1
|
Zheng H, Wang K, Ji D, Liu X, Wang C, Jiang Y, Jia Z, Xiong B, Ling Y, Miao J. Novel tris-bipyridine based Ru(II) complexes as type-I/-II photosensitizers for antitumor photodynamic therapy through ferroptosis and immunogenic cell death. Eur J Med Chem 2024; 279:116909. [PMID: 39357314 DOI: 10.1016/j.ejmech.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ru(II) complexes have attracted attention as photosensitizers for their promising photodynamic properties. Herein, novel tris-bipyridine based Ru(II) complexes (6a-e) were synthesized by introducing saturated heterocycles to improve photodynamic properties and lipid-water partition coefficients. Among them, 6d demonstrated significant phototoxicity towards three cancer cells, with IC50 values of 5.66-7.17 μM, exceeding values in dark (IC50s > 100 μM). Under hypoxic conditions, 6d maintained excellent photodynamic activity in A549 cells, with PI values exceeding 24, highlighting its potential for highly effective type-I/-II photodynamic therapy by inducing ROS generation, oxidative stress, and mitochondrial damage. Additionally, it induced ferroptosis and immunogenic cell death of A549 cells by regulating the expression of relevant markers. Finally, 6d remarkably inhibited the growth of A549 transplanted tumor growth by 95.4 %. This Ru(II) complex shows great potential for cancer treatment with its potent photodynamic activity and diverse mechanisms of tumor cell death.
Collapse
Affiliation(s)
- Hongwei Zheng
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Kai Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Dongliang Ji
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Xiao Liu
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Chen Wang
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yangyang Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Zihan Jia
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Biao Xiong
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China.
| | - Yong Ling
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China.
| | - Jiefei Miao
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Roy S, Paul S, Mukherjee S, De P, Mukherjee A. Unraveling Mechanism and Enhancing Selectivity of a Ru II-bis-bipyridyl-morphocumin Complex with RAFT-Generated Glycopolymer Exploiting Warburg Effect in Cancer. Chemistry 2024:e202403695. [PMID: 39614769 DOI: 10.1002/chem.202403695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Indexed: 12/12/2024]
Abstract
The Warburg effect, which generates increased demand of glucose in cancer cells is a relatively underexplored phenomenon in existing commercial drugs to enhance uptake in cancer cells. Here, we present a chemotherapeutic strategy employing a Ru(II)-bis-bipyridyl-morphocumin complex (2) encapsulated in a self-assembling glucose-functionalized copolymer P(G-EMA-co-MMA) (where G=glucose; MMA=methyl methacrylate; EMA=ethyl methacrylate), designed to exploit this effect for enhanced selectivity in cancer treatment. The P(G-EMA-co-MMA) polymer, synthesized via reversible-addition fragmentation chain transfer (RAFT) polymerization, has a number average molecular weight (Mn,NMR) of 8000 g/mol. Complex 2, stable in aqueous media, selectively releases a cytotoxic, lysosome-targeting compound, morphocumin, in the presence of excess hydrogen peroxide (H₂O₂), a reactive oxygen species (ROS) prevalent in tumor microenvironments. Additionally, complex 2 promotes ROS accumulation, which may further enhance morphocumin release through a synergistic domino effect. Comparative studies reveal that 2 outperforms its curcumin Ru(II) complex (1) analog in solution stability, organelle specificity, and cellular mechanisms. Both 1 and 2 exhibit phototherapeutic effects under low-intensity visible light, but their chemotoxicity significantly increases with incubation time in the dark, highlighting the superior chemotherapeutic efficacy of the O,O-coordinating Ru(II) ternary polypyridyl complexes. Complex 2 induces apoptosis via the intrinsic pathway and shows a 9-fold increase in selectivity for pancreatic cancer cells (MIA PaCa-2) over non-cancerous HEK293 cells when encapsulated in the glucose-conjugated polymer (DP@2). Glucose deprivation in the culture medium further enhances drug efficacy by an additional 5-fold. This work underscores the potential of glucose-functionalized polymers and ROS-responsive Ru(II) complexes in targeted cancer therapy.
