro labeling, even in wash-free samples. Finally, the optimal probe DM-V2CN-PYC3 was utilized for in vivo imaging of AD mice, demonstrating its rapid penetration through the blood-brain barrier and labelling to Aβ species. Moreover, it enabled long-term monitoring for a duration of 120 min. These results highlight the enhanced affinity and superior performance of the designed NIR I Aβ probe for AD diagnosis. The molecular design strategy of CN and amphiphilic modulation presents a promising avenue for the development Aβ probes with low background in vivo/in vitro imaging for Aβ species.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ze-Jun Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ying-Hao Tang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ting-Ting Hou
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Liang Xu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Zhao-Hui Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Tian-Yi Qin
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Ya-Long Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Ming-Qiang Zhu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
8
|
Huang L, Ma L, Zhao Q, Zhu Q, She G, Mu L, Shi W. Simultaneous Imaging of pH and Peroxynitrite in the Endoplasmic Reticulum and Mitochondria: Revealing Organelle Interactions in Alzheimer's Disease Pathogenesis. Anal Chem 2024. [PMID: 39723923 DOI: 10.1021/acs.analchem.4c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
pH and peroxynitrite (ONOO-) are two critical biomarkers to unveil the corresponding status of endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are closely related to Alzheimer's disease (AD). Simultaneously monitoring pH and ONOO- fluctuations in the ER and mitochondria during AD progression is pivotal for clarifying the interplay between the disorders of the two organelles and revealing AD pathogenesis. Herein, we designed and synthesized a dual-channel fluorescent probe (DCFP) to visualize pH and ONOO- in the ER and mitochondria. DCFP possessed excellent sensitivity and selectivity to pH and ONOO- without spectral crosstalk and was utilized in monitoring the two analytes within AD model cells and larval zebrafish. Importantly, DCFP could preferentially target mitochondria in normal cells and be enriched in the ER after mitochondrial depolarization. With the aid of DCFP, the slower acidification rate of the ER than that of mitochondria induced by Aβ oligomers (AβOs) was first identified, which could be ascribed to the relief of the AβOs-triggered ER stress through the Ca2+ migration from the ER to mitochondria. Moreover, continuous exposure to AβOs led to mitochondrial Ca2+ overload, accelerating the acidification and ONOO- overproduction within mitochondria. As a result, intracellular oxidative stress levels were elevated, further exacerbating ER stress and aggravating ER acidification in turn. The advanced understanding of the potential interplay between the ER and mitochondria in this work may offer new insights and methodologies for studying AD pathogenesis. The DCFP developed in this work could also be employed to study other diseases related to ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qichen Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Dandić A, Samardžić M, Budetić M, Panić ID, Drenjančević I, Kolobarić N, Mikle G, Kovács B, Széchenyi A. Design and Characterization of Novel Naphthalimide Fluorescent Probe for H 2S Detection in Human Serum. J Fluoresc 2024:10.1007/s10895-024-04071-3. [PMID: 39714555 DOI: 10.1007/s10895-024-04071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
In this work, a novel fluorescent probe (compound 2) based on the Intramolecular charge transfer (ICT) mechanism was designed and successfully applied to determine H2S in human serum. Fluorophore 1,8-naphthalimide was chosen, while the azide group was the recognition group for H2S determination. By introducing p-toluidine moiety on the imide part of the molecule, a donor-acceptor (D-A) conjugated system was formed. Prepared compound 2 was characterized using 1H, 13C NMR spectroscopy, and elemental analysis. Fluorescence spectra measurements were carried out, and several influences on fluorescence intensity were investigated, including pH, time dependence, selective response, and influence of H2S concentration. Conducted experiments, including the calculated detection limit of the prepared fluorescent probe, which was found to be 0.085 µmol·L- 1, showing that compound 2 could be applied for H2S detection in human serum and could detect low micromolar concentrations of H2S. Finally, compound 2 was successfully applied to detect H2S in a human serum sample, whereby the concentration of H2S was 17.2 µmol·L- 1. The accuracy of the H2S determination was confirmed with the standard addition method.
Collapse
Affiliation(s)
- Andrea Dandić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Izabella Doris Panić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek,, J. J. Strossmayer University of Osijek, J. Huttlera 4, Osijek, 31000, Croatia
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek,, J. J. Strossmayer University of Osijek, J. Huttlera 4, Osijek, 31000, Croatia
| | - Gábor Mikle
- Department of General and Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
- Research Group for Selective Chemical Syntheses, HUN-REN-PTE, Ifjúság útja 6., H-7624, Pécs, Hungary
| | - Barna Kovács
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Rokus utca 4, Pécs, 7624, Hungary
| | - Aleksandar Széchenyi
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia.
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary.
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Rokus utca 4, Pécs, 7624, Hungary.
| |
Collapse
|
10
|
Ning G, Wang F, Du H, Zhang R, Huo X, Wang X, Zhou T, Zhang G, Zhang Z. Discrimination of normal/cancer cells in bioimaging through a rolling circle amplification-enhanced red carbon dots-embedded multivalent aptamers nanoplatform. Talanta 2024; 285:127436. [PMID: 39719728 DOI: 10.1016/j.talanta.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Glutathione (GSH) is a key biomarker closely associated with cancer, and its content varies greatly between normal cells and cancer cells. However, intracellular detection of GSH was challenging because existing probes not only have a long detection time but also have fluorescence in the blue-green region that overlaps with the biological matrix's spontaneous fluorescence, thus affecting the detection accuracy. Therefore, a new red fluorescent nano-probe was needed to rapidly and accurately detected GSH within the biological matrix. Herein, red carbon dots (R-CDs) synthesized via hydrothermal method using N-(4-amino phenyl) acetamide and 4-Bromo-1,2-diaminobenzene as precursors offer enhanced fluorescence that could be quenched by MnO2 nanosheets (MnO2 NS) and restored by GSH. By combining R-CDs with the AS1411 aptamer and using rolling circle amplification, a multivalent aptamer modified R-CDs assembly (Assembly@R-CDs) was created for swift cancer cell targeting. Compared to monomeric aptamer, such multivalent aptamers exhibited higher affinity and selectivity, thereby enhancing the specificity and sensitivity of detection. After the fluorescence of the multivalent assembly was quenched by MnO2 NS (Assembly@R-CDs@MnO2 NS), it could be restored when targeting cancer cells, which could realize the distinction between normal cells and cancer cells. The experiment showed that 4T1 cancer cells took up more Assembly@R-CDs@MnO2 NS than L929 normal cells and generated stronger fluorescence, indicating the high selectivity for cancer cell detection. The potential of such nanosystem for tumor diagnosis combination therapy is promising, especially considering the embedding properties of anthracene drugs such as doxorubicin in DNA carriers.
Collapse
Affiliation(s)
- Gan Ning
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaobing Huo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
11
|
Xu H, Lin S, Hua Y. Innovations in aggregation-induced emission materials for theranostics in the musculoskeletal system. Biosens Bioelectron 2024; 271:117069. [PMID: 39721462 DOI: 10.1016/j.bios.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Aggregation-induced emission (AIE) offers a promising solution for achieving lower background and more reliable signals in biomedical imaging. AIE materials also exhibiting photostability and resistance to photobleaching. These characters are crucial for monitoring musculoskeletal functions and offering targeted therapies for related diseases. This review compiles research on AIEgens targeting various molecules, cells, or tissues within the musculoskeletal system under physiological or pathological conditions and classifies them according to different clinical applications. A sort of AIEgens is applied in monitoring osteogenic differentiation and bone component analysis. Additionally, AIEgens targeting intra-articular inflammatory or rheumatic related molecules, such as reactive oxygen species, enable early-stage diagnosis and targeted therapies of arthritis. Researchers have also developed novel materials containing AIEgens for joint tissue repair. This review highlights the advantages of these applications while also exploring future demands and development directions in musculoskeletal system imaging and treatment, aiming to promote further design of AIEgens and their clinical applications in musculoskeletal diseases.
Collapse
Affiliation(s)
- Hanlin Xu
- Department of Sports Medicine, Huashan Hospital, Fudan University, No.12 Urumqi Middle Rd., Shanghai, 200040, China
| | - Shangqian Lin
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, No.138 Yixueyuan Rd., Shanghai, 200032, China
| | - YingHui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, No.12 Urumqi Middle Rd., Shanghai, 200040, China.
| |
Collapse
|
12
|
Li X, Chen H, Su Z, Zhao Q, Wang Y, Li N, Li S. Brightness Strategies toward NIR-II Emissive Conjugated Materials: Molecular Design, Application, and Future Prospects. ACS APPLIED BIO MATERIALS 2024; 7:8019-8039. [PMID: 38556979 DOI: 10.1021/acsabm.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent advances have been made in second near-infrared (NIR-II) fluorescence bioimaging and many related applications because of its advantages of deep penetration, high resolution, minimal invasiveness, and good dynamic visualization. To achieve high-performance NIR-II fluorescence bioimaging, various materials and probes with bright NIR-II emission have been extensively explored in the past few years. Among these NIR-II emissive materials, conjugated polymers and conjugated small molecules have attracted wide interest due to their native biosafety and tunable optical performance. This review summarizes the brightness strategies available for NIR-II emissive conjugated materials and highlights the recent developments in NIR-II fluorescence bioimaging. A concise, detailed overview of the molecular design and regulatory approaches is provided in terms of their high brightness, long wavelengths, and superior imaging performance. Then, various typical cases in which bright conjugated materials are used as NIR-II probes are introduced by providing step-by-step examples. Finally, the current problems and challenges associated with accessing NIR-II emissive conjugated materials for bright NIR-II fluorescence bioimaging are briefly discussed, and the significance and future prospects of these materials are proposed to offer helpful guidance for the development of NIR-II emissive materials.
