1
|
Ruisch IH, Widomska J, De Witte W, Mota NR, Fanelli G, Van Gils V, Jansen WJ, Vos SJB, Fóthi A, Barta C, Berkel S, Alam KA, Martinez A, Haavik J, O'Leary A, Slattery D, Sullivan M, Glennon J, Buitelaar JK, Bralten J, Franke B, Poelmans G. Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases. Alzheimers Res Ther 2024; 16:239. [PMID: 39465382 PMCID: PMC11514822 DOI: 10.1186/s13195-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards "energy metabolism" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.
Collapse
Affiliation(s)
- I Hyun Ruisch
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina R Mota
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giuseppe Fanelli
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Veerle Van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Abel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kazi A Alam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aet O'Leary
- Department of Psychiatry, University Hospital, Frankfurt, Germany
| | - David Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe-Universität, Frankfurt, Germany
| | - Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Ma F, Yao J, Niu X, Zhang J, Shi D, Da M. MARK4 promotes the malignant phenotype of gastric cancer through the MAPK/ERK signaling pathway. Pathol Res Pract 2024; 261:155471. [PMID: 39079384 DOI: 10.1016/j.prp.2024.155471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Microtubule affinity regulating kinase 4 (MARK4), which is overexpressed in various tumors, is involved in the regulation of cell division, proliferation, migration, and the cell cycle, and has been considered a potential marker for cancer; however, its mechanism of action in gastric cancer (GC) remains unclear. This study aimed to investigate the role of MARK4 in the proliferation, migration, and invasion of GC cell through the MAPK/ERK signaling pathway by targeting MARK4 knockdown. METHODS Using The Cancer Genome Atlas data and clinical information, MARK4 expression and its relationship with prognosis were analyzed. Possible pathways involving MARK4 were explored using enrichment analysis. Western blotting and real-time quantitative polymerase chain reaction were used to detect MARK4 expression in GC. After targeted transfection of siRNA, the transfection efficiency of the experimental group was detected in AGS and HGC-27 cells. The effects of knockdown MARK4 on the proliferation, migration, and invasion of GC cells were verified using CCK-8, colony formation, wound healing, and transwell assays. Finally, the relationship between MARK4, the MAPK/ERK pathway, and epithelial-mesenchymal transition in GC was verified by western blotting. RESULTS MARK4 expression was upregulated in GC and associated with poor prognosis in patients with GC. Enrichment analysis showed that MARK4 was involved in the activation of the MAPK signaling pathway. Western blotting results indicated that MARK4 overexpression promoted the proliferation, migration, and invasion of GC cells through the MAPK/ERK pathway. CONCLUSION MARK4 expression was upregulated in GC and promoted the proliferation, migration, and invasion of GC cells through the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Fubin Ma
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, PR China.
| | - Jibin Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, PR China; Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, PR China.
| | - Xingdong Niu
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Junrui Zhang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Donghai Shi
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, PR China; Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, PR China.
| |
Collapse
|
3
|
Zachariou M, Loizidou EM, Spyrou GM. Immediate-Early Genes as Influencers in Genetic Networks and their Role in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.586739. [PMID: 38585978 PMCID: PMC10996630 DOI: 10.1101/2024.03.29.586739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Immediate-early genes (IEGs) are a class of activity-regulated genes (ARGs) that are transiently and rapidly activated in the absence of de novo protein synthesis in response to neuronal activity. We explored the role of IEGs in genetic networks to pinpoint potential drug targets for Alzheimer's disease (AD). Using a combination of network analysis and genome-wide association study (GWAS) summary statistics we show that (1) IEGs exert greater topological influence across different human and mouse gene networks compared to other ARGs, (2) ARGs are sparsely involved in diseases and significantly more mutational constrained compared to non-ARGs, (3) Many AD-linked variants are in ARGs gene regions, mainly in MARK4 near FOSB, with an AD risk eQTL that increases MARK4 expression in cortical areas, (4) MARK4 holds an influential place in a dense AD multi-omic network and a high AD druggability score. Our work on IEGs' influential network role is a valuable contribution to guiding interventions for diseases marked by dysregulation of their downstream targets and highlights MARK4 as a promising underexplored AD-target.