Collapse
Affiliation(s)
- Souryadip Roy
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Soumya Paul
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Sujato Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Priyadarsi De
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| |
Collapse
|
3
|
Alven S, Gandidzanwa S, Ngalo B, Poswayo O, Madanhire T, Aderibigbe BA, Tshentu Z. Platinum Group Metals Nanoparticles in Breast Cancer Therapy. Pharmaceutics 2024; 16:1162. [PMID: 39339199 PMCID: PMC11434984 DOI: 10.3390/pharmaceutics16091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has emerged as a promising approach to cancer diagnosis, imaging, and therapy. Several preclinical studies have demonstrated that compounds and nanoparticles formulated from platinum group metals (PGMs) effectively treat breast cancer. PGMs are chemically stable, easy to functionalise, versatile, and tunable. They can target hypoxic microenvironments, catalyse the production of reactive oxygen species, and offer the potential for combination therapy. PGM nanoparticles can be incorporated with anticancer drugs to improve efficacy and can be attached to targeting moieties to enhance tumour-targeting efficiency. This review focuses on the therapeutic outcomes of platinum group metal nanoparticles (PGMNs) against various breast cancer cells and briefly discusses clinical trials of these nanoparticles in breast cancer treatment. It further illustrates the potential applications of PGMNs in breast cancer and presents opportunities for future PGM-based nanomaterial applications in combatting breast cancer.
Collapse
Affiliation(s)
- Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | | | - Basabele Ngalo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Olwethu Poswayo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Tatenda Madanhire
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
- Department of Chemistry, University of South Africa, Johannesburg 1710, South Africa
| | | | - Zenixole Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| |
Collapse
|
4
|
Botter E, Caligiuri I, Rizzolio F, Visentin F, Scattolin T. Liposomal Formulations of Metallodrugs for Cancer Therapy. Int J Mol Sci 2024; 25:9337. [PMID: 39273286 PMCID: PMC11394711 DOI: 10.3390/ijms25179337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium. Nonetheless, metallodrugs face several drawbacks, such as low water solubility, rapid clearance, and possible side toxicity. Encapsulation has emerged as a promising strategy to overcome these issues, providing both improved biocompatibility and protection of the payload from possible degradation in the biological environment. In this respect, liposomes, which are spherical vesicles characterized by an aqueous core surrounded by lipid bilayers, have proven to be ideal candidates due to their versatility. In fact, they can encapsulate both hydrophilic and hydrophobic drugs, are biocompatible, and their properties can be tuned to improve the selective delivery to tumour sites exploiting both passive and active targeting. In this review, we report the most recent findings on liposomal formulations of metallodrugs, with a focus on encapsulation techniques and the obtained biological results.
Collapse
Affiliation(s)
- Eleonora Botter
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Kokkosi A, Garofallidou E, Zacharopoulos N, Tsoureas N, Diamanti K, Thomaidis NS, Cheilari A, Machalia C, Emmanouilidou E, Philippopoulos AI. Ruthenium p-Cymene Complexes Incorporating Substituted Pyridine-Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties. Molecules 2024; 29:3215. [PMID: 38999167 PMCID: PMC11243419 DOI: 10.3390/molecules29133215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic activities, a series of mononuclear water-soluble ruthenium(II)-arene complexes incorporating substituted pyridine-quinoline ligands, with pending -CH2OH, -CO2H and -CO2Me groups in the 4-position of quinoline ring, were synthesized, for the first time, to study their possible effect to modulate the activity of the ruthenium p-cymene complexes. These include the [Ru(η6-p-cymene)(pqhyme)Cl][X] (X = Cl- (1-Cl), PF6- (1-PF6), pqhyme = 4-hydroxymethyl-2-(pyridin-2-yl)quinoline), [Ru(η6-p-cymene)(pqca)Cl][Cl] ((2-Cl), pqca = 4-carboxy-2-(pyridin-2-yl)quinoline), and [Ru(η6-p-cymene)(pqcame)Cl][X] (X = Cl- (3-Cl), PF6- (3-PF6), pqcame = 4-carboxymethyl-2-(pyridin-2-yl)quinoline) complexes, respectively. Identification of the complexes was based on multinuclear NMR and ATR-IR spectroscopic methods, elemental analysis, conductivity measurements, UV-Vis spectroscopic, and ESI-HRMS techniques. The solid-state structures of 1-PF6 and 3-PF6 have been elucidated by single-crystal X-ray diffraction revealing a three-legged piano stool geometry. This is the first time that the in vitro cytotoxic activities of these complexes are studied. These were conducted in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) via the MTT assay. The results show poor in vitro anticancer activities for the HeLa cancer cell lines and 3-Cl proved to be the most potent (IC50 > 80 μΜ). In both cell lines, the cytotoxicity of the ligand precursor pqhyme is significantly higher than that of cisplatin.