Collapse
Affiliation(s)
- Xiliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Huan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Zihan Su
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
13
|
Oh YK, Yadavalli HC, Ryu MY, Shah P, Oh TR, Choi SW, Cho SK, Kim YJ, Kim JH, Yang SW. Application of fluorescence i-motif DNA silver nanocluster sensor to visualize endogenous reactive oxygen species in plant cells. PLANT CELL REPORTS 2024; 44:6. [PMID: 39676128 DOI: 10.1007/s00299-024-03398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
KEY MESSAGE A novel fluorescent i-motif DNA silver nanoclusters system has been developed for visualization of reactive oxygen species in plants, enabling the detection of intracellular signaling in plant cells. Reactive oxygen species (ROS) are crucial in plant growth, defense, and stress responses, making them vital for improving crop resilience. Various ROS sensing methods for plants have been developed to detect ROS in vitro and in vivo. However, each method comes its own advantages and disadvantages, leading to an increasing demand for a simple and effective sensory system for ROS detection in plants. Here, we introduce novel DNA silver nanoclusters (DNA/AgNCs) sensors for visualizing ROS in plants. Two sensors, C20/AgNCs and FAM-C20/AgNCs-Cy5, detect intracellular ROS signaling in response to stimuli, such as abscisic acid, salicylic acid, ethylene, and bacterial peptide elicitor flg22. Notably, FAM-C20/AgNCs-Cy5 exceeds the sensing capabilities of HyPer7, a widely recognized ROS sensor. Taken together, we suggest that fluorescent i-motif DNA/AgNCs system is an effective tool for visualizing ROS signals in plant cells. This advancement is important to advancing our understanding of ROS-mediated processes in plant biology.
Collapse
Affiliation(s)
- Young Kyoung Oh
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Moon Young Ryu
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahakro, Yeonsugu, Incheon, 21984, Korea
| | - Pratik Shah
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Tae Rin Oh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Suk Won Choi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Seok Keun Cho
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahakro, Yeonsugu, Incheon, 21984, Korea
| | - Yun Ju Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Jong Hum Kim
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Korea.
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
14
|
Yang L, Hou H, Li J. Frontiers in fluorescence imaging: tools for the in situ sensing of disease biomarkers. J Mater Chem B 2024. [PMID: 39668682 DOI: 10.1039/d4tb01867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Fluorescence imaging has been recognized as a powerful tool for the real-time detection and specific imaging of biomarkers within living systems, which is crucial for early diagnosis and treatment evaluation of major diseases. Over the years, significant advancements in this field have been achieved, particularly with the development of novel fluorescent probes and advanced imaging technologies such as NIR-II imaging, super-resolution imaging, and 3D imaging. These technologies have enabled deeper tissue penetration, higher image contrast, and more accurate detection of disease-related biomarkers. Despite these advancements, challenges such as improving probe specificity, enhancing imaging depth and resolution, and optimizing signal-to-noise ratios still remain. The emergence of artificial intelligence (AI) has injected new vitality into the designs and performances of fluorescent probes, offering new tools for more precise disease diagnosis. This review will not only discuss chemical modifications of classic fluorophores and in situ visualization of various biomarkers including metal ions, reactive species, and enzymes, but also share some breakthroughs in AI-driven fluorescence imaging, aiming to provide a comprehensive understanding of these advancements. Future prospects of fluorescence imaging for biomarkers including the potential impact of AI in this rapidly evolving field are also highlighted.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 102209, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Life Science Academy, Beijing 102209, China.
| |
Collapse
|
15
|
Bai X, Deng W, Cai J, Xia H, Bai J, Zhou M. Advancing the Validation of the Enrichment-Enhanced Detection Strategy with Au Nanoclusters for AChE Detection. Anal Chem 2024; 96:19553-19559. [PMID: 39608793 DOI: 10.1021/acs.analchem.4c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
High-sensitivity fluorescent probes provide a powerful tool for understanding life processes and functioning mechanisms. Therefore, the development of a universal strategy to optimize probes holds substantial importance. Herein, we developed a novel strategy for common probe upgrades: rather than simply pursuing a higher fluorescence intensity of the probe itself, we tried to promote the detection sensitivity by enhancing the probe-substrate interactions. Fortified with polyionic polymers, self-assembled probes could be endowed with enhanced attractions to the substrate. In this work, we took the AChE-AuNCs detection system as a typical and important example to verify this concept of the "enrichment-enhanced detection" strategy (EED strategy). Two probes, AuNCs@GC and AuNCs@CMCS, with similar composing polymers (chitosan derivatives), microstructures, fluorescence profiles, and distinct charges were delicately designed and thoroughly studied. CMCS with an abundance of negatively charged carboxy groups plays an important role in the enrichment of thiocholine through electrostatic interactions. Thus, despite having similar composing components, structures, and almost identical fluorescence profiles, the negatively charged composite shows superior sensitivity (15.2-fold enhancement) and response time (2-fold faster) compared to the AuNCs@GC, thereby validating the feasibility of the EED strategy. Overall, our work validates the EED strategy and applies it to the accurate detection of AChE activity. We believe that this strategy offers substantial insights for the generalization and enhancement of advanced nanoprobes.
Collapse
Affiliation(s)
- Xilin Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Wei Deng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jian Cai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Haiying Xia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
16
|
Li L, Li J, Liu X, Zhao X, Zhang A, Deng Y, Peng C, Cao Z, Dehaen W, Fang Y. Shortening the early diagnostic window of Hg 2+-induced liver injury with a H 2O 2-activated fluorescence/afterglow imaging assay. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136059. [PMID: 39369680 DOI: 10.1016/j.jhazmat.2024.136059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Mercury ions (Hg2+) and mercury derivatives are a serious threat to ecosystems and human health due to their toxicity, and their toxicological effects are associated with a burst of reactive oxygen species (ROS) due to the oxidative stress. Endogenous hydrogen peroxide (H2O2), a featured ROS in vivo, plays an irreplaceable role in a significant number of pathological processes. However, the exact bioeffect role that H2O2 plays in Hg2+-induced oxidative stress in a specific disease has not been well answered. In particular, optical imaging probes for H2O2 endowed with afterglow emission properties are very rare. Here, the first fluorescence/afterglow probe (FA-H2O2) for accurate and specific detection of H2O2 in cells, zebrafish, and mice under Hg2+-induced oxidative stress is reported. Moreover, FA-H2O2 in its afterglow emission enables efficient monitoring of endogenous H2O2 with a higher signal-to-noise ratio (SNR) in comparison to its fluorescence signals. More importantly, by virtue of the merits of afterglow emission that can eliminate autofluorescence, thus for the first time, shortening the diagnostic window of Hg2+-induced liver injury with FA-H2O2 via noninvasive afterglow emission tracking of H2O2 is achieved, which definitely provides a new opportunity and promising tool for early diagnosis of Hg2+-induced liver injury.
Collapse
Affiliation(s)
- Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wim Dehaen
- Department of Chemistry, Division of Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China.
| |
Collapse
|
17
|
Zhou Y, Kuang X, Yang X, Li J, Wei X, Jang WJ, Zhang SS, Yan M, Yoon J. Recent progress in small-molecule fluorescent probes for the detection of superoxide anion, nitric oxide, and peroxynitrite anion in biological systems. Chem Sci 2024; 15:19669-19697. [PMID: 39574532 PMCID: PMC11577272 DOI: 10.1039/d4sc06722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
Superoxide anion (O2˙-), nitric oxide (NO), and peroxynitrite anion (ONOO-) play essential roles in physiological and pathological processes, which are related to various symptoms and diseases. There is a growing need to develop reliable techniques for effectively monitoring the changes in these three reactive species across different molecular events. Currently, small-molecule fluorescent probes have been demonstrated to be reliable imaging tools for the optical detection and biological analysis of reactive species in biological systems due to their high spatiotemporal resolution and in situ capabilities. In consideration of the distinct features of these three reactive species, abundant fluorescent probes have been developed to meet various requirements. In this context, we systematically summarized the latest progress (2020-2023) in organic fluorescent probes for monitoring O2˙-, NO, and ONOO- in living systems. Furthermore, the working principles and biological applications of representative fluorescent probes were illustrated. Moreover, we highlighted the current challenges and future trends of fluorescent probes, offering general insights into future research.