Collapse
Affiliation(s)
| | - Eleni M Loizidou
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics
| |
Collapse
|
4
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
5
|
Tasleem M, Ullah S, Halim SA, Urooj I, Ahmed N, Munir R, Khan A, El-Kott AF, Taslimi P, Negm S, Al-Harrasi A, Shafiq Z. Synthesis of 3-hydroxy-2-naphthohydrazide-based hydrazones and their implications in diabetic management via in vitro and in silico approaches. Arch Pharm (Weinheim) 2024; 357:e2300544. [PMID: 38013251 DOI: 10.1002/ardp.202300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Diabetes mellitus (DM) has prevailed as a chronic health condition and has become a serious global health issue due to its numerous consequences and high prevalence. We have synthesized a series of hydrazone derivatives and tested their antidiabetic potential by inhibiting the essential carbohydrate catabolic enzyme, "α-glucosidase." Several approaches including fourier transform infrared, 1 H NMR, and 13 C NMR were utilized to confirm the structures of all the synthesized derivatives. In vitro analysis of compounds 3a-3p displayed more effective inhibitory activities against α-glucosidase with IC50 in a range of 2.80-29.66 µM as compared with the commercially available inhibitor, acarbose (IC50 = 873.34 ± 1.67 M). Compound 3h showed the highest inhibitory potential with an IC50 value of 2.80 ± 0.03 µM, followed by 3i (IC50 = 4.13 ± 0.06 µM), 3f (IC50 = 5.18 ± 0.10 µM), 3c (IC50 = 5.42 ± 0.11 µM), 3g (IC50 = 6.17 ± 0.15 µM), 3d (IC50 = 6.76 ± 0.20 µM), 3a (IC50 = 9.59 ± 0.14 µM), and 3n (IC50 = 10.01 ± 0.42 µM). Kinetics analysis of the most potent compound 3h revealed a concentration-dependent form of inhibition by 3h with Ki value = 4.76 ± 0.0068 µM. Additionally, an in silico docking approach was applied to predict the binding patterns of all the compounds, which indicates that the hydrazide and the naphthalene-ol groups play a vital role in the binding of the compounds with the essential residues (i.e., Glu277 and Gln279) of the α-glucosidase enzyme.
Collapse
Affiliation(s)
- Mussarat Tasleem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ifra Urooj
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Rabia Munir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Wang Y, Yang LH, Tong LL, Yuan L, Ren B, Guo DS. Comparative metabolic profiling of mycelia, fermentation broth, spore powder and fruiting bodies of Ophiocordyceps gracilis by LC-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:984-996. [PMID: 37482969 DOI: 10.1002/pca.3266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Ophiocordyceps gracilis, a type of edible and medicinal fungus, exhibits multiple health-promoting effects. Due to the scarcity of natural O. gracilis, artificial cultures have been developed as its substitutes. However, lacking comprehension of the metabolite composition of cultures limits its utilisation. OBJECTIVE This research aimed to evaluate the nutritional and medicinal value of four cultures of O. gracilis by analysing their metabolite composition. In addition, metabolic pathways in mycelia and fruiting bodies were analysed to explore fruiting body formation mechanism at metabolic level. METHOD The mycelia, fermentation broth, spore powder and fruiting bodies of O. gracilis were cultivated in this study. Their metabolite composition was compared using an untargeted metabolomics approach based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) showed that the four cultures have noticeable differences in metabolite composition. A total of 612 metabolites were identified, among which 159 metabolites showed significant differences, and these differential metabolites were classified into 13 categories. The metabolites in the fruiting bodies were the most abundant compared with other cultures. However, each culture had its own advantages and significantly accumulates some active metabolites respectively. Pearson's correlation analysed the mutual relationship among metabolites. In addition, seven metabolic pathways were closely related to fruiting body formation, such as "Biosynthesis of plant secondary metabolites", "amino acids metabolism", "tricarboxylic acid (TCA) cycle". CONCLUSION This study offered a reference to mycelia, fermentation broth, spore powder and fruiting bodies of O. gracilis as health-promoting functional foods and medicine.