Collapse
Affiliation(s)
- Afroditi Kokkosi
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Elpida Garofallidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos Zacharopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos Tsoureas
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Konstantina Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Christina Machalia
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Athanassios I Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
6
|
Gil-Moles M, Concepción Gimeno M. The Therapeutic Potential in Cancer of Terpyridine-Based Metal Complexes Featuring Group 11 Elements. ChemMedChem 2024; 19:e202300645. [PMID: 38328860 DOI: 10.1002/cmdc.202300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Terpyridine-based complexes with group 11 metals emerge as potent metallodrugs in cancer therapy. This comprehensive review focuses on the current landscape of anticancer examples, particularly highlighting the mechanisms of action. While Cu(II) complexes, featuring diverse ancillary ligands, dominate the field, exploration of silver and gold species remains limited. These complexes exhibit significant cytotoxicity against various cancer cell lines with a commendable selectivity for non-tumorigenic cells. DNA interactions, employing intercalation and groove binding, are pivotal and finely tuned through terpyridine ligand functionalization. In addition, copper complexes showcase nuclease activity, triggering apoptosis through ROS generation. Despite silver's high affinity for nitrogen donor atoms, its exploration is relatively sparse, with indications of acting as intercalating agents causing DNA hydrolytic cleavage. Gold(III) compounds, overshadowing gold(I) due to stability concerns, not only intercalate but also induce apoptosis and disrupt the mitochondrial membrane. Further investigations are needed to fully understand the mechanism of action of these compounds, highlighting the necessity of exploring additional biological targets for these promising metallodrugs.
Collapse
Affiliation(s)
- María Gil-Moles
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Departamento de Química, Centro de Investigación de Síntesis Química (CISQ), Universidad de la Rioja, Complejo Científico-Tecnológico, 26004, Logroño, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
7
|
Bright SA, Erby M, Poynton FE, Monteyne D, Pérez-Morga D, Gunnlaugsson T, Williams DC, Elmes RBP. Tracking the cellular uptake and phototoxicity of Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base conjugates. RSC Chem Biol 2024; 5:344-359. [PMID: 38576718 PMCID: PMC10989513 DOI: 10.1039/d3cb00206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
Ruthenium(ii) complexes are attracting significant research attention as a promising class of photosensitizers (PSs) in photodynamic therapy (PDT). Having previously reported the synthesis of two novel Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base compounds 1 and 2 with interesting photophysical properties, where the emission from either the Ru(ii) polypyridyl centres or the naphthalimide moieties could be used to monitor binding to nucleic acids, we sought to use these compounds to investigate further and in more detail their biological profiling, which included unravelling their mechanism of cellular uptake, cellular trafficking and cellular responses to photoexcitation. Here we demonstrate that these compounds undergo rapid time dependent uptake in HeLa cells that involved energy dependent, caveolae and lipid raft-dependent mediated endocytosis, as demonstrated by confocal imaging, and transmission and scanning electron microscopy. Following endocytosis, both compounds were shown to localise to mostly lysosomal and Golgi apparatus compartments with some accumulation in mitochondria but no localisation was found to the nucleus. Upon photoactivation, the compounds increased ROS production and induced ROS-dependent apoptotic cell death. The photo-activated compounds subsequently induced DNA damage and altered tubulin, but not actin structures, which was likely to be an indirect effect of ROS production and induced apoptosis. Furthermore, by changing the concentration of the compounds or the laser used to illuminate the cells, the mechanism of cell death could be changed from apoptosis to necrosis. This is the first detailed biological study of Ru(ii)-polypyridyl Tröger's bases and clearly suggests caveolae-dependent endocytosis is responsible for cell uptake - this may also explain the lack of nuclear uptake for these compounds and similar results observed for other Ru(ii)-polypyridyl complexes. These conjugates are potential candidates for further development as PDT agents and may also be useful in mechanistic studies on cell uptake and trafficking.