Collapse
Affiliation(s)
- Yongqing Zhou
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 People's Republic of China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Xuan Kuang
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 People's Republic of China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 People's Republic of China
| | - Juan Li
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 People's Republic of China
| | - Xianzhe Wei
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 People's Republic of China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Shan-Shan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 People's Republic of China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 People's Republic of China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan Jinan 250022 People's Republic of China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
18
|
Zeng H, Ma X, Pan S, Han Y, Tang Y, Fan Y, Wu Y. A near-infrared frequency upconversion fluorescent probe for rapid and sensitive visual detection of sulfur dioxide. Analyst 2024. [PMID: 39569728 DOI: 10.1039/d4an01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Inflammation is a complex physiological response involving various cellular and molecular events. Sulfur dioxide (SO2), which is usually in the form of HSO3- and SO32- under physiological conditions, plays a crucial role in the regulation of inflammation and diseases. Frequency upconversion luminescence (FUCL) can realize the unique anti-Stokes process of long-wavelength excitation to short-wavelength emission; thus, it is a highly promising optical method for in vivo imaging due to its deep tissue penetration, low photo-damage, etc. Therefore, we developed a near-infrared FUCL NIRX-1 probe for the detection of HSO3-. NIRX-1 had a fast response (80 s), a low detection limit (0.43 μM), and high selectivity towards HSO3-. In addition, NIRX-1 had deep light penetration ability due to the near-infrared excitation at 808 nm and was able to detect HSO3- in living cells and mice. Lastly, NIRX-1 was employed in the imaging of HSO3- in an inflammation mouse model through FUCL imaging techniques. All these features make NIRX-1 a good candidate for the investigation of SO2-associated physiological and pathological processes.
Collapse
Affiliation(s)
- Hong Zeng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Xiao Ma
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Shufen Pan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yuting Han
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yanyan Tang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yulan Fan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yongquan Wu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| |
Collapse
|
19
|
Zhang J, Zhang Y, Han T, Mu S, Di D, Shi X, Liu X, Zhang H. Dual-Modality Accurate Visualization of Drug Synergy Based on Mass Spectrometry and Fluorescence Imaging. Anal Chem 2024; 96:18474-18482. [PMID: 39497676 DOI: 10.1021/acs.analchem.4c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
There is a potential synergistic effect between nonsteroidal anti-inflammatory drugs and hydrogen sulfide (H2S), but direct evidence for the study is lacking. With a single fluorescence detection method, it is difficult to accurately confirm the effectiveness of the synergistic effect. In this study, the fluorescent probe and the nonsteroidal anti-inflammatory drug naproxen were combined via different self-immolative spacer groups to obtain a diagnostic and therapeutic integrated fluorescent probe Nap-NP-NSB, which can release H2S. The quantitative release of H2S by Nap-NP-NSB was evaluated in vitro and in cells, and the synergistic effect of H2S and naproxen was confirmed by monitoring the treatment process of cellular inflammation and oxidative damage of gastric mucosa cells. Finally, in vivo fluorescence imaging and mass spectrometry imaging of the liver and stomach tissues and their sections were performed in the mouse model of acute hepatitis. The dual-modal detection method not only confirmed that Nap-NP-NSB had better anti-inflammatory activity and less gastric mucosal damage, but also enabled a more accurate visualization of the drug synergistic effect of naproxen and H2S. This work provides a dual visualization imaging method combining fluorescence and mass spectrometry imaging and develops a new idea for studying drug synergies based on self-immolative structures.
Collapse
Affiliation(s)
- Jinlong Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yida Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Taihe Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Duolong Di
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xuezhao Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Lu J, Zhao G, Wang Y, Wang R, Xing Y, Yu F, Dou K. A Tandem-Locked Fluorescent Probe Activated by Hypoxia and a Viscous Environment for Precise Intraoperative Imaging of Tumor and Instant Assessment of Ferroptosis-Mediated Therapy. Anal Chem 2024. [PMID: 39560437 DOI: 10.1021/acs.analchem.4c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Noninvasive fluorescence detection of tumor-associated biomarker dynamics provides immediate insights into tumor biology, which are essential for assessing the efficacy of therapeutic interventions, adapting treatment strategies, and achieving personalized diagnosis and therapy evaluation. However, due to the absence of a single biomarker that effectively reflects tumor development and progression, the currently available optical diagnostic agents that rely on "always-on" or single pathological activation frequently show nonspecific fluorescence responses and limited tumor accumulation, which inevitably compromises the accuracy and reliability of tumor imaging. Herein, based on intramolecular charge transfer (ICT) and twisted intramolecular charge-transfer (TICT) hybrid mechanisms, we report a tandem-locked probe, NTVI-Biotin, for simultaneously specific imaging-guided tumor resection and ferroptosis-mediated tumor ablation evaluation under the coactivation of nitro reductase (NTR)/viscosity. The dual-stimulus-responsive design strategy ensures that NTVI-Biotin exclusively activates near-infrared (NIR) fluorescence signals upon interaction with both NTR and elevated viscosity levels through triggering ICT on while inhibiting the TICT process. Meanwhile, functionalization with a tumor-targeting hydrophilic biotin-poly(ethylene glycol) moiety enhances tumor accumulation. The probe's dual-response and tumor-targeting design minimizes nonspecific tissue activation, allowing for precise tumor identification and lesion removal with a superior tumor-to-normal tissue (T/N > 6) ratio. More importantly, NTVI-Biotin was capable of evaluating ferroptosis-mediated chemotherapeutics by real-time monitoring of the alternations of NTR/viscosity levels. The results reveal that the increased tumor signals of NTVI-Biotin following the combination of ferroptosis and chemotherapy correlate well with the tumor growth inhibition, demonstrating the potential of NTVI-Biotin to assess therapeutic efficacy.
Collapse
Affiliation(s)
- Jiao Lu
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Guiling Zhao
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yonghai Wang
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kun Dou
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
21
|
Liu C, Qin M, Jiang L, Shan J, Sun Y. Mitochondria-Targetable Cyclometalated Iridium(III) Complex-Based Luminescence Probe for Monitoring and Assessing Treatment Response of Ferroptosis-Mediated Hepatic Ischemia-Reperfusion Injury. Inorg Chem 2024; 63:21627-21636. [PMID: 39473350 DOI: 10.1021/acs.inorgchem.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Ferroptosis plays an essential role in the pathological progression of hepatic ischemia-reperfusion injury (HIRI), which is closely related to iron-dependent lipid peroxidation. Since mitochondria are thought to be the major site of reactive oxygen species (ROS) production and iron storage, monitoring the variations of mitochondrial hypochlorous acid (HClO) (an important member of ROS) has important implications for the assessment of ferroptosis status, as well as the formulation of treatment strategies for HIRI. However, reliable imaging tools for the visualization of mitochondrial HClO and monitoring its dynamic changes in ferroptosis-mediated HIRI are still lacking. Herein, in this work, an HClO-activated near-infrared (NIR) cyclometalated iridium(III) complex-based probe, named NIR-Ir-HClO, was developed for the visual monitoring of the mitochondrial HClO fluxes in ferroptosis-mediated HIRI. The newly prepared probe showed fast response (<30 s), good sensitivity, excellent selectivity, good cell biocompatibility, and satisfactory mitochondrial-targeting performance, making it suitable for accurate monitoring of mitochondrial HClO in living cells. Moreover, visualization of the variations of mitochondrial HClO in ferroptosis-mediated HIRI and monitoring of the treatment response of ferroptosis-mediated HIRI to the ferroptosis inhibitors were achieved for the first time. All these show that probe NIR-Ir-HClO can be utilized as a reliable imaging tool for revealing the pathological mechanism of mitochondrial HClO in ferroptosis-mediated HIRI, as well as for the formulation of new treatment strategies for HIRI.
Collapse
Affiliation(s)
- Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Jiang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiongchen Shan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
22
|
Jiang Y, Liu P, Li H, Fan D, Huang Y, Zhou M, Yang T. A novel theranostic strategy for myocardial infarction through neutralization of endogenous SO 2 using an endoplasmic reticulum-targeted fluorescent probe. Eur J Med Chem 2024; 277:116778. [PMID: 39151274 DOI: 10.1016/j.ejmech.2024.116778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Myocardial infarction (MI), one of the leading causes of death worldwide, urgently needs further understanding of the pathological process and effective therapies. SO2 in endoplasmic reticulum in several cardiovascular diseases has been reported to be particularly important. However, the role of endogenous SO2 in endoplasmic reticulum in treating myocardial infarction is still ambiguous and needs to be elucidated. Herein, we developed TPA-HI-SO2 as the first endoplasmic reticulum-targeting fluorescent agent for specific imaging and detection of sulfur dioxide derivatives both in vitro and in vivo. TPA-HI-SO2 shows a highly sensitive and selective response to SO2 derivatives over other anions in aqueous solution with a satisfactory response time and detection limit. Furthermore, TPA-HI-SO2 decreased the SO2 concentration in H9C2 cells treated with H2O2 and in an MI mouse model. Most importantly, TPA-HI-SO2 protects H9C2 cells from H2O2-induced apoptosis and obviously protects against myocardial infarction in vivo through neutralization of endogenous SO2. Taken together, we developed the first ER-targeting ratiometric fluorescent probe for endogenous SO2 with excellent biocompatibility, high selectivity and sensitivity in this paper. More importantly, we demonstrated an obvious increase of the endogenous SO2 concentration in a myocardial infarction mouse model for the first time, which suggests that neutralization of endogenous SO2 in endoplasmic reticulum could be a promising therapeutic strategy for myocardial infarction.