Collapse
Affiliation(s)
- Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Adnan M, DasGupta D, Anwar S, Shamsi A, Siddiqui AJ, Snoussi M, Bardakci F, Patel M, Hassan MI. Mechanistic insights into MARK4 inhibition by galantamine toward therapeutic targeting of Alzheimer's disease. Front Pharmacol 2023; 14:1276179. [PMID: 37795023 PMCID: PMC10546050 DOI: 10.3389/fphar.2023.1276179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Hyperphosphorylation of tau is an important event in Alzheimer's disease (AD) pathogenesis, leading to the generation of "neurofibrillary tangles," a histopathological hallmark associated with the onset of AD and related tauopathies. Microtubule-affinity regulating kinase 4 (MARK4) is an evolutionarily conserved Ser-Thr (S/T) kinase that phosphorylates tau and microtubule-associated proteins, thus playing a critical role in AD pathology. The uncontrolled neuronal migration is attributed to overexpressed MARK4, leading to disruption in microtubule dynamics. Inhibiting MARK4 is an attractive strategy in AD therapeutics. Methods: Molecular docking was performed to see the interactions between MARK4 and galantamine (GLT). Furthermore, 250 ns molecular dynamic studies were performed to investigate the stability and conformational dynamics of the MARK4-GLT complex. We performed fluorescence binding and isothermal titration calorimetry studies to measure the binding affinity between GLT and MARK4. Finally, an enzyme inhibition assay was performed to measure the MARK4 activity in the presence and absence of GLT. Results: We showed that GLT, an acetylcholinesterase inhibitor, binds to the active site cavity of MARK4 with an appreciable binding affinity. Molecular dynamic simulation for 250 ns demonstrated the stability and conformational dynamics of the MARK4-GLT complex. Fluorescence binding and isothermal titration calorimetry studies suggested a strong binding affinity. We further show that GLT inhibits the kinase activity of MARK4 significantly (IC50 = 5.87 µM). Conclusion: These results suggest that GLT is a potential inhibitor of MARK4 and could be a promising therapeutic target for AD. GLT's inhibition of MARK4 provides newer insights into the mechanism of GLT's action, which is already used to improve cognition in AD patients.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| |
Collapse
|
8
|
Atiya A, Batra S, Mohammad T, Alorfi NM, Abdulmonem WA, Alhumaydhi FA, Ashraf GM, Baeesa SS, Elasbali AM, Shahwan M. Desmodin and isopongachromene as potential inhibitors of cyclin-dependent kinase 5: phytoconstituents targeting anticancer and neurological therapy. J Biomol Struct Dyn 2023; 41:8042-8052. [PMID: 36184739 DOI: 10.1080/07391102.2022.2128877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 10/07/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine-threonine protein kinase vital for neuronal cell cycle arrest and differentiation. It activates by binding with p35 and p39 and is important for the functioning of the nervous system. A growing body of evidence suggests that CDK5 contributes to the onset and progression of neurodegeneration and tumorigenesis and represents itself as a potential therapeutic target. Our research illustrates virtual screening of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) library to search for potential inhibitors of CDK5. Initially, the compounds from the parent library were filtered out via their physicochemical properties following the Lipinski rule of five. Then sequentially, molecular docking-based virtual screening, PAINS filter, ADMET, PASS analysis, and molecular dynamics (MD) simulation were done using various computational tools to rule out adversities that can cause hindrances in the identification of potential inhibitors of CDK5. Finally, two compounds were selected via the extensive screening showing significant binding with CDK5 ATP-binding pocket and ultimately were selected as potent ATP-competitive inhibitors of CDK5. Finally, we propose that the elucidated compounds Desmodin and Isopongachromene can be used further in the drug discovery process and act as therapeutics in the medical industry to treat certain complex diseases, including cancer and neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Shivani Batra
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh S Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Moyad Shahwan
- College of Pharmacy, Ajman University, Abha, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Abha, United Arab Emirates
| |
Collapse
|
9
|
He J, Spanolios E, Froehlich CE, Wouters CL, Haynes CL. Recent Advances in the Development and Characterization of Electrochemical and Electrical Biosensors for Small Molecule Neurotransmitters. ACS Sens 2023; 8:1391-1403. [PMID: 36940263 DOI: 10.1021/acssensors.3c00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Neurotransmitters act as chemical messengers, determining human physiological and psychological function, and abnormal levels of neurotransmitters are related to conditions such as Parkinson's and Alzheimer's disease. Biologically and clinically relevant concentrations of neurotransmitters are usually very low (nM), so electrochemical and electronic sensors for neurotransmitter detection play an important role in achieving sensitive and selective detection. Additionally, these sensors have the distinct advantage to potentially be wireless, miniaturized, and multichannel, providing remarkable opportunities for implantable, long-term sensing capabilities unachievable by spectroscopic or chromatographic detection methods. In this article, we will focus on advances in the development and characterization of electrochemical and electronic sensors for neurotransmitters during the last five years, identifying how the field is progressing as well as critical knowledge gaps for sensor researchers.