Collapse
Affiliation(s)
- Sandra A Bright
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - MariaLuisa Erby
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Fergus E Poynton
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
| | - David Pérez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
- Center for Microscopy and Molecular Imaging CMMI Université Libre de Bruxelles Gosselies Belgium
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
| | - D Clive Williams
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Robert B P Elmes
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
- Department of Chemistry, Maynooth University, National University of Ireland Maynooth Co. Kildare Ireland +353 1708 4615
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University Maynooth Co. Kildare Ireland
| |
Collapse
|
8
|
Todorov LT, Kostova IP. Coumarin-transition metal complexes with biological activity: current trends and perspectives. Front Chem 2024; 12:1342772. [PMID: 38410816 PMCID: PMC10895002 DOI: 10.3389/fchem.2024.1342772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024] Open
Abstract
Coumarin (2H-1-benzopyran-2-one) presents the fundamental structure of an enormous class of biologically active compounds of natural, semi-synthetic, and synthetic origin. Extensive efforts are continually being put into the research and development of coumarin derivatives with medicinal properties by the broad scientific community. Transition metal coordination compounds with potential biological activity are a "hot topic" in the modern search for novel drugs. Complexation with transition metals can enhance the physiological effect of a molecule, modify its safety profile, and even imbue it with novel attributes of interest in the fields of medicine and pharmacy. The present review aims to inform the reader of the latest developments in the search for coumarin transition metal complexes with biological activity, their potential applications, and structure-activity relationships, where such can be elucidated. Each section of the present review addresses a certain kind of biological activity (antiproliferative, antioxidant, antimicrobial, etc.), explores the most recent discoveries in the field, and, at the same time, tries to offer useful perspectives for potential future investigations.
Collapse
Affiliation(s)
- Lozan T. Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University–Sofia, Sofia, Bulgaria
| | | |
Collapse
|
9
|
Shi J, Xie L, Gong W, Bai H, Wang W, Wang A, Cao W, Tong H, Wang H. Insight into the anti-proliferation activity and photoinduced NO release of four nitrosylruthenium isomeric complexes and their HSA complex adducts. Metallomics 2024; 16:mfae005. [PMID: 38263542 DOI: 10.1093/mtomcs/mfae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Four Ru(II)-centered isomeric complexes [RuCl(5cqn)(Val)(NO)] (1-4) were synthesized with 5cqn (5-chloro-8-hydroxyquinoline) and chiral Val (Val = L- or D-valine) as co-ligand, and their structures were confirmed using the X-ray diffraction method. The cytotoxicity and photodynamic activity of the isomeric complexes and their human serum albumin (HSA) complex adducts were evaluated. Both the isomeric complexes and their HSA complex adducts significantly affected HeLa cell proliferation, with an IC50 value in the range of 0.3-0.5 μM. The photo-controlled release of nitric oxide (NO) in solution was confirmed using time-resolved Fourier transform infrared and electron paramagnetic resonance spectroscopy techniques. Furthermore, photoinduced NO release in living cells was observed using a selective fluorescent probe for NO. Moreover, the binding constants (Kb) of the complexes with HSA were calculated to be 0.17-1.98 × 104 M-1 and the average number of binding sites (n) was found to be close to 1, it can serve as a crucial carrier for delivering metal complexes. The crystal structure of the HSA complex adduct revealed that one [RuCl(H2O)(NO)(Val)]+ molecule binds to a pocket in domain I. This study provides insight into possible mechanism of metabolism and potential applications for nitrosylruthenium complexes.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang 032200, China
| | - Leilei Xie
- Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hehe Bai
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Ai Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wei Cao
- Experimental Center and Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Hongbo Tong
- Experimental Center and Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Zhu W, Huang L, Wu C, Liu L, Li H. Reviewing the evolutive ACQ-to-AIE transformation of photosensitizers for phototheranostics. LUMINESCENCE 2023. [PMID: 38148620 DOI: 10.1002/bio.4655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Photodynamic therapy (PDT) represents an emerging noninvasive treatment technique for cancers and various nonmalignant diseases, including infections. During the process of PDT, the physical and chemical properties of photosensitizers (PSs) critically determine the effectiveness of PDT. Traditional PSs have made great progress in clinical applications. One of the challenges is that traditional PSs suffer from aggregation-caused quenching (ACQ) due to their discotic structures. Recently, aggregation-induced emission PSs (AIE-PSs) with a twisted propeller-shaped conformation have been widely concerned because of high reactive oxygen species (ROS) generation efficiency, strong fluorescence efficiency, and resistance to photobleaching. However, AIE-PSs also have some disadvantages, such as short absorption wavelengths and insufficient molar absorption coefficient. When the advantages and disadvantages of AIE-PSs and ACQ-PSs are complementary, combining ACQ-PSs and AIE-PSs is a "win-to-win" strategy. As far as we know, the conversion of traditional representative ACQ-PSs to AIE-PSs for phototheranostics has not been reviewed. In the review, we summarize the recent progress on the ACQ-to-AIE transformation of PSs and the strategies to achieve desirable theranostic applications. The review would be helpful to design more efficient ACQ-AIE-PSs in the future and to accelerate the development and clinical application of PDT.
Collapse
Affiliation(s)
- Wei Zhu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Shengfa Textiles Printing and Dyeing Co., Ltd., Huzhou, China
| | - Lin Huang
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chao Wu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lingli Liu
- Transfar Zhilian Co. Ltd., Hangzhou, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Mfengwana PMAH, Sone BT. Green synthesis and characterization of ruthenium oxide nanoparticles using Gunnera perpensa for potential anticancer activity against MCF7 cancer cells. Sci Rep 2023; 13:22638. [PMID: 38114615 PMCID: PMC10730706 DOI: 10.1038/s41598-023-50005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
The use of green methods for ruthenium oxide nanoparticles (RuONPs) synthesis is gaining attention due to their eco-friendliness, cost-effectiveness, and availability. However, reports on the green synthesis and characterization of RuONPs are limited compared to other metal nanoparticles. The green synthesis and characterization of RuONPs using water extracts of Gunnera perpensa leaves as a reducing agent is reported in this study. The RuONPs were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Ultraviolet spectroscopy (UV-VIS). MTT assay was used to assess the cytotoxicity of the RuONPs against MCF7 and Vero cell lines. X-ray diffraction analysis results revealed the presence of crystalline and amorphous forms of RuONPs, while IR spectroscopy revealed the presence of functional groups associated with G. perpensa leaves. SEM showed that the RuONPs consisted predominantly of hexagonal and cuboid-like structures with a considerable degree of agglomeration being observed. The cell culture results indicated a low anticancer efficacy of RuONPs against MCF7 and Vero cell lines, suggesting that RuONPs may not be a good lead for anti-cancer drugs. This study highlights the potential of using green synthesis methods to produce RuONPs and their characterization, as well as their cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Polo-Ma-Abiele H Mfengwana
- Department of Health Sciences, Central University of Technology, Free State, Park Road, Private Bag X20539, Bloemfontein, 9301, South Africa.