Collapse
Affiliation(s)
- Yunhan Jiang
- Department of Cardiovascular Surgery, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Department of Cardiovascular Surgery, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huidong Li
- Research Center for Advanced Computation, School of Science, Xihua University, Chengdu, 610041, China
| | - Dongmei Fan
- Department of Cardiovascular Surgery, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yukun Huang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Tao Yang
- Department of Cardiovascular Surgery, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Li Q, Huang Y, Zhu H, Zhu Y, Yi Y, Li X, Chen H, Li B, Li D, Chang Y. NIR-I Activated Orthogonal NIR-IIb/c Emissions in a Lanthanide-Doped Nanoparticle for Fluorescence Imaging and Information Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408097. [PMID: 39348236 PMCID: PMC11600275 DOI: 10.1002/advs.202408097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Indexed: 10/02/2024]
Abstract
Applying the orthogonal principle for distinguishable second near-infrared (NIR-II) emissions has brought new dimensions for ratio fluorescence imaging (RFI) detection and information encryption, deepening the tissue detection depth and improving signal-to-noise ratio and information security. However, the orthogonal NIR-II emissions underlying these advanced optical applications have been reported only in heterogeneous structures and mixtures, limiting their practicality and potential impact. Herein, NIR-I-activated orthogonal NIR-IIb/c (1530/1825 nm) emissions nanoparticles (ONNPs) are developed by spatially separated doping of Tm3+ and Er3+ emitter upon switching 808 and 980 nm excitations. RFI techniques and orthogonal NIR-II emission ONNPs are used to demonstrate vessel depth detection based on wavelength-dependent optical attenuation properties in tissue. The superiority of the optical coding and encoding process in a 4 × 1 binary matrix is demonstrated for anticounterfeiting and decryption imaging of quick-response (QR) code for information storage. The research progress of this NIR-II orthogonal emissions probe will drive the development of biomedical sensing, imaging safety, and future biophotonics technologies.
Collapse
Affiliation(s)
- Qiqing Li
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
- State Key Laboratory on Integrated OptoelectronicsKey Laboratory of Advanced Gas SensorsCollege of Electronic Science and EngineeringJilin UniversityChangchunJilin130033China
| | - Yuanping Huang
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilin130033China
| | - Haoyu Zhu
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
- Northeast Normal UniversityChangchunJilin130033China
| | - Yaqi Zhu
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
- Northeast Normal UniversityChangchunJilin130033China
| | - Yuexi Yi
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
- Northeast Normal UniversityChangchunJilin130033China
| | - Xiaodan Li
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilin130033China
| | - Haoran Chen
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
| | - Bin Li
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
| | - Dabing Li
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
| | - Yulei Chang
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
| |
Collapse
|
24
|
Liu Y, Song J, Li Y, Hou P, Wang H, Wang J, He C, Chen S. A lysosome-targeted fluorescent probe for thiol detection in drug analysis and multiple biological systems. Anal Bioanal Chem 2024; 416:5763-5777. [PMID: 39191938 DOI: 10.1007/s00216-024-05495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Biothiols, characterized by their unique sulfhydryl (-SH) groups, possess excellent antioxidant properties, effectively neutralizing the damage to cellular structures caused by reactive oxygen species (ROS) in living organisms. Additionally, lysosomes play a crucial role in decomposing damaged biomolecules through the action of their internal enzymes, regulating the cellular redox state, and mitigating oxidative stress. To facilitate rapid monitoring of intracellular biothiols, particularly within lysosomes, we constructed a lysosome-targeted biothiol fluorescent probe, PHL-DNP, in this study. PHL-DNP exhibited excellent photophysical properties in an aqueous test system, including strong fluorescence enhancement response, excellent selectivity, and low detection limits (Cys 16.5 nM, Hcy 16.8 nM, GSH 21.3 nM, Cap 26.6 nM). These attributes enabled easy and efficient qualification of Cys on test strips and accurate determination of the effective content of captopril tablets. Notably, PHL-DNP demonstrated low cytotoxicity and precise lysosomal targeting. Through bioimaging, PHL-DNP not only monitored changes in biothiol levels under oxidative stress but also assessed biothiols in complex biological systems such as live HeLa cells, zebrafish, tumor tissue sections, and radish roots. This provides a promising tool for quantitative analysis of biothiols, disease marker detection, and drug testing.
Collapse
Affiliation(s)
- Yitong Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Juan Song
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Yan Li
- Department of Pharmacy, Joint Logistics Support Force 961 Hospital, Qiqihar, 161006, PR China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Jiaming Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Chuan He
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China.
| |
Collapse
|
25
|
Dong C, Wang Y, Chen T, Ren W, Gao C, Ma X, Gao X, Wu A. Carbon Dots in the Pathological Microenvironment: ROS Producers or Scavengers? Adv Healthc Mater 2024; 13:e2402108. [PMID: 39036817 DOI: 10.1002/adhm.202402108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 07/23/2024]
Abstract
Reactive oxygen species (ROS), as metabolic byproducts, play pivotal role in physiological and pathological processes. Recently, studies on the regulation of ROS levels for disease treatments have attracted extensive attention, mainly involving the ROS-induced toxicity therapy mediated by ROS producers and antioxidant therapy by ROS scavengers. Nanotechnology advancements have led to the development of numerous nanomaterials with ROS-modulating capabilities, among which carbon dots (CDs) standing out as noteworthy ROS-modulating nanomedicines own their distinctive physicochemical properties, high stability, and excellent biocompatibility. Despite progress in treating ROS-related diseases based on CDs, critical issues such as rational design principles for their regulation remain underexplored. The primary cause of these issues may stem from the intricate amalgamation of core structure, defects, and surface states, inherent to CDs, which poses challenges in establishing a consistent generalization. This review succinctly summarizes the recently progress of ROS-modulated approaches using CDs in disease treatment. Specifically, it investigates established therapeutic strategies based on CDs-regulated ROS, emphasizing the interplay between intrinsic structure and ROS generation or scavenging ability. The conclusion raises several unresolved key scientific issues and prominent technological bottlenecks, and explores future perspectives for the comprehensive development of CDs-based ROS-modulating therapy.
Collapse
Affiliation(s)
- Chen Dong
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yanan Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
| |
Collapse
|
26
|
Jiang Z, Wang J, Tian M, Zhou L, Kong X, Yan M. Real time precisely tracing the fluctuations of mitochondrial SO 2 in cells during ferroptosis and tissues using a mitochondrial-immobilized ratiometric fluorescent probe. Talanta 2024; 279:126654. [PMID: 39106645 DOI: 10.1016/j.talanta.2024.126654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Mitochondrial sulfur dioxide (SO2) plays important roles in physiological and pathological activities. Unfortunately, it is lack of a reliable tool to precisely visualize the mitochondrial SO2 and elaborate its complicated functions in various cytoactivities. Here we report a mitochondrial-immobilized fluorescent probe PM-Cl consisting of coumarin and benzyl chloride modified benzothiazole, which enables selective visualization of mitochondrial SO2via chemical immobilization. The spectral results demonstrated that probe PM-Cl could respond to SO2 with high selectivity and sensitivity. Co-localization and the fluorescence of cytolysis extraction verified the excellent mitochondrial targeting and anchoring abilities. Due to the chemical immobilization, probe PM-Cl could firmly retain into mitochondria after stimulation of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and H2O2. Significantly, a series of fluorescence images are indicative of capability for detecting the fluctuations of SO2 in mitochondria during ferroptosis. Furthermore, PM-Cl also could visualize SO2 in myocardium and muscle tissues after the stimulation of CCCP. Taken together, probe PM-Cl is a very potential molecular tool for precisely detecting mitochondrial SO2 to explore its complex functions in physiological and pathological activities.
Collapse
Affiliation(s)
- Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Jingchao Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| |
Collapse
|
27
|
Wu Z, Zhao T, Jiang X, Zhang D, Wang F, Ren X, Wang Z, Wang E, Ren J. A near-infrared fluorescent probe with a large Stokes shift for the detection and imaging of biothiols in vitro and in vivo. Anal Bioanal Chem 2024; 416:6485-6495. [PMID: 39322801 DOI: 10.1007/s00216-024-05537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
In this study, a new near-infrared (NIR) fluorescent turn-on probe featuring a large Stokes shift (198 nm) was developed for the detection of biothiols. The probe was based on a dicyanoisophorone derivative serving as the fluorophore and a 2,4-dinitrobenzenesulfonyl (DNBS) group functioning as both a recognition site and a fluorescence quencher. In the absence of biothiols, the fluorescence of the probe was low due to the photoinduced electron transfer (PET) effect between the fluorophore and DNBS. Upon the presence of biothiols, the DNBS group underwent a nucleophilic aromatic substitution reaction with the sulfhydryl group of biothiols, leading to the release of the fluorophore and a notable emission peak at 668 nm. This developed probe exhibited exceptional selectivity and sensitivity to biothiols in solution, with an impressive detection limit of 28 nM for cysteine (Cys), 22 nM for homocysteine (Hcy), and 24 nM for glutathione (GSH). Furthermore, the probe demonstrated its applicability by successfully visualizing both endogenous and exogenous biothiols in living systems.