Collapse
|
10
|
Alrouji M, DasGupta D, Ashraf GM, Bilgrami AL, Alhumaydhi FA, Al Abdulmonem W, Shahwan M, Alsayari A, Atiya A, Shamsi A. Inhibition of microtubule affinity regulating kinase 4 by an acetylcholinesterase inhibitor, Huperzine A: Computational and experimental approaches. Int J Biol Macromol 2023; 235:123831. [PMID: 36870649 DOI: 10.1016/j.ijbiomac.2023.123831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), 752 amino acids long, belonging to the AMPK superfamily, plays a vital role in regulating microtubules due to its potential to phosphorylate microtubule-associated proteins (MAP's) and thus, MARK4 plays a key role in Alzheimer's disease (AD) pathology. MARK4 is a druggable target for cancer, neurodegenerative diseases, and metabolic disorders. In this study, we have evaluated the MARK4 inhibitory potential of Huperzine A (HpA), an acetylcholinesterase inhibitor (AChEI), a potential AD drug. Molecular docking revealed the key residues governing the MARK4-HpA complex formation. The structural stability and conformational dynamics of the MARK4-HpA complex was assessed by employing Molecular dynamics (MD) simulation. The results suggested that the binding of HpA with MARK4 leads to minimal structural alterations in the native conformation of MARK4, implying the stability of the MARK4-HpA complex. Isothermal titration calorimetry (ITC) studies deciphered that HpA binds to MARK4 spontaneously. Moreover, the kinase assay depicted significant inhibition of MARK by HpA (IC50 = 4.91 μM), implying it to be a potent MARK4 inhibitor that can be implicated in the treatment of MARK4-directed diseases.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Debarati DasGupta
- 428 Church Street, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia; Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
11
|
Atiya A, Das Gupta D, Alsayari A, Alrouji M, Alotaibi A, Sharaf SE, Abdulmonem WA, Alorfi NM, Abdullah KM, Shamsi A. Linagliptin and Empagliflozin Inhibit Microtubule Affinity Regulatory Kinase 4: Repurposing Anti-Diabetic Drugs in Neurodegenerative Disorders Using In Silico and In Vitro Approaches. ACS OMEGA 2023; 8:6423-6430. [PMID: 36844587 PMCID: PMC9948186 DOI: 10.1021/acsomega.2c06634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are significant public health burdens. Many studies have revealed the possibility of common pathophysiology between T2DM and AD. Thus, in recent years, studies deciphering the action mechanism of anti-diabetic drugs with their future use in AD and related pathologies are on high demand. Drug repurposing is a safe and effective approach owing to its low cost and time-saving attributes. Microtubule affinity regulating kinase 4 (MARK4) is a druggable target for various diseases and is found to be linked with AD and diabetes mellitus. MARK4 plays a vital role in energy metabolism and regulation and thus serves as an irrefutable target to treat T2DM. The present study was intended to identify the potent MARK4 inhibitors among FDA-approved anti-diabetic drugs. We performed structure-based virtual screening of FDA-approved drugs to identify the top hits against MARK4. We identified five FDA-approved drugs having an appreciable affinity and specificity toward the binding pocket of MARK4. Among these identified hits, two drugs, linagliptin, and empagliflozin, favorably bind to the MARK4 binding pocket, interacting with its critical residues and thus subjected to detailed analysis. All-atom detailed molecular dynamics (MD) simulations revealed the dynamics of binding of linagliptin and empagliflozin with MARK4. Kinase assay showed significant inhibition of MARK4 kinase activity in the presence of these drugs, implying them as potent MARK4 inhibitors. In conclusion, linagliptin and empagliflozin may be promising MARK4 inhibitors, which can further be exploited as potential lead molecules against MARK4-directed neurodegenerative diseases.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Debarati Das Gupta
- College
of Pharmacy, University of Michigan, 2428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Abdulrhman Alsayari
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
- Complementary
and Alternative Medicine Unit, King Khalid
University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Mohammed Alrouji
- Department
of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdulmajeed Alotaibi
- College
of Applied Medical Sciences, King Saud bin
Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical
Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Nasser M. Alorfi