| | - Bertrand T Sone
- Chemistry Department, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
13
|
Labra-Vázquez P, Rocha E, Xiao Y, Tassé M, Duhayon C, Farfán N, Santillan R, Gibot L, Lacroix PG, Malfant I. A Trojan horse approach for enhancing the cellular uptake of a ruthenium nitrosyl complex. Dalton Trans 2023; 52:18177-18193. [PMID: 37997689 DOI: 10.1039/d3dt03480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Ruthenium nitrosyl (RuNO) complexes continue to attract significant research interest due to several appealing features that make these photoactivatable nitric oxide (NO˙) donors attractive for applications in photoactivated chemotherapy. Interesting examples of molecular candidates capable of delivering cytotoxic concentrations of NO˙ in aqueous media have been discussed. Nevertheless, the question of whether most of these highly polar and relatively large molecules are efficiently incorporated by cells remains largely unanswered. In this paper, we present the synthesis and the chemical, photophysical and photochemical characterization of RuNO complexes functionalized with 17α-ethinylestradiol (EE), a semisynthetic steroidal hormone intended to act as a molecular Trojan horse for the targeted delivery of RuNO complexes. The discussion is centered around two main molecular targets, one containing EE (EE-Phtpy-RuNO) and a reference compound lacking this biological recognition fragment (Phtpy-RuNO). While both complexes displayed similar optical absorption profiles and NO˙ release efficiencies in aqueous media, important differences were found regarding their cellular uptake towards dermal fibroblasts, with EE-Phtpy-RuNO gratifyingly displaying a remarkable 10-fold increase in cellular uptake when compared to Phtpy-RuNO, thus demonstrating the potential drug-targeting capabilities of this biomimetic steroidal conjugate.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Erika Rocha
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Yue Xiao
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Ciudad de México, Mexico
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse, III - Paul Sabatier, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| |
Collapse
|
14
|
Rehman HU, Fornaciari B, Alves SR, Colquhoun A, de Oliveira Silva D. Diruthenium(II-III)-ibuprofen-loaded chitosan-based microparticles and nanoparticles systems: encapsulation, characterisation, anticancer activity of the nanoformulations against U87MG human glioma cells. J Microencapsul 2023; 40:549-565. [PMID: 37698449 DOI: 10.1080/02652048.2023.2258967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The aim of this work was to investigate novel formulations containing diruthenium(II-III)-ibuprofen (RuIbp) metallodrug encapsulated into the chitosan (CT) biopolymer. Microparticles (RuIbp/CT MPs, ∼ 1 µm) were prepared by spray-drying, and RuIbp/CT-crosslinked nanoparticles (NPs) by ionic gelation (RuIbp/CT-TPP, TPP = tripolyphosphate (1), RuIbp/CT-TPP-PEG, PEG = poly(ethyleneglycol (2)) or pre-gel/polyelectrolyte complex method (RuIbp/CT-ALG, ALG = alginate (3)). Ru analysis was conducted by energy dispersive x-ray fluorescence or inductively coupled plasma atomic emission spectroscopy, and physicochemical characterisation by powder x-ray diffraction, electronic absorption and FTIR spectroscopies, electrospray ionisation mass spectrometry, thermal analysis, scanning electron, transition electron and atomic force microscopies, and dynamic light scattering. The RuIbp-loaded nanosystems exhibited encapsulation efficiency ∼ 20-37%, drug loading∼ 10-20% (w/w), hydrodynamic diameter (nm): 103.2 ± 7.9 (1), 91.7 ± 12.6 (2), 270.2 ± 58.4 (3), zeta potential (mV): +(47.7 ± 2.8) (1), +(49.2 ± 3.6) (2), -(28.2 ± 2.0) (3). Nanoformulation (1) showed the highest cytotoxicity with increased efficacy in relation to the RuIbp free metallodrug against U87MG human glioma cells.