Collapse
Affiliation(s)
- Zhengjun Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, People's Republic of China
| | - Taotao Zhao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xingyue Jiang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, People's Republic of China
| | - Dan Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, People's Republic of China
| | - Feiyi Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xiaoming Ren
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, People's Republic of China
| | - Zhao Wang
- Wuhan Business University, Wuhan, 430056, People's Republic of China.
| | - Erfei Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Jun Ren
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
28
|
Zhao B, Liu J, Zhu C, Cheng X. Chitosan-naphthalimide probes for dual channel recognition of HClO and H 2S in cells and their application in photodynamic therapy. Int J Biol Macromol 2024; 281:136517. [PMID: 39426764 DOI: 10.1016/j.ijbiomac.2024.136517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The combination of bio-imaging with photodynamic therapy (PDT) to accomplish theranostics is promising in cancer treatment. Three chitosan-naphthalimide probes were studied in this work. 4-(5-Bromothiophen-2-yl)-1,8-naphthalic anhydride was first synthesized, and then reacted with chitosan to obtain the macromolecules (CS-N-Br). The recognition group thiomorpholine or its derivatives were introduced into CS-N-Br to obtain nano-probes (CS-N-ML, CS-N-BSZ, CS-N-FSQ) eventually. The studies revealed that CS-N-ML and CS-N-FSQ exhibit high selectivity and can specifically recognize HClO and H2S. CS-N-ML and CS-N-FSQ can perform exogenous and endogenous confocal imaging of HClO and H2S in cells also. CS-N-ML's ability to target lysosomes positions indicated it could act as a lysosome-specific probe. It was discovered that the probes generate superoxide anions (O2•-) via a Type I mechanism. This discovery endows the probes with high photosensitizing activity even under hypoxic conditions. There is a positive correlation between the extent of the conjugated system and the photosensitivity of the probes, indicating that an enhanced conjugation leads to increased photosensitivity. Upon light irradiation, the probes generate ROS within HeLa cells. These results suggested that these probes can achieve theranostics for diseases associated with abnormal levels of HClO and H2S.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Jun Liu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Caiqiong Zhu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
29
|
Liang S, Li MH, Qi ML, Hui H, Zhang HP, Zhou J, Wang L, Yang YW. Reactive Oxygen Species-Responsive Pillararene-Embedded Covalent Organic Frameworks with Amplified Antimicrobial Photodynamic Therapy for the Targeted Elimination of Periodontitis Pathogens. NANO LETTERS 2024; 24:13708-13717. [PMID: 39417607 DOI: 10.1021/acs.nanolett.4c03788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems possess immense potential for targeted delivery and controlled release of therapeutics. However, the rapid responsiveness to ROS and sustained release of antibacterial drugs are often limited by the challenging microenvironment of periodontitis. Integrating ROS-responsive drug delivery systems with photocatalytic technologies presents a strategic approach to overcome these limitations. Herein, a pillararene-embedded covalent organic framework (PCOF) incorporating the antibacterial prodrug thioacetal (TA) has been developed to treat periodontitis. This drug-loaded nanoplatform, namely TA-loaded PCOF, utilizes the self-amplifying ROS property to enhance therapeutic efficacy. PCOFs demonstrate exceptional photosensitivity and ROS generation capabilities when employed as drug carriers. When exposed to ROS, TA within the nanoplatform was activated and cleaved into cinnamaldehyde (CA), a highly potent antibacterial compound. By leveraging visible light to activate the site-specific infection targeting, TA-loaded PCOF effectively alleviated periodontitis, thereby advancing the field of antibacterial drug delivery systems.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Meng-Hao Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Man-Lin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Hui Hui
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hong-Pu Zhang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jing Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
30
|
Kong F, Liu H, Huang J, Qin J. Imaging of ONOO - fluctuations during drug-induced liver/kidney injury in vitro and in vivo via a dicyanoisophorone-based NIR fluorescent probe with a large Stokes shift. J Mater Chem B 2024; 12:10004-10011. [PMID: 39246117 DOI: 10.1039/d4tb01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current clinical indicators for assessing liver/kidney injury are functional rather than injury indicators, which may cause some delays in the diagnosis of drug-induced liver injury (DILI) and kidney injury (DIKI). Therefore, the development of noninvasive and real-time methods for the effective diagnosis of DILI/DIKI is of great benefit to their clinical management. Herein, we constructed a dicyanoisophorone-based near-infrared (NIR) fluorescent probe (PNDP). Upon the addition of ONOO-, the probe exhibits 111.4-fold fluorescence enhancement at 665 nm with a large Stokes shift of 175 nm as well as excellent selectivity, strong anti-interference capability, and a low limit of detection (118.9 nmol L-1). More significantly, the PNDP was successfully employed for the sensitive detection of ONOO- in living cells and DILI/DIKI mice models. In vitro and in vivo bioimaging experiments demonstrated that the PNDP has greater versatility and promising potential for use as a diagnostic agent for the diagnosis of drug-induced hepatotoxicity and nephrotoxicity by monitoring ONOO- fluctuations.
Collapse
Affiliation(s)
- Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Hengqing Liu
- School of Life Science, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Jie Huang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Jingcan Qin
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China.
| |
Collapse
|
31
|
Yang Z, Wang Z, Peng Y, Yang H, Wang Q, Jia X, Liu X. A zero-background fluorescent probe for sensing and imaging of glutathione via the "covalent-assembly" approach. Org Biomol Chem 2024; 22:8024-8031. [PMID: 39258411 DOI: 10.1039/d4ob01181c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Developing selective and sensitive fluorescent probes for the detection of glutathione (GSH) concentration and intracellular distribution is of great significance for early diagnosis and treatment of diseases such as liver injury and cancer since GSH plays irreplaceable roles in regulating intracellular redox homeostasis. Herein, we present a new fluorescent probe that can be specifically activated by GSH through the conjugate addition and hydrolysis induced covalent-assembly approach for achieving zero-background interference fluorescence off-on sensing. Besides, the probe exhibited prominent selectivity and sensitivity, a low detection limit and cytotoxicity, thus successfully realizing specific real-time monitoring and tracking of GSH levels in living cells. As a consequence, this work might provide a potentially promising candidate for validating the function of GSH in various physiological and pathological processes, which is beneficial for early diagnosis and therapeutics of related diseases.
Collapse
Affiliation(s)
- Zheng Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, P. R. China
| | - Zhiyao Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
| | - Ying Peng
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
| | - Hao Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
| | - Qian Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
| | - Xiaodan Jia
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, P. R. China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, P. R. China
| |
Collapse
|
32
|
Li R, Fu D, Yuan X, Niu G, Fan Y, Shi J, Yang Y, Ye J, Han J, Kang Y, Ji X. Oral Heterojunction Coupling Interventional Optical Fiber Mediates Synergistic Therapy for Orthotopic Rectal Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404741. [PMID: 39031679 DOI: 10.1002/smll.202404741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 07/22/2024]
Abstract
Catalytic therapy has shown great potential for clinical application. However, conventional catalytic therapies rely on reactive oxygen species (ROS) as "therapeutic drugs," which have limitations in effectively inhibiting tumor recurrence and metastasis. Here, a biomimetic heterojunction catalyst is developed that can actively target orthotopic rectal cancer after oral administration. The heterojunction catalyst is composed of quatrefoil star-shaped BiVO4 (BVO) and ZnIn2S4 (ZIS) nanosheets through an in situ direct growth technique. Poly-norepinephrine and macrophage membrane coatings afford the biomimetic heterojunction catalyst (BVO/ZIS@M), which has high rectal cancer targeting and retention abilities. The coupled optical fiber intervention technology activates the multicenter coordination of five catalytic reactions of heterojunction catalysts, including two reduction reactions (O2→·O2 - and CO2→CO) and three oxidation reactions (H2O→·OH, GSH→GSSG, and LA→PA). These catalytic reactions not only induce immunogenic death in tumor cells through the efficient generation of ROS/CO and the consumption of GSH but also specifically lead to the use of lactic acid (LA) as an electron donor to improve catalytic activity and disrupt the LA-mediated immunosuppressive microenvironment, mediating synergistic catalysis and immunotherapy for orthotopic rectal cancer. Therefore, this optical fiber intervention triggered the combination of heterojunction catalytic therapy and immunotherapy, which exhibits prominent antitumor effects.
Collapse
Affiliation(s)
- Ruiyan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Dianxun Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Gaoli Niu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yiwen Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jingwen Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
- Medical College, Linyi University, Linyi, 276000, China
| |
Collapse
|
33
|
Zhou L, Jiang Z, Kong X. A remarkable membrane-permeable fluorescent probe for real-time imaging of mitochondrial SO 2 with high fidelity during ferroptosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6193-6200. [PMID: 39189983 DOI: 10.1039/d4ay01358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mitochondrial sulfur dioxide (SO2) plays a double-edged role in cells, and the real-time and in situ tracing of its dynamic behaviors to elucidate its complicated functions in detail is of great significance. Here, we developed a simple mitochondria-targeted fluorescent probe ZW for tracing SO2 with good membrane permeability. In probe ZW, the 1-phenylpyrrolidine-decorated benzopyrylium unit is employed as the selective response site for SO2. Besides, it also acts as the main fluorophore for signal conversion. The spectral results displayed that ZW could emit near-infrared (NIR) fluorescence (670 nm) and has a highly sensitive and selective response to SO2 (LOD = 0.19 μM). For biological imaging, compared with the control probe ZE, concentration- and time-dependent results verified that probe ZW has remarkable cell delivery with low concentration (200 nM) and fast response time (3 min). Furthermore, the NIR emission of ZW rendered high-fidelity imaging in living cells. Owing to its positive charge, ZW showed favorable mitochondria-targeting properties by colocalization experiments. Probe ZW could detect SO2 in real-time and in situ with high photostability in cells. Significantly, it has the ability to monitor the changes of endogenous SO2 during ferroptosis.