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - K. M. Abdullah
- Department
of Biochemistry, Jain University, Bengaluru 560069, India
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
12
|
Froehlich CE, He J, Haynes CL. Investigation of Charged Small Molecule-Aptamer Interactions with Surface Plasmon Resonance. Anal Chem 2023; 95:2639-2644. [PMID: 36704862 DOI: 10.1021/acs.analchem.2c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Investigating the interactions between small, charged molecules and aptamers using surface plasmon resonance (SPR) is limited by the inherent low response of small molecules and difficulties with nonspecific electrostatic interactions between the aptamer, analyte, and sensor surface. However, aptamers are increasingly being used in sensors for small molecule detection in critical areas like healthcare and environmental safety. The ability to probe these interactions through simple, direct SPR assays would be greatly beneficial and allow for the development of improved sensors without the need for complicated signal enhancement. However, these assays are nearly nonexistent in the current literature and are instead surpassed by sandwich or competitive binding techniques, which require additional sample preparation and reagents. In this work, we develop a method to characterize the interaction between the charged small molecule serotonin (176 Da) and an aptamer with SPR using streptavidin-biotin capture and a high-ionic-strength buffer. Additionally, other methods, such as serotonin immobilization and thiol-coupling of the aptamer, were investigated for comparison. These techniques give insight into working with small molecules and allow for quickly adapting a binding affinity assay into a direct SPR sensor.
Collapse
|
13
|
Alsagaby SA, Iqbal D, Ahmad I, Patel H, Mir SA, Madkhali YA, Oyouni AAA, Hawsawi YM, Alhumaydhi FA, Alshehri B, Alturaiki W, Alanazi B, Mir MA, Al Abdulmonem W. In silico investigations identified Butyl Xanalterate to competently target CK2α (CSNK2A1) for therapy of chronic lymphocytic leukemia. Sci Rep 2022; 12:17648. [PMID: 36271116 PMCID: PMC9587039 DOI: 10.1038/s41598-022-21546-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignancy of B-cells. In this study, bioinformatics analyses were conducted to identify possible pathogenic roles of CK2α, which is a protein encoded by CSNK2A1, in the progression and aggressiveness of CLL. Furthermore, various computational tools were used to search for a competent inhibitor of CK2α from fungal metabolites that could be proposed for CLL therapy. In CLL patients, high-expression of CSNK2A1 was associated with early need for therapy (n = 130, p < 0.0001) and short overall survival (OS; n = 107, p = 0.005). Consistently, bioinformatics analyses showed CSNK2A1 to associate with/play roles in CLL proliferation and survival-dependent pathways. Furthermore, PPI network analysis identified interaction partners of CK2α (PPI enrichment p value = 1 × 10-16) that associated with early need for therapy (n = 130, p < 0.003) and have been known to heavily impact on the progression of CLL. These findings constructed a rational for targeting CK2α for CLL therapy. Consequently, computational analyses reported 35 fungal metabolites out of 5820 (filtered from 19,967 metabolites) to have lower binding energy (ΔG: - 10.9 to - 11.7 kcal/mol) and better binding affinity (Kd: 9.77 × 107 M-1 to 3.77 × 108 M-1) compared with the native ligand (ΔG: - 10.8, Kd: 8.3 × 107 M--1). Furthermore, molecular dynamics simulation study established that Butyl Xanalterate-CK2α complex continuously remained stable throughout the simulation time (100 ns). Moreover, Butyl Xanalterate interacted with most of the catalytic residues, where complex was stabilized by more than 65% hydrogen bond interactions, and a significant hydrophobic interaction with residue Phe113. Here, high-expression of CSNK2A1 was implicated in the progression and poor prognosis of CLL, making it a potential therapeutic target in the disease. Butyl Xanalterate showed stable and strong interactions with CK2α, thus we propose it as a competitive inhibitor of CK2α for CLL therapy.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Danish Iqbal
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Iqrar Ahmad
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Shabir Ahmad Mir
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Yahya Awaji Madkhali
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia ,grid.440760.10000 0004 0419 5685Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Yousef M. Hawsawi