Collapse
Affiliation(s)
- Hanif-Ur- Rehman
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Bárbara Fornaciari
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Samara R Alves
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Denise de Oliveira Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Wang N, Ali A, Liu Z, Chi H, Lv Z, Zhao X, Zhang Z, Hao H, Zhang Y, Rahman FU. Monofunctional dimetallic Ru(η6-arene) complexes inhibit NOTCH1 signaling pathway and synergistically enhance anticancer effect in combination with cisplatin or vitamin C. Eur J Med Chem 2023; 258:115536. [PMID: 37295260 DOI: 10.1016/j.ejmech.2023.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
ONS donor ligands L1-L4 were utilized in the preparation of monofunctional dimetallic Ru(η6-arene) complexes (C1-C4). These ONS donor ligand based novel tricoordinated Ru(II) complexes bearing η6-arene co-ligand were prepared for the first time. The current methodology resulted in excellent isolated yields and these complexes were characterized in detail by different spectroscopic and spectrometric techniques. The structures of C1-C2 and C4 were characterized in solid state by single crystal X-ray analysis. The in vitro anticancer analyses showed these novel complexes suppressed the growth of breast (MCF-7), liver (HepG2) and lung (A549) cancer cells. C2 suppressed the growth of these cells in dose-dependent manner revealed form the MTT and crystal violet cell viability assays. Moreover, C2 was observed the most potent complex that was used further in detailed mechanistic analyses in cancer cells. C2 showed good cytotoxic activity at 10 μM dose level as compared to cisplatin or oxaliplatin in these cancer cells. We observed morphological changes in cancer cells upon treatment with C2. Moreover, C2 suppressed the invasion and migration ability of cancer cells. C2 induced cellular senescence to retard cell growth and suppressed the formation of cancer stem cells. Importantly, C2 showed synergistic anticancer effect in combination with cisplatin and Vitamin C to further inhibit cell growth which suggested the potential role of C2 in cancer therapy. Mechanistically, C2 inhibited NOTCH1 dependent signaling pathway to suppress cancer cell invasion, migration and cancer stem cells formation. Thus, these data suggested potential role of C2 in cancer therapy by targeting NOTCH1-dependent signaling to suppress tumorigenesis. The results obtained in this study for these novel monofunctional dimetallic Ru(η6-arene) complexes showed their high anticancer potency and this study will pave to further cytotoxicity exploration on this class of complexes.
Collapse
Affiliation(s)
- Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Zongwei Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huiqin Chi
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xing Zhao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
16
|
Marinescu G, Culita DC, Mocanu T, Mitran RA, Petrescu S, Stan MS, Chifiriuc MC, Popa M. New Nanostructured Materials Based on Mesoporous Silica Loaded with Ru(II)/Ru(III) Complexes with Anticancer and Antimicrobial Properties. Pharmaceutics 2023; 15:pharmaceutics15051458. [PMID: 37242698 DOI: 10.3390/pharmaceutics15051458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
A new series of nanostructured materials was obtained by functionalization of SBA-15 mesoporous silica with Ru(II) and Ru(III) complexes bearing Schiff base ligands derived from salicylaldehyde and various amines (1,2-diaminocyclohexane, 1,2-phenylenediamine, ethylenediamine, 1,3-diamino-2-propanol, N,N-dimethylethylenediamine, 2-aminomethyl-pyridine, and 2-(2-aminoethyl)-pyridine). The incorporation of ruthenium complexes into the porous structure of SBA-15 and the structural, morphological, and textural features of the resulting nanostructured materials were investigated by FTIR, XPS, TG/DTA, zeta potential, SEM, and N2 physisorption. The ruthenium complex-loaded SBA-15 silica samples were tested against A549 lung tumor cells and MRC-5 normal lung fibroblasts. A dose-dependent effect was observed, with the highest antitumoral efficiency being recorded for the material containing [Ru(Salen)(PPh3)Cl] (50%/90% decrease in the A549 cells' viability at a concentration of 70 μg/mL/200 μg/mL after 24 h incubation). The other hybrid materials have also shown good cytotoxicity against cancer cells, depending on the ligand included in the ruthenium complex. The antibacterial assay revealed an inhibitory effect for all samples, the most active being those containing [Ru(Salen)(PPh3)Cl], [Ru(Saldiam)(PPh3)Cl], and [Ru(Salaepy)(PPh3)Cl], especially against Staphylococcus aureus and Enterococcus faecalis Gram-positive strains. In conclusion, these nanostructured hybrid materials could represent valuable tools for the development of multi-pharmacologically active compounds with antiproliferative, antibacterial, and antibiofilm activity.