Collapse
Affiliation(s)
- Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
34
|
Xu Y, Huang W, Duan H, Xiao F. Bimetal-organic framework-integrated electrochemical sensor for on-chip detection of H 2S and H 2O 2 in cancer tissues. Biosens Bioelectron 2024; 260:116463. [PMID: 38838574 DOI: 10.1016/j.bios.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Studies on the interaction between hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) in redox signaling motivate the development of a sensitive sensing platform for their discriminatory and dynamic detection. Herein, we present a fully integrated microfluidic on-chip electrochemical sensor for the online and simultaneous monitoring of H2S and H2O2 secreted by different biological samples. The sensor utilizes a cicada-wing-like RuCu bimetal-organic framework with uniform nanorods architecture that grows on a flexible carbon fiber microelectrode. Owing to the optimized electronic structural merits and satisfactory electrocatalytic properties, the resultant microelectrode shows remarkable electrochemical sensing performance for sensitive and selective detection of H2S and H2O2 at the same time. The result exhibits low detection limits of 0.5 μM for H2S and 0.1 μM for H2O2, with high sensitivities of 61.93 μA cm-2 mM-1 for H2S, and 75.96 μA cm-2 mM-1 for H2O2. The integration of this biocompatible microelectrode into a custom wireless microfluidic chip enables the construction of a miniature intelligent system for in situ monitoring of H2S and H2O2 released from different living cells to differentiate between cancerous and normal cells. When applied for real-time tracking of H2S and H2O2 secreted by colorectal cancer tissues, it allows the evaluation of their chemotherapeutic efficacy. These findings hold paramount implications for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Wei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore.
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.
| |
Collapse
|
35
|
Chi J, Xue Y, Zhou Y, Han T, Ning B, Cheng L, Xie H, Wang H, Wang W, Meng Q, Fan K, Gong F, Fan J, Jiang N, Liu Z, Pan K, Sun H, Zhang J, Zheng Q, Wang J, Su M, Song Y. Perovskite Probe-Based Machine Learning Imaging Model for Rapid Pathologic Diagnosis of Cancers. ACS NANO 2024; 18:24295-24305. [PMID: 39164203 DOI: 10.1021/acsnano.4c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.
Collapse
Affiliation(s)
- Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yonggan Xue
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yinying Zhou
- School of Software, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Teng Han
- Institute of Software, Chinese Academy of Sciences, Beijing, 100191, China
| | - Bobin Ning
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lijun Cheng
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenchen Wang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingyu Meng
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kaijie Fan
- Department of Thoracic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fangming Gong
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junzhen Fan
- Department of Pathology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Nan Jiang
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zheng Liu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Ke Pan
- Institute of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyu Sun
- Department of Gastroenterology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiajin Zhang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Zheng
- Department of Thoracic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiandong Wang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
36
|
Bian Y, Zhang Y, Hu B, Huang Y, Liang W, Yuan Q, Zhang J, Gao X, Su D. Organ-Targeted Ionizable Lipid Nanoparticles Facilitate Sequence-Activated Fluorogenic Probe for Precise Imaging of Inflammatory Liver Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401282. [PMID: 38716970 DOI: 10.1002/smll.202401282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Indexed: 10/04/2024]
Abstract
Activatable near-infrared (NIR) fluorogenic probes offer a potent tool for real-time, in situ detection of hepatic biomarkers, significantly advancing the precision in diagnosing inflammatory liver disease (ILD). However, the limited distribution of small molecule fluorogenic probes in the liver and their rapid clearance impair the accuracy of fluorescence imaging and in ILD diagnosis. In this study, an effective utilization of ionizable lipid nanoparticles (iLNPs) is presented as liver-targeted carriers for efficient delivery of fluorogenic probes, aiming to overcome biodistribution barriers and achieve accurate detection of hepatic biomarkers. Based on this strategy, a liver-targeted NIR fluorogenic nanoprobe hCy-H2O2@iLNP is prepared using hCy-H2O2 as a small molecule reporter for visualizing the over-produced hydrogen peroxide (H2O2) in situ of liver. Notably, iLNPs not only significantly enhance probe accumulation in the liver, but also enable sequence activation of fluorescent nanoprobes. This response is achieved through primary liposome-dissociation release and secondary hCy-H2O2 response with pathological H2O2, enabling high-precision detection of oxidative stress in hepatocytes. These distinctive features facilitate accurate early diagnosis of acetaminophen (APAP)-induced inflammatory liver injury as well as lipopolysaccharide (LPS)-induced hepatitis. Therefore, the organ-targeted nanoprobe design strategy showcasts great potential for early and accurate diagnosis of lesions in situ in different organs.
Collapse
Affiliation(s)
- Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yong Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry & Materials Science, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Bo Hu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Weier Liang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qing Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry & Materials Science, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
37
|
Nie R, Zhang J, Jia Q, Li Y, Tao W, Qin G, Liu X, Tao Y, Zhang Y, Li P. Structurally Oriented Carbon Dots as ROS Nanomodulators for Dynamic Chronic Inflammation and Infection Elimination. ACS NANO 2024; 18:22055-22070. [PMID: 39116283 DOI: 10.1021/acsnano.4c05266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The selective elimination of cytotoxic ROS while retaining essential ones is pivotal in the management of chronic inflammation. Co-occurring bacterial infection further complicates the conditions, necessitating precision and an efficacious treatment strategy. Herein, the dynamic ROS nanomodulators are rationally constructed through regulating the surface states of herbal carbon dots (CDs) for on-demand inflammation or infection elimination. The phenolic OH containing CDs derived from honeysuckle (HOCD) and dandelion (DACD) demonstrated appropriate redox potentials, ensuring their ability to scavenge cytotoxic ROS such as ·OH and ONOO-, while invalidity toward essential ones such as O2·-, H2O2, and NO. This enables efficient treatment of chronic inflammation without affecting essential ROS signal pathways. The surface C-N/C═N of CDs derived from taxus leaves (TACD) and DACD renders them with suitable band structures, facilitating absorption in the red region and efficient generation of O2·- upon light irradiation for sterilization. Specifically, the facilely prepared DACD demonstrates fascinating dynamic ROS modulating ability, making it highly suitable for addressing concurrent chronic inflammation and infection, such as diabetic wound infection. This dynamic ROS regulation strategy facilitates the realization of the precise and efficient treatment of chronic inflammation and infection with minimal side effects, holding immense potential for clinical practice.
Collapse
Affiliation(s)
- Renhao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| | - Yuanying Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Tao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guofeng Qin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiyin Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaolan Tao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yunxiu Zhang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 mingli Road, Zhengzhou 450046, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
38
|
Zhang J, Gong S, Li Q, Zhang S, Feng G. Lysosome-Targeted Polarity-Sensitive NIR Fluorescence Probe for Imaging Injured Lung and Liver in Diabetes. Anal Chem 2024. [PMID: 39140221 DOI: 10.1021/acs.analchem.4c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Diabetes is a chronic disease marked by high blood glucose. With the progress of diabetes, complications gradually appear, and various organs may be affected. However, due to the lack of noninvasive in situ detection probes, the diagnosis of organ damage caused by diabetes is significantly delayed, which will cause many complications that cannot be treated in time. Here, we report a BODIPY-based fluorescent probe SNL, which can be used to detect lung and liver damage caused by diabetes. By introducing methylpiperazine and extending the conjugated system, SNL can locate lysosomes and exhibit absorption and emission both in the near-infrared (NIR) region. In addition, SNL is sensitive to polarity and can be used for sensitive detection of lysosomal polarity changes. Unexpectedly, SNL targets and images the lungs and liver of mice. Subsequently, hyperglycemia-stimulated cell models and diabetic mouse models were successfully established, and SNL was utilized to reveal that polarity can be used as a diagnostic signal of diabetic complications. Notably, SNL for the first time confirmed the lung injury and liver injury caused by diabetes using the fluorescent probes method, providing a new approach for the diagnosis of diabetes complications.