- grid.415310.20000 0001 2191 4301Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah, 21499 Kingdom of Saudi Arabia ,grid.411335.10000 0004 1758 7207College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533 Kingdom of Saudi Arabia
| | - Fahad A. Alhumaydhi
- grid.412602.30000 0000 9421 8094Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Bader Alshehri
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Wael Alturaiki
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Bader Alanazi
- grid.415277.20000 0004 0593 1832Biomedical Research Administration, Research Center, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia ,Prince Mohammed bin Abdulaziz Medical City, AlJouf, Kingdom of Saudi Arabia
| | - Manzoor Ahmad Mir
- grid.412997.00000 0001 2294 5433Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Waleed Al Abdulmonem
- grid.412602.30000 0000 9421 8094Department of Pathology, College of Medicine, Qassim University, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Multitargeting the Action of 5-HT 6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer's Disease: Can It Work from a Molecular Point of View? Int J Mol Sci 2022; 23:ijms23158768. [PMID: 35955902 PMCID: PMC9368844 DOI: 10.3390/ijms23158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art that will help in the search for innovative polypharmacology-based therapeutic approaches to fight against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R), due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models; however, research into this treatment has so far not been successfully translated to human patients. Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II) and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature analysis performed herein serves to answer the question of whether the design of these kind of dual agents is possible, and the conclusions turned out to be highly promising.
Collapse
|
15
|
Ashraf GM, DasGupta D, Alam MZ, Baeesa SS, Alghamdi BS, Anwar F, Alqurashi TMA, Sharaf SE, Al Abdulmonem W, Alyousef MA, Alhumaydhi FA, Shamsi A. Inhibition of Microtubule Affinity Regulating Kinase 4 by Metformin: Exploring the Neuroprotective Potential of Antidiabetic Drug through Spectroscopic and Computational Approaches. Molecules 2022; 27:molecules27144652. [PMID: 35889524 PMCID: PMC9320910 DOI: 10.3390/molecules27144652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/22/2023] Open
Abstract
Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP's). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the detachment of tau from microtubule. In lieu of this vital role in tau pathology, a hallmark of Alzheimer's disease (AD), MARK4 is a druggable target to treat AD and other neurodegenerative disorders (NDs). There is growing evidence that NDs and diabetes are connected with many pieces of literature demonstrating a high risk of developing AD in diabetic patients. Metformin (Mtf) has been a drug in use against type 2 diabetes mellitus (T2DM) for a long time; however, recent studies have established its therapeutic effect in neurodegenerative diseases (NDs), namely AD, Parkinson's disease (PD) and amnestic mild cognitive impairment. In this study, we have explored the MARK4 inhibitory potential of Mtf, employing in silico and in vitro approaches. Molecular docking demonstrated that Mtf binds to MARK4 with a significant affinity of -6.9 kcal/mol forming interactions with binding pocket's critical residues. Additionally, molecular dynamics (MD) simulation provided an atomistic insight into the binding of Mtf with MARK4. ATPase assay of MARK4 in the presence of Mtf shows that it inhibits MARK4 with an IC50 = 7.05 µM. The results of the fluorescence binding assay demonstrated significant binding of MARK4 with a binding constant of 0.6 × 106 M-1. The present study provides an additional axis towards the utilization of Mtf as MARK4 inhibitor targeting diabetes with NDs.
Collapse
Affiliation(s)
- Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (G.M.A.); (A.S.)
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Z.A.); (B.S.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh S. Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Z.A.); (B.S.A.)
- Department of Physiology, The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 21589, Saudi Arabia;
| | - Sharaf E. Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in Holy Capital, Makkah 24246, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraydah 51452, Saudi Arabia;
| | - Mohammed A. Alyousef
- Division of Neurosurgery, College of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: (G.M.A.); (A.S.)
| |
Collapse
|