Collapse
Affiliation(s)
- Gabriela Marinescu
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Daniela C Culita
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Teodora Mocanu
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Raul-Augustin Mitran
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Miruna S Stan
- Faculty of Biology, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Mariana C Chifiriuc
- Faculty of Biology, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Marcela Popa
- Faculty of Biology, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| |
Collapse
|
17
|
Ferraro MG, Bocchetti M, Riccardi C, Trifuoggi M, Paduano L, Montesarchio D, Misso G, Santamaria R, Piccolo M, Irace C. Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem. Int J Mol Sci 2023; 24:ijms24076473. [PMID: 37047448 PMCID: PMC10094725 DOI: 10.3390/ijms24076473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Based on compelling preclinical evidence concerning the progress of our novel ruthenium-based metallotherapeutics, we are focusing research efforts on challenging indications for the treatment of invasive neoplasms such as the triple-negative breast cancer (TNBC). This malignancy mainly afflicts younger women, who are black, or who have a BRCA1 mutation. Because of faster growing and spreading, TNBC differs from other invasive breast cancers having fewer treatment options and worse prognosis, where existing therapies are mostly ineffective, resulting in a large unmet biomedical need. In this context, we benefited from an experimental model of TNBC both in vitro and in vivo to explore the effects of a biocompatible cationic liposomal nanoformulation, named HoThyRu/DOTAP, able to effectively deliver the antiproliferative ruthenium(III) complex AziRu, thus resulting in a prospective candidate drug. As part of the multitargeting mechanisms featuring metal-based therapeutics other than platinum-containing agents, we herein validate the potential of HoThyRu/DOTAP liposomes to act as a multimodal anticancer agent through inhibition of TNBC cell growth and proliferation, as well as migration and invasion. The here-obtained preclinical findings suggest a potential targeting of the complex pathways network controlling invasive and migratory cancer phenotypes. Overall, in the field of alternative chemotherapy to platinum-based drugs, these outcomes suggest prospective brand-new settings for the nanostructured AziRu complex to get promising goals for the treatment of metastatic TNBC.
Collapse
|
18
|
Sumithaa C, Ganeshpandian M. Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal-Drug Synergism in Metallodrug Design. Mol Pharm 2023; 20:1453-1479. [PMID: 36802711 DOI: 10.1021/acs.molpharmaceut.2c01027] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A novel strategy in metallodrug discovery today is incorporating clinically approved drugs into metal complexes as coordinating ligands. Using this strategy, various drugs have been repurposed to prepare organometallic complexes to overcome the resistance of drugs and to design promising alternatives to currently available metal-based drugs. Notably, the combination of organoruthenium moiety and clinical drug in a single molecule has been shown, in some instances, to enhance pharmacological activity and reduce toxicity in comparison to the parent drug. Thus, for the past two decades, there has been increasing interest in exploiting metal-drug synergism to develop multifunctional organoruthenium drug candidates. Herein, we summarized the recent reports of rationally designed half-sandwich Ru(arene) complexes containing different FDA-approved drugs. This review also focuses on the mode of coordination of drugs, ligand-exchange kinetics, mechanism of action, and structure-activity relationship of organoruthenated complexes containing drugs. We hope this discussion may serve to shed light on future developments in ruthenium-based metallopharmaceuticals.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| |
Collapse
|