Collapse
Affiliation(s)
- Jinzheng Zhang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Shengyi Gong
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Qianhua Li
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Shiya Zhang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
39
|
Kim N, You DK, Kim S, Kim D, Cho K, Lee KM. Influence of Intermolecular Structural Effects on Radiative Efficiency in Xanthene-Based Carboranyl Luminophores. Inorg Chem 2024; 63:15044-15052. [PMID: 39074868 DOI: 10.1021/acs.inorgchem.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Two o-carboranes with (i) 9,9-dimethyl-9H-xanthene and (ii) spiro[fluorene-9,9'-xanthene] moieties (XTC and sXTC, respectively) were prepared and characterized. Single X-ray crystallography analysis revealed the presence of intermolecular hydrogen bonds in XTC crystals. Although both compounds did not exhibit emission in tetrahydrofuran solutions at 298 K, intense bluish emission was observed in the solid states and frozen tetrahydrofuran solutions at 77 K. According to the results of theoretical calculations, this emission originated from an intramolecular charge transfer (ICT) transition with the o-carborane moiety. The absolute quantum efficiency (Φem) of the ICT-based emission in the film state equaled 49% for XTC and 20% for sXTC but was as high as 90% for the crystals of both compounds. The crystal structures of XTC and sXTC revealed that the o-carboranyl-appended phenyl plane was orthogonal (85-89°) to the carbon-carbon bonding axis in the o-carborane, indicating the existence of a strong exo-π-interaction, which was identified as the structural basis for the ICT-based transition. These results implied that the intermolecular structural effect of XTC in the randomly aggregated solid state (film) helped maintain the above orthogonality and, hence, the high efficiency from the ICT radiative mechanism. Thus, we concluded that the ICT radiative efficiency of o-carboranyl luminophores in the aggregated solid state can be controlled by specific intermolecular interactions and that the molecular geometric design inducing this feature can be important for developing highly efficient carboranyl luminophores.
Collapse
Affiliation(s)
- Namkyun Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dong Kyun You
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Soyeon Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kanghee Cho
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
40
|
Liu S, Fang S, Jang WJ, Yoon J, Zhang L. Coordination Synergistic-Induced J-Aggregation Enhanced Fluorescent Performance of HBT-Excimers and Imaging Applications. Anal Chem 2024; 96:12794-12800. [PMID: 39054752 DOI: 10.1021/acs.analchem.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Developing a novel strategy to improve the optical performances of fluorescent probes is a vital factor in elevating its practical application; viz., novel biocompatible fluorescent probes with excellent multifunctions exhibited unparalleled advantages in probing functions of intracellular molecules to elucidate intracellular events in living systems. Herein, we have successfully constructed a new strategy that aggregation and coordination synergistically induce (2-hydroxylphenyl-benzothiazole) HBT derivatives to form excimers with large red-shifted fluorescence and application for insight into stress-response zinc fluctuations in living systems. We have synthesized four HBT-based derivatives and deeply investigated the response mechanism by fluorescent spectral studies, demonstrating that probes 3 and 4 showcased large red shifts in emission wavelength due to J-aggregation. More interestingly, the fluorescence of probe 4 was significantly enhanced in the presence of a zinc ion, suggesting that zinc coordination synergistically induced J-aggregation. Probe 4 was successfully applied to image zinc fluctuations in different models of living systems, proving that this probe is a powerful tool to unveil the relationship between invasive stress and diseases by monitoring endogenous zinc fluctuations.
Collapse
Affiliation(s)
- Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P.R. China
| | - Shujing Fang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P.R. China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China
| |
Collapse
|
41
|
Zhang T, Li Z, Qin M, Zhang J, Sun Y, Liu C. Visulization of peroxynitrite variation for accurate diagnosis and assessing treatment response of hepatic fibrosis using a Golgi-targetable ratiometric fluorescent probe. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112950. [PMID: 38851042 DOI: 10.1016/j.jphotobiol.2024.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Hepatic fibrosis (HF) is caused by persistent inflammation, which is closely associated with hepatic oxidative stress. Peroxynitrite (ONOO-) is significantly elevated in HF, which would be regarded as a potential biomarker for the diagnosis of HF. Research has shown that ONOO- in the Golgi apparatus can be overproduced in HF, and it can induce hepatocyte injury by triggering Golgi oxidative stress. Meanwhile, the ONOO- inhibitors could effectively relieve HF by inhibiting Golgi ONOO-, but as yet, no Golgi-targetable fluorescent probe available for diagnosis and assessing treatment response of HF through sensing Golgi ONOO-. To this end, we reported a ratiometric fluorescent probe, Golgi-PER, for diagnosis and assessing treatment response of HF through monitoring the Golgi ONOO-. Golgi-PER displayed satisfactory sensitivity, low detection limit, and exceptional selectivity to ONOO-. Combined with excellent biocompatibility and good Golgi-targeting ability, Golgi-PER was further used for ratiometric monitoring the Golgi ONOO- fluctuations and screening of ONOO- inhibitors from polyphenols in living cells. Meanwhile, using Golgi-PER as a probe, the overexpression of Golgi ONOO- in HF and the treatment response of HF to the screened rosmarinic acid were precisely visualized for the first time. Furthermore, the screened RosA has a remarkable therapeutic effect on HF, which may be a new strategy for HF treatment. These results demonstrated the practicability of Golgi-PER for monitoring the occurrence, development, and personalized treatment response of HF.
Collapse
Affiliation(s)
- Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Junhuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
42
|
Zeng Q, Yuwen Z, Zhang L, Li Y, Liu H, Zhang K. Molecular Engineering of a Doubly Quenched Fluorescent Probe Enables Ultrasensitive Detection of Biothiols in Highly Diluted Plasma and High-Fidelity Imaging of Dihydroartemisinin-Induced Ferroptosis. Anal Chem 2024. [PMID: 39087711 DOI: 10.1021/acs.analchem.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The occurrence and development of diseases are accompanied by abnormal activity or concentration of biomarkers in cells, tissues, and blood. However, the insufficient sensitivity and accuracy of the available fluorescence probes hinder the precise monitoring of associated indexes in biological systems, which is generally due to the high probe intrinsic fluorescence and false-negative signal caused by the reactive oxygen species (ROS)-induced probe decomposition. To resolve these problems, we have engineered a ROS-stable, meso-carboxylate boron dipyrromethene (BODIPY)-based fluorescent probe, which displays quite a low background fluorescence due to the doubly quenched intrinsic fluorescence by a combined strategy of the photoinduced electron transfer (PET) effect and "ester-to-carboxylate" conversion. The probe achieved a high S/N ratio with ultrasensitivity and good selectivity toward biothiols, endowing its fast detection capability toward the biothiol level in 200×-diluted plasma samples. Using this probe, we achieved remarkable distinguishing of liver injury plasma from normal plasma even at 80× dilution. Moreover, owing to its good stability toward ROS, the probe was successfully employed for high-fidelity imaging of the negative fluctuation of the biothiol level in nonsmall-cell lung cancer (NSCLC) during dihydroartemisinin-induced ferroptosis. This delicate design of suppressing intrinsic fluorescence reveals insights into enhancing the sensitivity and accuracy of fluorescent probes toward the detection and imaging of biomarkers in the occurrence and development of diseases.
Collapse
Affiliation(s)
- Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Lemeng Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Yuning Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan 453007, China
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China
| |
Collapse
|
43
|
Li Z, Huang P, Wu G, Lin W. Activatable Fluorescent Probe for Studying Drug-Induced Senescence In Vitro and In Vivo. Anal Chem 2024; 96:12189-12196. [PMID: 38975803 DOI: 10.1021/acs.analchem.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Aging represents a significant risk factor for compromised tissue function and the development of chronic diseases in the human body. This process is intricately linked to oxidative stress, with HClO serving as a vital reactive oxygen species (ROS) within biological systems due to its strong oxidative properties. Hence, conducting a thorough examination of HClO in the context of aging is crucial for advancing the field of aging biology. In this work, we successfully developed a fluorescent probe, OPD, tailored specifically for detecting HClO in senescent cells and in vivo. Impressively, OPD exhibited a robust reaction with HClO, showcasing outstanding selectivity, sensitivity, and photostability. Notably, OPD effectively identified HClO in senescent cells for the first time, confirming that DOX- and ROS-induced senescent cells exhibited higher HClO levels compared to uninduced normal cells. Additionally, in vivo imaging of zebrafish demonstrated that d-galactose- and ROS-stimulated senescent zebrafish displayed elevated HClO levels compared to normal zebrafish. Furthermore, when applied to mouse tissues and organs, OPD revealed increased fluorescence in the organs of senescent mice compared to their nonsenescent counterparts. Our findings also illustrated the probe's potential for detecting changes in HClO content pre- and post-aging in living mice. Overall, this probe holds immense promise as a valuable tool for in vivo detection of HClO and for studying aging biology in live organisms.
Collapse
Affiliation(s)
- Zihong Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ping Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Guoliang Wu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
44
|
Gandra UR, Axthelm J, Bellstedt P, Singh A, Schiller A, Mohideen MIH, Mandal AK. 19F NMR Probes: Molecular Logic Material Implications for the Anion Discrimination and Chemodosimetric Approach for Selective Detection of H 2O 2. Anal Chem 2024; 96:11232-11238. [PMID: 38961620 DOI: 10.1021/acs.analchem.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Detection and discrimination of similar solvation energies of bioanalytes are vital in medical and practical applications. Currently, various advanced techniques are equipped to recognize these crucial bioanalytes. Each strategy has its own benefits and limitations. One-dimensional response, lack of discrimination power for anions, and reactive oxygen species (ROS) generally limit the utilized fluorescent probe. Therefore, a cutting-edge, refined method is expected to conquer these limitations. The use of 19F NMR spectroscopy for detecting and discriminating essential analytes in practical applications is an emerging technique. As an alternative strategy, we report two fluorinated boronic acid-appended pyridinium salts 5-F-o-BBBpy (1) and 5-CF3-o-BBBpy (2). Probe (1) acts as a chemosensor for identifying and discriminating inorganic anions with similar solvation energies with strong bidirectional 19F shifts in the lower ppm range. Probe (2) turns as a chemo dosimeter for the selective detection and precise quantification of hydrogen peroxide (H2O2) among other competing ROS. To demonstrate real-life applicability, we successfully quantified H2O2 via probe (2) in different pharmaceutical, dental, and cosmetic samples. We found that tuning the -F/-CF3 moiety to the arene boronic acid enables the π-conjugation, a crucial prerequisite for the discrimination of anions and H2O2. Characteristic 19F NMR fingerprints in the presence of anions revealed a complementary implication (IMP)/not implication (NIMP) logic function. Finally, the 16 distinct binary Boolean operations on two logic values are defined for "functional completeness" using the special property of the IMP gate. Boolean logic's ability to handle information by utilizing characteristic 19F NMR fingerprints has not been seen previously in a single chemical platform for detecting and differentiating such anions.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jörg Axthelm
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Peter Bellstedt
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Akanksha Singh
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Amal Kumar Mandal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
45
|
Zan Q, Zhao K, Li R, Yang Y, Yang X, Li W, Zhang G, Dong C, Shuang S, Fan L. Mitochondria-Targetable Near-Infrared Fluorescent Probe for Visualization of Hydrogen Peroxide in Lung Injury, Liver Injury, and Tumor Models. Anal Chem 2024; 96:10488-10495. [PMID: 38901019 DOI: 10.1021/acs.analchem.3c05479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogen peroxide (H2O2) overexpressed in mitochondria has been regarded as a key biomarker in the pathological processes of various diseases. However, there is currently a lack of suitable mitochondria-targetable near-infrared (NIR) probes for the visualization of H2O2 in multiple diseases, such as PM2.5 exposure-induced lung injury, hepatic ischemia-reperfusion injury (HIRI), nonalcoholic fatty liver (NAFL), hepatic fibrosis (HF), and malignant tumor tissues containing clinical cancer patient samples. Herein, we conceived a novel NIR fluorescent probe (HCy-H2O2) by introducing pentafluorobenzenesulfonyl as a H2O2 sensing unit into the NIR hemicyanine platform. HCy-H2O2 exhibits good sensitivity and selectivity toward H2O2, accompanied by a remarkable "turn-on" fluorescence signal at 720 nm. Meanwhile, HCy-H2O2 has stable mitochondria-targetable ability and permits monitoring of the up-generated H2O2 level during mitophagy. Furthermore, using HCy-H2O2, we have successfully observed an overproduced mitochondrial H2O2 in ambient PM2.5 exposure-induced lung injury, HIRI, NAFL, and HF models through NIR fluorescence imaging. Significantly, the visualization of H2O2 has been achieved in both tumor-bear mice as well as surgical specimens of cancer patients, making HCy-H2O2 a promising tool for cancer diagnosis and imaging-guided surgery.
Collapse
Affiliation(s)
- Qi Zan
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Kunyi Zhao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Ruijin Li
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yongming Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, P. R. China
| | - Xihua Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, P. R. China
| | - Wenzhong Li
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Gangli Zhang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Li Fan
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
46
|
Kamp M, Surmacki J, Segarra Mondejar M, Young T, Chrabaszcz K, Joud F, Zecchini V, Speed A, Frezza C, Bohndiek SE. Raman micro-spectroscopy reveals the spatial distribution of fumarate in cells and tissues. Nat Commun 2024; 15:5386. [PMID: 38918386 PMCID: PMC11199670 DOI: 10.1038/s41467-024-49403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating RS can classify FH status. These results suggest RS could be adopted as a valuable tool for small molecule metabolic imaging, enabling in situ non-destructive evaluation of fumarate compartmentalization.
Collapse
Affiliation(s)
- Marlous Kamp
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Marc Segarra Mondejar
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Tim Young
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Karolina Chrabaszcz
- Institute of Nuclear Physics, Polish Academy of Sciences, Department of Experimental Physics of Complex Systems, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Vincent Zecchini
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Alyson Speed
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK.
- CECAD, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany.
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
47
|
Lv S, Zhao X, Ma C, Zhao D, Sun T, Fu W, Wei Y, Li W. Advancements in the study of acute lung injury resulting from intestinal ischemia/reperfusion. Front Med (Lausanne) 2024; 11:1399744. [PMID: 38933104 PMCID: PMC11199783 DOI: 10.3389/fmed.2024.1399744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.
Collapse
Affiliation(s)
- Shihua Lv
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Ma
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengming Zhao
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Sun
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Fu
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Wei
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenzhi Li
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Song K, Hwang SJ, Jeon Y, Yoon Y. The Biomedical Applications of Biomolecule Integrated Biosensors for Cell Monitoring. Int J Mol Sci 2024; 25:6336. [PMID: 38928042 PMCID: PMC11204277 DOI: 10.3390/ijms25126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cell monitoring is essential for understanding the physiological conditions and cell abnormalities induced by various stimuli, such as stress factors, microbial invasion, and diseases. Currently, various techniques for detecting cell abnormalities and metabolites originating from specific cells are employed to obtain information on cells in terms of human health. Although the states of cells have traditionally been accessed using instrument-based analysis, this has been replaced by various sensor systems equipped with new materials and technologies. Various sensor systems have been developed for monitoring cells by recognizing biological markers such as proteins on cell surfaces, components on plasma membranes, secreted metabolites, and DNA sequences. Sensor systems are classified into subclasses, such as chemical sensors and biosensors, based on the components used to recognize the targets. In this review, we aim to outline the fundamental principles of sensor systems used for monitoring cells, encompassing both biosensors and chemical sensors. Specifically, we focus on biosensing systems in terms of the types of sensing and signal-transducing elements and introduce recent advancements and applications of biosensors. Finally, we address the present challenges in biosensor systems and the prospects that should be considered to enhance biosensor performance. Although this review covers the application of biosensors for monitoring cells, we believe that it can provide valuable insights for researchers and general readers interested in the advancements of biosensing and its further applications in biomedical fields.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (S.-J.H.)
| |
Collapse
|
49
|
Liu F, Li M, Li W, Ren Y, Zhang M, Zhang H, Wang P, Wu Y, Wang K, Wang X, Chen X, Tang J. Peroxynitrite-activated fluorescent probe with two reaction triggers for pathological diagnosis and therapeutic evaluation of inflammation. Bioorg Chem 2024; 147:107362. [PMID: 38615474 DOI: 10.1016/j.bioorg.2024.107362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Excessive peroxynitrite (ONOO-) is closely related to the occurrence and progression of inflammation. Therefore, the development of an efficacious ONOO- activatable probe holds great potential for the early diagnosis of pathological inflammation, and the direct evaluation of the therapeutic efficacy of active protectants. In this work, a new ONOO--activated fluorescent probe (SZP) which greatly improved the specificity and sensitivity (LOD = 8.03 nM) with large Stokes shift (150 nm) through introducing two reaction triggers (diphenyl phosphinate moiety, CC unsaturated bond) was rationally designed for rapid detecting ONOO- (within 2 min). The excellent properties of probe SZP enable it to realize the fluorescence-guided diagnosis of inflammation. More importantly, probe SZP has also been utilized to assess the anti-inflammatory efficacy of traditional Chinese medicines (TCMs) active ingredients for the remediation of inflammation by monitoring ONOO- fluctuation for the first time.
Collapse
Affiliation(s)
- Feiyan Liu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Manman Li
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Weixia Li
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China; Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China.
| | - Yingjie Ren
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Mingliang Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Hui Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Pan Wang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Yali Wu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Kehan Wang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Xiaoyan Wang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Xiaofei Chen
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China.
| | - Jinfa Tang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China; Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China.
| |
Collapse
|
50
|
Liu Z, Zhang Z, Li J, Zhu G, Li Q. An activatable azophenyl fluorescent probe for hypoxic fluorescence imaging in living cells. LUMINESCENCE 2024; 39:e4798. [PMID: 38825785 DOI: 10.1002/bio.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Cellular hypoxia is a common pathological process in various diseases. Detecting cellular hypoxia is of great scientific significance for early diagnosis of tumors. The hypoxia fluorescence probe analysis method can efficiently and conveniently evaluate the hypoxia status in tumor cells. These probes are covalently linked by hypoxic recognition groups and organic fluorescent molecules. Currently, the fluorescent molecules used in these probes often exhibit the aggregation-caused quenching effect, which is not conducive to fluorescence imaging in water. Herein, an activatable hypoxia fluorescence probe was constructed by covalently linking aggregation-induced emission luminogens to the hypoxic recognition group azobenzene. It does not emit fluorescence in solution and in solid state under light excitation due to the presence of photosensitive azo bonds. It can be cleaved by intracellular azoreductase into fluorescent amino derivatives with aggregation-induced emission characteristic. As the concentration of oxygen in cells decreases, its fluorescence intensity increases, making it suitable for fluorescence imaging to detect hypoxic environment in live cancer cells. This work broadens the molecular design approach for activatable hypoxia fluorescent probes.
Collapse
Affiliation(s)
- Zhiyang Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Zongyu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Juping Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Guanqun Zhu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|